[image: image1.png]US Army Corps
of Engineers .,

New Orleans District

USACE Map Book NV (New Version) Developer Documentation

SD006
Sam Falchook

Contractor

Software & Scanning Services

Samuel.I.Falchook@usace.army.mil
862-2113

Version 1.0
July 20, 2009
Overview
The objective of the Map Book NV project is to design, implement, and maintain a system for creating series of maps contained within a single map document, and specifically for the purpose of creating series of Plan and Profile maps. The Map Book NV project used the ESRI DS Map Book developer sample as a starting point. From this starting point, additional functionality was added to Map Book NV to support the advanced requirements for creating professional quality Plan and Profile maps.
Design
Object Model
The Visual Basic code for DS Map Book/Map Book NV is divided into two separate projects, DSMapBookPrj and DSMapBookUIPrj. DSMapBookUIPrj contains the user interface. DSMapBookPrj contains a set of objects (along with their properties and methods) that are used in DSMapBookUIPrj. DSMapBookPrj contains the DSMapBook, DSMapSeries, and DSMapPage objects along with the interfaces for each. The interfaces, properties, and methods for these objects are as follows:

DSMapBook:

IDSMapBook:

AddContent (Content as object) – allows additional content to be added to the book. For the application portion of this implementation, only a single series is added to the Map Book. However, the hooks are there for you to add additional content to the book.

ContentCount: Long – returns a count of the content items in the book.

ContentItem(Index as Long): Object – returns the content item (as an object) at the specified index.

EnableBook: Boolean – returns/sets whether the book is enabled for output or not.

RemoveContent(Index as Long) – removes the content at the specified index.

DSMapSeries:

IDSMapSeries:

AddPage (Page as IDSMapPage) – allows additional pages to be added to the series.

EnableSeries: Boolean – returns/sets whether the series is enabled for output or not.

Page (Index as Long): IDSMapPage – returns the page item at the specified index.

PageCount: Long – returns the number of pages in the series.

RemovePage (Index as Long) – removes the page at the specified index.

CurrentPageNumber: Long – returns/sets the current page number.
IDSMapSeriesOptions: the properties in this interface can be changed after a Map Series has been created. Changes will be enforced the next time a page/tile is displayed.

ClipData: Boolean – returns/sets whether pages in the series will be clipped based on the geometry of the page/tile.

DataDrivenField: String – returns/sets the name of the field to be used when the scale for each page is coming from an attribute value on the Index Layer.

ExtentType: Long – returns/sets where the scale is coming from when a page is displayed or output. 0 specifies a best fit scale, 1 specifies a constant scale, and 2 specifies that the scale is coming from an attribute value.

FixedScale: Double – returns/sets the scale to use for each page when a fixed scale is being used.

LabelNeighbors: Boolean – returns/sets whether adjacent pages/tiles are labeled on the layout.

LabelSymbol: ISymbol – returns/sets the symbol to be used in labeling the neighboring pages/tiles.

Margin: Double – returns/sets the margin to add when a best fit option is being used to set the scale for each page/tile.

MarginType: String – returns/sets how to apply the value of the Margin property. The two options are percent (the Margin value should be the percent to add to the current scale) and map units (the Margin value should be the number of Map Units to add to the current scale as a Margin).

RotationFrame: Boolean – returns/sets whether the frame should be rotated for each page/tile based on an attribute value in the Index Layer.

RotationField: String – returns/sets the name of the field on the Index Layer to use when rotating the pages/tiles.

IDSMapSeriesOptions2: added with the new option to display crosshatch over areas outside current tile (as opposed to clip).

ClipData: Long – returns/sets whether pages in the series will be clipped based on the geometry of the page or have gray cross hatch drawn on top of the area outside the current tile/page. Values are 0 for no clip, 1 for clip, and 2 for crosshatch.

IDSMapSeriesOptions3:

SelectTile: Boolean – returns/sets whether to select the current Index Grid feature in the local and global identifier frames so that it stands out.
IDSMapSeriesProps: the properties in this interface are only used when a Map Series is initially created.

AddLayerToSuppress (LayerName as string) – add a layer to the list of layers to use when determining the pages/tiles to suppress. Pages/tiles are suppressed when the suppression option is selected and no data from any of the layers in the suppression list can be found on the page.

DateFrameName: String – returns/sets the name of the data frame used in the Map Book.

IndexFieldName: String – returns/sets the name of the field containing the name of each page/tile.

IndexLayerName: String – returns/sets the name of the Index Layer to be used in generating the Map Series.

RemoveLayerToSuppress (Index as long) – removes the layer at the specified index from the suppression list.

StartNumber: Long – returns/sets the starting number for the assigning sequential numbers to the pages/tiles.

SuppressLayer (Index as Long): String – returns the name of the suppression layer at the specified index.

SuppressLayerCount: Long – returns the number of layers in the suppression list.

SuppressLayers: Boolean – returns/sets whether suppression is used in the creation of the Map Series.

TileSelectionMethod: Long – returns/sets how tiles are selected during the generation of the Map Series (this is separate from suppression). 0 indicates all tiles/pages will be generated, 1 indicates only the selected tiles/pages will be generated, and 2 indicates only the tiles/pages in the current extent should be generated.

IDSMapSeriesGraphProps:
HasDataGraphPosition: Boolean – returns/sets whether the series has saved graph size and position values

DataGraphXMin: Double – returns/sets data graph layout element’s minimum X value

DataGraphYMin: Double – returns/sets data graph layout element’s minimum Y value

DataGraphWidth: Double – returns/sets data graph layout element’s Width

DataGraphHeight: Double – returns/sets data graph layout element’s Height
DSMapPage:

IDSMapPage:

AddPageItem (PageItem as IElement) – Adds an additional layout element to the set of page specific elements. This is not used in the current implementation.

DrawPage (pDoc as IMxDocument, pDSMapSeries as IDSMapSeries, bRefreshFlag as Boolean) – draws the page based on the parameters that are submitted. The bRefreshFlag variable is used to indicate whether the display should be refreshed during the draw process. The display is not refreshed when the page is being printed or exported.

EnablePage: Boolean - returns/sets whether the page is enabled for output.

LastOutputted: Date – returns/sets the last date the page was printed or exported.

PageItem (Index as Long): IElement – returns the layout element in the page collection at the specified index. This is not used in the current implementation.

PageItemCount: Long – returns the number of layout elements in the collection for the page. This is not used in the current implementation.
PageName: String – returns/sets the name of the page.

PageNumber: Long – returns/sets the number of the page.

PageRotation: Double – returns/sets the rotation value for the page.

PageScale: Double – returns/sets the scale for the page.

PageShape: IPolygon – returns/sets the polygon shape for the page. This shape is used in setting the extent for the page and is also used as the clip shape if the clipping option is turned on for the series.

RemovePageItem (Index as Long) – removes the layout element from the page collection at the specified index. This is not used in the current implementation.
routeLine: IPolyline – This is not used in the current implementation.
Index page: Collection – returns a collection of feature names that are located within the page.
FromStation: Double – returns/sets the starting station value of the page (as seen in the graph).
ToStation: Double – returns/sets the ending station value of the page (as seen in the graph).
IDSMapSeriesGraphProps: (this interface is also used by the DSMapSeries object)
HasDataGraphPosition: Boolean – returns/sets whether the page has saved graph size and position values

DataGraphXMin: Double – returns/sets data graph layout element’s minimum X value

DataGraphYMin: Double – returns/sets data graph layout element’s minimum Y value

DataGraphWidth: Double – returns/sets data graph layout element’s Width

DataGraphHeight: Double – returns/sets data graph layout element’s Height
RegHelper: This object reads from and writes to the windows registry.
The DSMapBookUIPrj.vbp project contains the Visual Basic code for the user interface. This set of code makes use of the objects discussed above. The user interface project implements the Map Book as an extension to ArcMap, with the Map Book itself available as a property of that extension. From the Map Book you can access the Map Series and all the pages within that series. This means that VBA code could be written to update the properties of the series or the individual pages. As an example, the following VBA code is used to access the Map Series:

Dim pMapBookExt As DSMapBookExt, pMapBook As IDSMapBook, pMapSeries As IDSMapSeries

Set pMapBookExt = m_pApp.FindExtensionByName("DevSample_MapBook")

Set pMapBook = pMapBookExt.MapBook

Set pMapSeries = pMapBook.ContentItem(0)

Implementation
Page-Specific Annotation Groups
The “Convert Labels to Annotation…” functionality allows the user to select one or more layers in the map and convert their labels to page-specific annotation. Each page has its own annotation layers. Annotation has the same rotation as the page and is clipped to the extent of the page.

The annotation layers follow a naming convention like this:
Streets _Anno_Page_1

Where “Streets” is the name of the feature layer and “1” is the page number.
Page-Specific Map Elements Tagged As “This Page Only” or “All pages except this one”
The user may tag one or more map elements to display on only one page or to display on all pages except one.
Special constants, TAG_CONST_THISPAGEONLY or TAG_CONST_ALLPAGESBUTTHIS, are stored in the “Name” property of the map element to indicate if it is to be displayed on one page only or all pages except one.

The page number is stored in the “Type” property. Page number is stored as a string.

A Boolean value is stored in the “CustomProperty” property. This Boolean value stores the invisible/not invisible property of the text element. A value of TRUE indicates invisible. A value of FALSE indicates “not invisible” or visible. This property is always set to false initially. When a map element is hidden, it is moved to a location off of the page and “CustomProperty” is set to TRUE. When the map element is shown again, it is moved back onto the page and “CustomProperty” is set back to false.
Tagging The Data Graph Element

The user may tag only one Data Graph Element. After the Data Graph is tagged, its “To Station” and “From Station” will be updated each time a page is viewed, printed, or exported, so that the graph shows the section of profile that falls between the focus points specified in the “From Station” and “To Station” attributes of the Index Grid feature.
A special constant, TAG_CONST_DATAGRAPH is stored in the “Type” property of the Data Graph map element to indicate that it is tagged. (The “Name” property is not used because it is sometimes overwritten.)
Saving Data Graph Size and Position Information

Additional size and position information for the Data Graph may optionally be stored in the DSMapSeries and DSMapPage objects.

Deleting a Page

The user may permanently delete a page from a map series. This functionality was provided in the original DS Map book. This functionality may be more trouble than it is worth, but it remains in the current version of Map Book NV.
When a page is deleted from a map series, all of the subsequent pages are renumbered. To accommodate this re-numbering, Page-Specific Annotation and Page-Specific Map elements are also re-numbered so that they still match their corresponding pages.

Deleting the Series
The user may choose to delete the entire map series. In this situation, all Page-Specific Annotation and Page-Specific Map elements are not deleted.
The assumption here is that if the user deletes the entire map series, he or she intends to re-create the series from the same set of Index Grid polygon features. It is assumed that the new map series will contain the same pages as the old map series. If the new map series contains different pages, or a different number of pages, some unexpected problems are likely to occur.
The Local and Global identifier frames are also not deleted (although in previous versions of Map Book NV they were deleted.)
Saving the Version number
Map Book NV contains functionality to retrieve the Map Book NV version number from the “App” object. Version number is converted from major.minor.revision to a single number using the formula: major + (minor * 0.1) + (revision * 0.01). This formula assumes that minor and revision numbers will be single-digit.

When the map document is saved, Map Book NV saves the version number in the DSMapBook object. Map Book NV will warn the user when it loads a map document that was created with a later version of Map Book NV.
Forward and Backward Compatibility

Starting in version 0.6, Map Book NV is theoretically forward compatible with future versions of Map Book NV. When loading DSMapBook, DSMapSeries, and DSMapPage objects from a saved map document, Map Book NV retrieves a count of the number of properties to read. Starting in version 0.6, Map Book NV uses a loop to read the correct number of properties and store them in a collection. After the collection is populated, Map Book NV retrieves the properties from the collection and uses them as needed. If the map document was created with a newer version of Map Book NV, there may be some properties that are read into the collection but will be ignored by an older version of Map Book NV. In theory, the properties that are ignored will not prevent Map Book NV from functioning properly.
Backward Compatibility is maintained by not changing any of the existing interfaces. At compile time, Map Book NV checks the compiled code against a backup copy of the Map Book NV DLLs to make sure that the interfaces have not changed. Removing classes, removing public attributes, removing public methods, and modifying the parameters of public methods all constitute a change to the interface.

The “backup copies” of the Map Book NV DLLs are stored in the “binary compatibility” subdirectory. It was agreed that an exception could be made to allow us to store the “backup copies” of the DLLs in subversion, even though they are binary files.
Modal and Modeless Dialogs

The Modal dialogs in Map Book NV proved to be problematic, so an effort was made to convert as many of the modal dialogs to modeless dialogs as possible. The vast majority of the modal dialogs were converted to modeless, with a few exceptions. For the remaining modal dialogs, the program now specifies ArcMap as the parent window, so that these modal dialogs will always appear on top of the ArcMap window.
Alternate Implementation Considerations
Strip Map Generation

Map Book NV has several alternative methods of generating Strip Map grids and assigning “To” and “From” Station values to the grid features.

The first method is “Auto-Generate grids and disregard station values”. If the line is not M-Aware, this is the only option available to generate Strip Map grids. This option uses circular arcs to find a point on the line segment a certain distance away from the starting point. These two points become the starting point and ending point of the grid feature. The ending point of one grid feature becomes the starting point of the next grid feature, and the process is repeated until all of the grid features are created. The grid features are generated in landscape mode. The starting point or “From point” is centered on the left edge of the grid feature, while the end point or “To point” is centered on the right edge of the grid feature.
The second method is “Generate grids based on a station values table”. To use this option, the line must have M values. With this method, each grid feature will contain a segment of line starting and ending with specific station values. Depending on the scale and data frame size chosen, the grid feature will also contain a certain amount of buffer space. This means that part of the line before the starting station point (“From Point”) and part of the line after the ending point (“To Point”) will be visible on the page. Because of this, there will be some overlap between neighboring grid features. This is by design. To change the amount of overlap, modify the scale.
To “generate grids based on a station values table” a stations value table must be created and populated. A station values table must contain one record for each grid feature that you want to create. It must contain attributes that store the “From Station” and “To Station” values. The user may select a table that exists in the map document, load an existing table, or create a new table.
The user may manually populate the stations table, or the user may select an option to “Populate station values table with stations every _____ feet”. The user selects an interval (10,000 feet for example). The program will automatically find the starting point and ending point of the line and will find any breaks in the line. On each grid except the first and last grid, each record in the stations table will contain the standard station length interval. The first and last page will contain no more than 110% and no less than 10% of the standard station interval. If the line contains breaks, the user can choose to either ignore the breaks or to force a new grid feature to begin after each break.
Usage
Requirements

Installing Map Book NV requires administrator permissions.
Running Map Book NV in the ArcGIS Application Requires the following:

· Windows 2000 (Service Pack 4) operating system/ Windows XP operating system, or Windows Vista operating system

· ArcGIS version 9.2 or greater

Development of Map Book NV requires the following:

· Windows 2000 (Service Pack 4) operating system/ Windows XP operating system, or Windows Vista operating system

· ArcGIS Version 9.2 or greater

· Microsoft Visual Basic 6.0

· Advanced Installer 6.1 or greater
Testing
Currently, unit tests have not been written for Map Book NV. Testing is done manually.
The “Generate grids based on a station values table” option has a built-in test that determines whether the segment fits completely within the Index Grid polygon. The result is written to the “In Grid” attribute as Y for yes or N for no.
The following additional tests can be applied to Strip Map Generation:

1. Does the Index Grid polygon have correct dimensions?

2. How well does the application handle multi-part paths, multiple features, and non continuous stationing? (Test on Jefferson Parish Lakefront, which has 5 parts.)
Deployment
Map Book NV is deployed with an .MSI installer. The installer is built using Advanced Installer.
The installer should include a “Version Number” registry key so that administrators can easily identify the version number of the application.
The help document should be deployed as both a word document and HTML. The installer should include a registry key that points to the path of the HTML help document.
Future Development Plans
The following functionality is planned for a future version of Map Book NV:

1. Fix a bug that is saving Map Book NV information, such as version number, into non-Map Book NV maps and is giving erroneous warning messages to users who have older version of Map Book NV.

2. Currently, when Map Book NV creates a map series, it orders the pages alphabetically by the page name field. This can be problematic when the page name contains page numbers with different numbers of digits. For example, page 1 would be followed by page 11 and page 2 comes after page 19. The solution to this problem would be to refrain from performing any sorting. Ideally, the features should be sorted by FID.

3. Fix a bug that is causing ArcMap to sometimes freeze when exiting one map and loading a second map.

a. ArcGIS Freezes up when the user clicks “New Map”, or loads another existing map.

b. Could this be a problem with the destructor?

c. This problem is repeatable.

d. Error does not occur if the user deletes series before loading new map.

e. The Error does not occur on all Map Book NV maps.

4. Fix a bug that causes “Create Strip Map” to fail when the map is in data view. (Having trouble repeating error.)
5. “Cancel” operation on “Generate Strip Map” wizard saves edits even if the user clicks “No”.
6. On page 3 of the Map Sheet Wizard, the first Extent option, “Variable – Fit the tiles to the data frame” does not take page rotation into account. This option uses the extent of the non-rotated bounding extent of the grid polygon.

7. For Strip Maps Series, add the capability to view and modify the “To” and “From” station source columns or values from the “Map Series Properties” and “Page Properties” dialogs.

8. Can Map Book NV adjust the rotation angle of point symbols to match the rotation angle of the page?

9. Add the capability to store multiple map series in a single map book within a single map document.
10. Possibly store “minimum elevation” and “maximum elevation” data graph attributes in the Strip Map Index Grid polygon features. When navigating to a new page, change these properties in the data graph.

11. Determine if it is possible to automatically resize the Data Graph so that its scale is consistent with the Map.

a. The width of the profile plot in inches is based on several factors: the distance between the “From Station” and “To Station”, the map scale, and the size of the margins of the Data Graph.

b. We are assuming that Map units are in inches and that data units are in feet.

12. Add Data Graph tagging and positioning options to the context menu of the Data Graph layout element.

13. The DSMapPage object contains several properties to store one or more “Page Items” that are page-specific map elements. Currently, Map Book NV does support page-specific map elements, but it does not utilize these existing properties to track the page-specific map elements. In the future, there may be a reason to utilize these properties, or there may not be. One issue is that map elements can be deleted from a map by the user, and there would be no way for Map Book NV to know that these page-specific elements no longer exist.
14. Fix a bug that Jack Smith found while attempting to export: “ShowExporterDialog – 785 This key is already associated with an element of this collection.” So far we have not been able to duplicate this error.
15. Determine if there is ever a situation in which a layout element should have more than one type of “tag”. If so, what is the best way to implement that?

16. Add the capability to add or remove Page-specific annotation to a single page. Possibly modify the functionality to View, Print, or Export a page so that it will display regular labels if the page does not have page-specific annotation.
17. Add the capability to temporarily turn off a group of annotation groups. (So that changing pages does not influence their visibility.)

18. Add the capability to create an “Index Map” page for a map series.

a. The index page should cover the extent of the entire series. The Index Grid layer should be visible on this page.

b. Creating an “Index Map” could be on option while generating the Index Grid polygon features. Or, it could be an additional step that can be run after the Index Grid polygons have already been created.

c. The Index Map page should have its own Index Grid polygon.

d. The maps could use scale dependent layers to allow some layers to be hidden on the “Index Map” page.
e. Some sort of intelligent mechanism must be in place to allow certain map elements to be hidden on the “Index Map” page. For example, “Data Graphs” should not be visible on the “Index Map” page. The “Index Map” page might have a drastically different layout than the other pages in the series. The “Show on this page only” and “Show on all pages except this one” functionality may not be sufficient to accomplish this task.
f. The index map page could be tagged with elements to “Show only on index map page.” Only map elements tagged this way would show up. Is there a way to automatically tag all visible elements on a particular page? The only thing that the index page must have in common with the other pages is page size.

19. Add functionality to modify existing pages in a map series by modifying the corresponding Index Grid feature class. This includes the capability to modify existing pages and add new pages.

a. Add a context menu option to the Map Series to “Add Page”.

b. Add an item to the “Page” context menu to update the page based on updates to the Index grid polygon feature.

20. Add functionality to help the user resolve overflow annotation more easily.

a. Overflow Annotation probably needs to be handled for each page individually.

b. Try to programmatically detect if there is overflow annotation and if so, display the dialog (as apposed to displaying it all the time).
c. “Never remove labels” is a Maplex option that we want the program to default to.
21. When testing Map Book NV with the Maplex extension turned on, the mouse icon did not change to an hour glass while displaying layers and processing data before closing various forms.

22. Create a utility to help with labeling line segments in the profile data graph. Each segment has a FROM station, a TO station, and a midpoint station that is used for labeling. A special utility is needed to handle the case where the segment falls on two pages (or more?). A custom label point is needed for each page that the segment crosses. The FROM station, TO station, and label station values are stored in a non-spatial table. A special algorithm is needed to take the table as input, and also second table containing TO and FROM values for page breaks. The algorithm must output a new table which contains station values for the custom label points. A custom label point would probably be located half way between the TO or FROM station and the station value of the page break.
23. In cases where the last page of the series contains a very short segment, the labels in the data graph of the last page end up appearing scrunched up. How can the appearance of these labels be fixed?
24. When the “fixed extent” option is selected, automatically activate or tab over to the textbox for entering the extent.

25. Why does the North Arrow move sometimes for no reason?
26. Discovered an error: When all of the pages of a map series were deleted except for one (page 6), and then the remaining page was exported, an error occurred. The program automatically renumbered the pages, but it was still trying to view and export Page 6, even though it had already been renumbered.
27. Fix a bug in the grid generator wizard that causes layers inside of a group layer to not appear in the list of layers on the first page of the grid generator wizard.

28. Investigate an error that occurs when attempting to generate a strip map at 1:4800 on the “Orleans Avenue Canal E” levee reach, in the “Levees GIS Topographic Centerlines (Active and Proposed)” layer. The “Auto-generate” option was used. The same error occurred on the West reach as well. The error messages were “JAMB_Front_End | error – no geoms intersected” and “JAMB_Front_End | Error in GenerateIndexPolygonFeature – 979 – The operation was attempted on an empty geometry.” The problem might be due to the reach being shorter than the length of one page.
