APPENDIX M: ENGINEERING REPORTS Volume 3 of 4

Contents:

Basis of Design Report -15% Design Appendices as follows:

- 8. C Project Design Criteria
- 9. D.1 Hydrologic & Hydraulic Modeling Report
- 10. D.2 Hydrodynamic Water Quality Modeling Report
- 11. E Task Order 1 Structural Calculations

It should be noted that the Engineering Reports were provided by CPRA as standalone documents and in some cases the terminology within may not match the terminology used in the SEIS (e.g. MSP vs. MSA-2 for the selected alternative).

STATE OF LOUISIANA COASTAL PROTECTION AND RESTORATION AUTHORITY RIVER REINTRODUCTION INTO MAUREPAS SWAMP AND WEST SHORE LAKE PONTCHARTRAIN FLOOD RISK REDUCTION PROJECT PO-0029 STATE PROJECT No. PO-0062 LaGOV NO. 4400019214

> BASIS OF DESIGN REPORT 15% DESIGN

APPENDIX C

PROJECT DESIGN CRITERIA

STATE OF LOUISIANA COASTAL PROTECTION AND RESTORATION AUTHORITY

RIVER REINTRODUCTION INTO MAUREPAS SWAMP AND WEST SHORE LAKE PONTCHARTRAIN FLOOD RISK REDUCTION PROJECT PO-0029 LaGOV NO. 4400019214

PROJECT DESIGN CRITERIA

For

Prepared By: AECOM Technical Services 7389 Florida Blvd. Suite 300 Baton Rouge, LA 70806

December 31, 2020

Rev	Date	Description
0	2020	Draft Submittal

Quality information

Prepared by	Checked by	Verified by	Approved by
Leah Read	Ariel Buenano		

Revision History

Revision	Revision date	Details	Authorized	Name	Position
00	12/31/2020	Draft 15% Submittal	Yes	Ariel Buenano	Project Manager

Prepared for:

Coastal Protection and Restoration Authority as part of Task Order 1 of the subject Project

Prepared by:

AECOM 1555 Poydras Street Suite 1200 New Orleans, LA 70112 aecom.com

Table of Contents

1.	INTRO	DDUCTION	. 1
2.	GEOT	ECHNICAL DESIGN	. 1
	2.1	Codes, Standards, and Guidelines	. 1
	2.2	References	. 1
	2.3	Computer Programs	. 2
	2.4	Design Criteria	. 2
3.	STRU	CTURAL DESIGN	. 3
	3.1	Introduction	. 3
	3.2	Maurepas Project Structures	. 3
	3.2.1	Mississippi River Intake System	. 4
	3.2.2	Canadian National Railroad Crossing	. 4
	3.2.3	Kansas City Southern Railroad Crossing	. 4
	3.2.4	Airline Highway Crossing	. 4
	3.2.5	Interstate 10 Crossing	. 4
	3.3	WSLP Project Structures	. 4
	3.3.1	MRL Tie-In	. 4
	3.3.2	River Road Crossing	. 4
	3.3.3	Canadian National Railroad Crossing	. 4
	3.3.4	Kansas City Southern Railroad Crossing	. 5
	3.3.5	Airline Highway Crossing	. 5
	3.4	References and Publications	. 5
	3.4.1	Industry Codes and Standards	. 5
	3.4.2	USACE Engineering Manuals and Guidance	. 5
	3.4.3	Computer Programs	. 6
	3.5	Concrete Design Criteria	. 6
	3.5.1	Minimum Design Values	. 6
	3.5.2	Joints and Waterstops	.7
	3.6	Steel Design Criteria	.7
	3.6.1	LRFD Design Basis	.7
	3.6.2	Structural Shapes	. 8
	3.6.3	Corrosion Protection of Steel Components	. 8
	3.6.4	Steel H-Piles	. 8
	3.7	Aluminum Design Criteria	. 9
	3.8	General Design Parameters	. 9
	3.8.1	Loads	10
	3.8.1.1	1 Load Abbreviations	10
	3.8.1.2	2 Dead Loads (D)	10
	3.8.1.3	3 Live Loads (L, Lr)	11
	3.8.1.4	4 Equipment (Q)	11
	3.8.1.5	5 Vehicle (V)	11
	3.8.1.6	6 Railroad (Vr)	12
	3.8.1.7	7 Temporary Construction Surcharge (Ls)	12
	3.8.1.8	8 Soil Pressures (EV, EH)	13
	3.8.1.9	9 Hydrostatic Loads (Hs)	13
	3.8.1.1	10 Wave and Dynamic Hydrostatic Loads (Hw)	13
	3.8.1.′	11 Uplift (Hu)	13

	3.8.1.12	Seismic (EQ)	13
	3.8.1.13	Vibration Loads (Ld)	13
	3.8.1.14	Impact Loads (I, IM)	14
	3.8.1.15	Wind (W)	14
	3.8.1.16	Settlement (ST)	14
	3.8.2 Co	ontrolling Elevations	14
	3.8.2.1	Maurepas Headworks	14
	3.8.2.2	Maurepas CN Crossing	16
	3.8.2.3	Maurepas KCS Crossing	16
	3.8.2.4	Airline Hwy Crossing	16
	3.8.2.5	Interstate-10 Crossing	16
	3.8.2.6	WSLP Reach 1 Design Elevations	17
	3.8.3 Lo	ad Combinations	18
	3.8.3.1	Maurepas Headworks	19
	3.8.3.2	Canadian National Railroad Culvert	33
	3.8.3.3	Airline Highway Culvert	36
	3.8.3.4	WSLP River Road, CN Railroad & KCS Railroad Crossings	39
4.	CIVIL DE	ESIGN	43
	4.1 Co	odes, Standards, and Guidelines	43
	4.1.1 Inc	dustry Codes, Standards and References	43
	4.1.2 US	SACE Engineering Manuals and Guidelines	43
	4.1.3 Co	pmputer Programs	44
	4.2 De	esign Criteria	44
	4.2.1 Sit	te Civil Design	44
	4.2.1.1	Conveyance Channel Bottom	44
	4.2.1.2	Civil Sitework	45
	4.2.1.3	Security Fencing	45
	4.2.1.4	Erosion and Sedimentation Control	45
	4.2.1.5	Signs	45
	4.2.2 Ro	padway Design Criteria	45
	4.2.2.1	LA 44 (River Road)	45
	4.2.2.2	US 61 (Airline Highway)	47
	4.2.3 Ra	ailroad Design Criteria	47
	4.2.3.1	Track Work	47
	4.2.3.2	Railroad Bridge	48
5.	HYDRAU	JLIC DESIGN	51
	5.1 Int	roduction	51
	5.2 Co	odes, Guidelines, and References	51
	5.3 Co	pmputer Programs	51
	5.4 De	esign Criteria	52
6.	MECHAN	NICAL DESIGN	52
	6.1 Co	odes, Standards, and Guidelines	52
	6.2 Re	eferences	53
	6.3 Co	pmputer Programs	54
	6.4 De	esign Criteria	55
	6.4.1 Slu	uice Gates & Actuators	55
	6.4.1.1	Guidelines:	55
	6.4.2 Fir	e Protection	55

	6.4.3	Plumbing	55
	6.4.4	Fuel Storage and Distribution	55
	6.4.5	Heating and Ventilation	55
7.	ELEC	TRICAL & INSTRUMENTATION DESIGN	56
	7.1	Codes, Standards and Guidelines	56
	7.2	References	57
	7.3	Computer Programs	57
	7.4	Design Criteria	58
	7.4.1	Power Distribution	58
	7.4.2	Back-up Power Systems	58
	7.4.3	Lighting	58
	7.4.4	Grounding and Lightning Protection	59
	7.4.5	Gate Controls	59
	7.4.6	Network Communication	59
	7.4.7	Security Systems	59
	7.4.8	Fire Alarm Systems	60

Figures

Figure 3.1.	Design Truck Load 1	2
Figure 3.2.	Design Train Load1	2

Tables

Table 2-1. Geotechnical Design Criteria	2
Table 3-1. Load Appreviations	10
Table 3-3 Live Loads (L Lr)	10
Table 3-4 Vehicular Multiple Presence Factors	11
Table 3-5. Maurepas Headworks Structural Elevations	15
Table 3-6. Hydraulic Stages and Design Water Surface Elevations – Normal Operation	15
Table 3-7. Design Ground Water Surface Elevations	15
Table 3-8. Tail Water at Headworks (USACE - August 7, 2011)	15
Table 3-9. Maurepas CN Design Elevations	16
Table 3-10. Maurepas KCS Design Elevations	16
Table 3-11. Maurepas Airline Structural Elevations	16
Table 3-12. Maurepas Interstate-10 Design Elevations	17
Table 3-13. WSLP Reach 1 Water Surface Elevations (USACE)	17
Table 3-14. WSLP Reach 1 Design Elevations (USACE)	17
Table 3-15. Load Combinations for Concrete Design, Monoliths U-1, U-2 & U-3	19
Table 3-16. Load Combinations for Concrete Design, Monoliths U-4, U-5 & U-6	20
Table 3-17. Load Combinations for Concrete Design, Monolith C-1	21
Table 3-18. Load Combinations for Concrete Design, Monoliths C-2, C-3 & C-4	26
Table 3-19. Load Combinations for Concrete Design, Monoliths C-5 & C-6	29
Table 3-20. Load Combinations for Concrete Design, CN Railroad Culverts	33
Table 3-21. Load Combinations for Concrete Design, Airline Highway Culverts	36
Table 3-22. Load Combinations for Concrete Design, WSLP Gated Crossings	39
Table 3-23. Load Combinations for Steel Design, WSLP Gated Crossings	42

Table 4-1. Basic Design Criteria for LA 44 (River Road)	
Table 4-2. Basic Design Criteria for US 61 (Airline High	way)
Table 4-3. Railroad Design Criteria Summary	

Abbreviations

AASHTO	American Association of State Highway and Transportation Officials
ACI	American Concrete Institute
AEP	Annual Exceedance Probability
AISC	American Institute of Steel Construction
AREMA	American Railway Engineering and Maintenance-of-Way Association
ASCE	American Society of Civil Engineers
ASTM	American Society for Testing and Materials
AWS	American Welding Society
cfs	cubic feet per second
CIP	Cast-in-Place
CN	Canadian National
CPRA	Coastal Protection and Restoration Authority
dia	diameter
DOTD	Louisiana Department of Transportation and Development
EL	Elevation
EM	Engineering Manual
Gr	Grade
HSDRRS	Hurricane and Storm Damage Risk Reduction System
HSDRRS-DG	Hurricane and Storm Damage Risk Reduction System Design Guidelines
HSS	Hydraulic Structural Steel
Hwy	Highway
KCS	Kansas City Southern
ksi	kips per square inch
lb	Pound
LFPDG	Louisiana Flood Protection Design Guidelines
LRFD	Load and Resistance Factor Design
LWL	Low Water Level
Maint.	Maintenance

MDE	Maximum Design Earthquake		
MOP	Method of Planes		
MRL	Mississippi River Levee		
NAVD	North American Vertical Datum		
NWL	Normal Water Level		
OBE	Operating Basis Earthquake		
psf	pounds per square foot		
psi	pounds per square inch		
PVC	Polyvinyl chloride		
SWL	Safe/Still Water Level		
TBD	To Be Determined		
Т.О.	Top Of		
USACE	United States Army Corps of Engineers		
vpd	vehicles per day		
WSE	Water Surface Elevation		
WSLP	West Shore Lake Pontchartrian		

1. INTRODUCTION

This document presents the criteria controlling all design disciplines for the combined River Reintroduction into Maurepas Swamp (herein the Maurepas Diversion) and West Shore Lake Pontchartrain Flood Risk Reduction Project (herein the WSLP Project). For additional details on all aspects of the Project, see the Basis of Design Report (BODR), of which this Project Design Criteria is an Appendix.

2. GEOTECHNICAL DESIGN

2.1 Codes, Standards, and Guidelines

The geotechnical exploration and geotechnical analyses for this project need to meet requirements for the 1% storm (AEP). Thus, all designs will need to be performed in accordance with the Interim Hurricane and Storm Damage Risk Reduction System Design Guidelines (HSDRRSDG) developed by the U.S. Army Corps of Engineers (USACE) New Orleans District. The project design criteria used in the geotechnical analyses are described in detail in the HSDRRSDG.

2.2 References

Additional design criteria prepared by the USACE and referenced for our analyses include:

- New Orleans District Engineering Division, *Hurricane and Storm Damage Risk Reduction System Design Guidelines* (HSDRRSDG), with all revisions and addendums, dated June 2012
- Engineering Manual (EM) 1110-2-1901, Seepage Analysis and Control for Dams, 30 Sept 1986, Including Change 1, 30 Apr 1993
- EM 1110-2-1902, Slope Stability, 31 Oct 2003
- EM 1110-1-1904, Settlement Analysis, 30 Sept 1990
- EM 1110-1-1905, Bearing Capacity of Soils, 30 Oct 1992
- EM 1110-2-1913, Design and Construction of Levees, 30 Apr 2000
- EM 1110-2-2906, Pile Foundation Design, 15 Jan 1991
- Engineering Technical Letter (ETL) 1110-2-569, *Design Guidance for Levee Underseepage*, 1 May 2005
- Division Regulation (DIVR) 1110-1-400, Soil Mechanic Data, Section 8, Groundwater and Seepage, 12 Dec 1998
- LPILE Method for Evaluating Bending Moments in Batter Piles Due to Ground Settlement for Pile-Supported Floodwalls in New Orleans and Vicinity, Final Contract Report, September 2012

2.3 Computer Programs

Global stability analyses will include evaluating an earthen levee without reinforcement. We assume the levee is constructed as an initial overbuild and then with two subsequent levee lifts to maintain target design grades at selected design periods. In accordance with HSDRRSDG, stability analyses will be performed using Spencer's Method and the Method of Planes (MOP) analyses will be used to verify the findings. For potential future lifts, Eustis Engineering will provide preliminary evaluations based only on Spencer's Method. Spencer's Method will be performed using the computer program SLOPE/W by GEO-SLOPE International, Ltd. The MOP analyses will be performed using the USACE's "Stability with Uplift" program.

For both analysis methods and design guidelines, stability analyses will be performed for multiple design water levels. We assume these water levels will be provided by AECOM and the CPRA. Water levels may include water at the Top of Levee, Top of Wall, or construction grade level; at the project grade level; at the Still Water Level (SWL); at the Normal Water Level (NWL); and the Low Water Level (LWL). Analyses for the NWL and LWL will be based on both short term drained soil design parameters (i.e., Q-case) and long term drained soil conditions (i.e., S-case). Additional analyses for the levees and floodwalls will include an evaluation of seepage and settlement.

2.4 Design Criteria

The geotechnical section of the HSDRRSDG is dated June 2012. Design of the project will also be in general accordance with the State of Louisiana, Coastal Protection and Restoration Authority's (CPRA) Louisiana Flood Protection Design Guidelines (LFPDG), dated 16 July 2015. The LFPDG is used when designing flood protection for less than a 100-year recurrent storm event (e.g., 2% storm, 4% storm). The CPRA's LFPDG generally follows the USACE's HSDRRSDG for design of I-walls and T-walls (floodgates) and earthen levees. One key difference allows for a reduced or phased exploration scope for an interim levee design per the LFPDG. Another difference is in the number and type of analyses to select the critical design template.

The HSDRRS design guidelines shall supersede all applicable EM and ETL criteria. A summary of the geotechnical criteria and required factors of safety are presented in **Table 2-1**.

	LOADING CONDITIONS		EACTOR		
ITEM	WATER LEVEL ⁽¹⁾	SHEAR STRENGTH PARAMETER ⁽²⁾	OF SAFETY	CONDITION	
	N/A	Q	2.0	With Load Test	
Bile Consoity (Avial)	N/A	Q	3.0	Without Load Test	
Plie Capacity (Axial)	N/A	Q	2.5	With Dynamic Pile Test	
	N/A	S	1.5	With or Without Load Test	
Deep-Seated Stability	SWL	Q	1.5	If Target Easter of Safety in	
of Pile Supported	EWL	Q	1.4	not Achieved Determine	
Structures Using	LWL	Q	1.4	Poquired Upbalanced Force	
Spencer's Method (and Optimization Search Routine)	LWL	S	1.4	to Achieve This Target Factor of Safety	

 Table 2-1. Geotechnical Design Criteria

	LOADING CONDITIONS		EACTOR		
ITEM	WATER LEVEL ⁽¹⁾	SHEAR STRENGTH PARAMETER ⁽²⁾	OF SAFETY	CONDITION	
Deep-Seated Stability	SWL	Q	1.3		
of Pile Supported	EWL	Q	1.2		
Structures Using Janbu's Method ⁽³⁾	LWL	Q	1.3		
Tie-In Levee Stability	LWL	Q	1.4	-	
Using Spencer's Method	LWL	S	1.4	-	
	LWL	Q	1.3	-	
Tie-In Levee Stability	LWL	S	1.3	-	
Using Janbu's Method	SWL	Q	1.3	With and Without Partial Gap ⁽⁴⁾	
Stability of Soil	LWL	Q	1.4	-	
Disposal	LWL	Q	1.2	Rapid Drawdown Case	
Spencer's Method with Optimization Search Routine	LWL	S	1.4	Represents Long Term (Steady State Seepage)	

3. STRUCTURAL DESIGN

3.1 Introduction

This document presents the criteria controlling structural design for the combined River Reintroduction into Maurepas Swamp (herein the Maurepas Diversion) and West Shore Lake Pontchartrain Flood Risk Reduction Project (herein the WSLP Project). This document applies to the Maurepas Headworks, Maurepas Conveyance Channel features at road and railroad crossings, WSLP crossings at roads and railroads, WSLP floodwalls and I-walls, and any other required hardened structures.

Within this criteria there are three general structure types:

- West Shore Lake Pontchartrain flood protection structures
- Maurepas Headworks (Mississippi River Levee flood protection) structures
- Maurepas Internal Conveyance structures

The primary differences between the groups is in load conditions. WSLP has a specific hydraulic criterion to follow regarding water and wave loads and shall adhere to the HSDRRS Design Guidelines. The Headworks portion of the Maurepas Diversion must follow MRL hydraulic criteria and regulations. The Maurepas Internal Conveyance system does not require flood control analyses and is focused on significant traffic and rail live loads. All structures are designed using the same concrete, steel, and foundation codes and guides (primarily USACE documents).

3.2 Maurepas Project Structures

A brief summary of the required structures is presented here. For additional detail refer to the Basis of Design Report (BODR) and the Design Drawings.

3.2.1 Mississippi River Intake System

The Intake System is the group of structures that control flow of Mississippi River water into the Conveyance Channel. It is comprised of the following:

- Inflow Structures: three (3) U-frame Monoliths, U-1, U-2 and U-3
- Headworks Structure, C-1 (also referred to as the "Gated Intake Structure")
- Five (5) box culverts, C-2 through C-6
- Outflow Structures: three (3) U-frame Monoliths, U-4, U-5 and U-6

All structures are normal-weight reinforced concrete construction on pile foundations.

3.2.2 Canadian National Railroad Crossing

Concrete multi-barrel box culvert running beneath four (4) rail lines. The BODR contains discussion regarding the status of the number of tracks that will be incorporated into the design.

3.2.3 Kansas City Southern Railroad Crossing

Previously designed as a standard KCS Rail bridge in the 2013 Design, this item may be changing to a concrete multi-barrel culvert crossing similar to CN Railroad. The BODR contains discussion regarding the status of this change.

3.2.4 Airline Highway Crossing

Concrete multi-barrel box culvert running beneath a newly placed levee embankment with roadway on top. At this time, this is the chosen Alternative from the 15% Design phase. Adjustments will be made as necessary if this Alternative is superseded by another.

3.2.5 Interstate 10 Crossing

No structures are required at this crossing.

3.3 WSLP Project Structures

A brief summary of the required structures is presented here. For additional detail refer to the Basis of Design (BOD) Report and the Design Drawings.

3.3.1 MRL Tie-In

A small section of concrete capped I-wall may be required to span the distance between the River Road crossing and the MRL.

3.3.2 River Road Crossing

Two alternatives are being explored during feasibility-level planning: raising the elevation of River Road to meet the design flood elevation or building a gated closure structure. The gated closure structure appears to be the favored Alternative and has been designed to a 15% level.

3.3.3 Canadian National Railroad Crossing

Roller gate closure structure flanked by tie-in T-wall monoliths. All are inverted T-wall style reinforced concrete structures on pile foundations; the center monolith contains the rolling floodgate. As stated previously, the BODR contains discussion regarding the status of the number of tracks that will be incorporated into the design

3.3.4 Kansas City Southern Railroad Crossing

Swing gate closure structure flanked by tie-in T-wall monoliths. All are inverted T-wall style reinforced concrete structures on pile foundations; the center monolith contains the swing floodgate.

3.3.5 Airline Highway Crossing

Two viable alternatives are being explored during feasibility-level planning: raising the elevation of Airline Highway to meet the design flood elevation or an elevated bridge that provides space for WSLP flood protection features underneath.

3.4 References and Publications

The following is a list of US Army Corps of Engineers (USACE) references and industry codes and standards that are applicable to structural design of the Maurepas/WSLP Project. Local codes shall govern in case of conflicting requirements. All of the general codes and standards listed below apply to all design elements, but are not necessarily limited to, the following:

3.4.1 Industry Codes and Standards.

- AA, Aluminum Association, Aluminum Design Manual, 2020
- AASHTO, American Association of State Highway and Transportation Officials, *LRFD* Bridge Design Specifications, 8th Edition
- ACI 318-14, American Concrete Institute, Building Code Requirements for Structural Concrete
- ACI 350-06, American Concrete Institute, Code Requirements for Environmental Engineering Concrete Structures and Commentary
- AISC, American Institute of Steel Construction, Inc., Manual of Steel Construction, 15th Edition (ASD only)
- AREMA, American Railway Engineering and Maintenance-of-Way Association, *Manual for Railway Engineering*, 2019
- ASCE 7-16, American Society of Civil Engineers, Minimum Design Loads and Associated Criteria for Buildings and Other Structures
- ASTM, American Society for Testing and Materials
- AWS D1.1, American Welding Society, Structural Welding Code, 2015
- AWS D1.4, Structural Welding Code, Reinforcing Steel, 2011
- AWS D 1.5, Bridge Welding Code, 2015
- LaDOTD, Louisiana Department of Transportation and Development, *Louisiana Standard Specifications for Roads and Bridges*, 2016

3.4.2 USACE Engineering Manuals and Guidance

- New Orleans District Engineering Division, *Hurricane and Storm Damage Risk Reduction System Design Guidelines* (HSDRRSDG), with all revisions and addendums, dated June 2012
- EM 1110-2-1913, Design and Construction of Levees, 30 Apr 2000

- EM 1110-2-2000, Standard Practice for Concrete for Civil Works Structures, 31 March 2001
- EM 1110-2-2007, Structural Design of Concrete Lined Flood Control Channels, 30 Apr 1995
- EM 1110-2-2100, Stability Analysis of Concrete Structures, 1 Dec 2005
- EM 1110-2-2102, Waterstops and Other Preformed Joint Material for Civil Works Structures, 30 Sep 1995
- EM 1110-2-2104, Strength Design for Reinforced Concrete Hydraulic Structures, 30 Nov 2016
- EM 1110-2-2400, Structural Design and Evaluation of Outlet Works, 02 Jun 2003
- EM 1110-2-2502, Retaining and Flood Walls, 29 Sep 1989
- EM 1110-2-2503, Design of Sheet Pile Cellular Structures Cofferdams and Retaining Structures, 11 June 1990
- EM 1110-2-2504, Design of Sheet Pile Walls, 31 Mar 1994
- EM 1110-2-2902, Conduits, Culverts and Pipes, 31 Mar 1998
- EM 1110-2-2906, Design of Pile Foundations, 15 Jan 1991
- EM 1110-2-6053, Earthquake Design and Evaluation of Concrete Hydraulic Structures, 01 May 2007
- ETL 1110-2-584/EM 1110-2-2107 (Pending), *Design of Hydraulic Steel Structures*, 30 Jun 2014
- ETL 1110-2-575, Evaluation of I-Walls, 1 Sep 2011

3.4.3 Computer Programs

The following is a general list of computer programs that will be used in the structural analysis of the project features, but are not necessarily limited to, the following:

- SAP 2000 Version 20.1
- Microsoft 2019 Excel
- Microsoft 2019 Word
- AutoCAD Version 2020
- CPGA
- Ensoft, Group Pile Design
- SP Column

3.5 Concrete Design Criteria

Concrete design is based on EM 1110-2-2104 and uses the strength design methods of ACI 318-14. Loads and Load Cases, which also follow the HSDRRSDG guidelines, are presented in Section 6.

3.5.1 Minimum Design Values

Minimum design values are as follows unless otherwise noted:

- Superstructure Structural Concrete: 4,000psi compressive strength at 28 days
- Pre-stressed precast concrete piles: 6,000psi compressive strength at 28 days
- Concrete for paving, sidewalks, and other flatwork: 3,500 psi compressive strength at 28 days
- Steel reinforcement: 60,000 psi (ASTM A615)
- Welded wire fabric: ASTM A185
- Prestressing strands: 270 ksi low relaxation, tensile strength, uncoated 7-wire strand

Reinforcement cover distances, maximum flexural reinforcement, shear requirements, and temperature and shrinkage requirements shall all comply with EM 1110-2-2104. Strength reduction factors (ϕ) conform to ACI 318 and are 0.9 for flexure and 0.75 for shear.

3.5.2 Joints and Waterstops

Water-retaining structures shall be designed with joints spaced and detailed as per EM 1110-2-2102. Monoliths shall be designed independent of adjacent monoliths (i.e. no load transfer). Joint gaps shall be designed for thermal expansion and shall be protected from debris contamination.

If they provide flood protection or act as a Conveyance Channel feature, all walls, slabs and foundations shall be fitted with waterstops at all construction, control (contraction), and expansion joints. The only exceptions are the inflow and outflow U-frames, where watertight joints are not required because channel water is able to flow to the backside of these walls.

Joints and waterstops shall be designed in accordance with the more applicable of EM 1110-2-2102 and ACE 350. Polyvinyl chloride (PVC) or strip-type (hydrophilic, non-bentonite type) waterstops should be used in construction joints, and PVC waterstops should be used in expansion and control joints. Waterstops in joints at the bases of walls and similar applications should be detailed and installed to remain in their intended position during the construction process. In the case of PVC waterstops, emphasis would be placed on using prefabricated T, cross, and L-sections at corners and intersections.

3.6 Steel Design Criteria

Hydraulic Steel Structure (HSS) design shall be performed in accordance with ETL 1110-2-584 and the AISC Steel Construction Manual, 15th edition. Load and Resistance Factor Design (LRFD) is the preferred design method except that pile foundations shall be designed using the Allowable Stress Design (ASD) procedure presented in EM 1110-2-2906.

3.6.1 LRFD Design Basis

All HSS members and connections shall satisfy the following equation:

Σγ_iQ_{ni} ≤ αφR_n (ETL 1110-2-584 Eq. 3-1)

Where, $y_i = load$ factors that account for variability in loads to which they are assigned

Q_{ni} = nominal (code-specified) load effects

 α = performance factor, 0.9 for all structures

 ϕ = resistance factor taken from AISC (i.e. 0.90 for flexural loading)

 R_n = nominal resistance

3.6.2 Structural Shapes

Steel shapes conform to the following ASTM designations unless otherwise noted:

_	H-piles	A572, Grade 50
_	Steel Sheet Piling	Hot Rolled, ASTM A 572 Grade 50
_	Structural steel rolled W-shapes	A992, Grade 50
-	Other rolled sections and plates	ASTM A36 or ASTM A572, Grade 50
-	HSS (Rect, Square, Round)	ASTM A500, Grade C
-	Pipe	ASTM A53, Types E or S, Grade B, or ASTM A501
-	Bolts	F3125, min. 3/4" dia.
-	Nuts	A563
-	Washers	F436
An	chor Bolts or rods	ASTM A449, (3/4" dia. or greater); F1554, Grades 36, 55, and 105 ksi; A354; or A449
-	Sheet Piles	ASTM A572, Grade 50
-	Stainless Steel Embed Anchors	ASTM A276 or UNS S21800

Stainless steel, if used, shall conform to the following:

-	Bars, shapes	ASTM A276, Type 316
_	Tubing and pipes	ASTM A269, A312, or A554, Type 316
-	Strip, plate, and flat bar	ASTM 666, Type 316, Grade A
-	Bolts, nuts, expansion/adhesive anchors	ASTM F593, Type 316
-	Minimum yield strength:	25 ksi
-	Material for welded connections	Туре 316 L

- Welding Electrodes shall be in accordance with AWS for alloy being welded

3.6.3 Corrosion Protection of Steel Components

Components that will be exposed to the environment shall be primed, painted and sealed with coats of an applicable epoxy painting system (20 mils min.). Sluice gates and bulkhead gates shall be painted with the painting system recommended by the manufacturer.

The top 8-inch length of steel sheet piling and steel H-piling shall not be painted. 10'-0" of the upper portion of the sheet piling and H-pile, beginning 8" down from the top of the pile, shall be painted with coal tar epoxy. In addition, steel sheet piling and steel H-piling conforming to ASTM A572 Gr 50 shall be used.

As an alternate, a "sacrificial thickness" steel sheet piling and H-piling with a material thickness of at least 1/8-inch greater than the shape required by design may be used in lieu of painting.

3.6.4 Steel H-Piles

Steel piles shall be designed structurally per AISC ASD, 15th Edition, and as modified by EM 1110-2-2906. 2013 Geotechnical analysis is available to the team and is used in the 15% Design. Data includes H-pile capacity curves, lateral force vs. deflection data and moment vs. deflection

data. Geotechnical information collected during this Design Phase shall be incorporated into all future design work.

Final pile designs for large structures shall be based on a soil-structure interactive analysis using structural finite-element software (SAP2000) to account for the stiffness of the base. Pile supports shall be input as pile head springs in accordance with EM 1110-2-2906. Lateral springs shall be developed from pile head lateral load versus displacement curves generated by a P-Y analysis. Axial springs shall be developed using the spring constant derived by the CPGA program:

 $b_{33} = c_{33} * (A * E) / L$

Where, b_{33} = axial pile stiffness spring (k/in)

c₃₃ = axial stiffness modifier coefficient (supplied by geotechnical analysis for various pile types)

A = cross-sectional area of the pile

E = modulus of elasticity of the pile

L = length of the pile

Group effects shall be applied as required.

All pile foundations are designed under the assumption that pile load tests will be performed before construction. A Factor of Safety of 2.0 is used for the undrained pile strength curves and 1.5 is used for the drained pile strength curves. If a pile load test will not be performed, or if one will only be performed for certain portions of the project (e.g. the Headworks area), the piles on all structures not included in a pile load test zone shall need to be lengthened to accommodate a Factor of Safety of 3.0 for the undrained curves (1.5 safety factor stays the same). If not specifically designed as a moment connection, pile foundations shall be analyzed as both fixed and pinned connections to the monolith base and designed for the resulting envelope.

Piles are not lengthened to accommodate higher reactions produced by the settlement forces. The piles are checked structurally for all settlement load cases and no Combined Bending Factor (as defined in the CPGA Manual, Paragraph 37) is allowed to surpass 1.0. Allowable Stress Design (ASD) is permitted in the design of piles, allowable stresses shall not exceed those specified in EM 1110-2-2906.

3.7 Aluminum Design Criteria

General criteria for aluminum shall be in accordance with the Aluminum Design Manual. Aluminum Alloy 6061-T6 is used for the basic design of aluminum structures and members.

3.8 General Design Parameters

Structures, both concrete and steel, shall be designed using the LRFD method. Capacity shall equal or exceed the effects of the factored load combinations as prescribed in the concrete and steel criteria sections. Service loads shall be calculated to determine serviceability, deflections and foundation designs. Load Combination Tables are provided for all Maurepas and WSLP Project Structures in Section 3.8.3. Load abbreviations and descriptions are described below.

3.8.1 Loads

3.8.1.1 Load Abbreviations

Load	Description
D	Dead
L	Live Load (vertical)
Lr	Roof Load
Q	Operating Equipment
V	Vehicle Live Loads
Vr	Railroad Live Loads
Ls	Temporary Construction (Live Load) Surcharge
EV	Vertical Earth
EH	Lateral Earth
Hs	Hydrostatic Static Load
Hw	Wave
Hu	Uplift
EQ	Seismic Loads
Ld	Vibration Loads
	Debris Impact
IM	Barge/Boat Impact
W	Wind
ST	Settlement

Table 3-1. Load Abbreviations

3.8.1.2 Dead Loads (D)

Dead loads are in accordance with applicable USACE EMs and ASCE 7-16 and include the self-weight of all permanent construction components including foundations, slabs, walls, roofs, actual weights of permanent equipment, overburden pressures, and all permanent non-removable stationary construction.

	Weight
Item	(pcr)
Water (Fresh)	62.4
Saltwater	64.0
Reinforced Concrete (Normal weight)	150
Steel	490
Semi-compacted Granular Fill	110
Fully Compacted Granular Fill, wet	120
Fully Compacted Granular Fill, Effective	58
90% Compacted Clay Fill, wet	115
90% Compacted Clay Fill, Effective	52.6
Riprap	132
Silt	110
Ballast	120

Table 3-2. Unit Material Weights

Railway dead loads shall be in accordance with AREMA MRE Chapter 8 Sections 2.2.3b and 16.4.2. Track rails are assumed to be 200 lb per linear foot of track as per the AREMA code.

Equipment weight provided below is based on the best available information from the manufacturer:

• Weight 120" x 120" cast iron sluice gate assembly: 26,100 lbs

3.8.1.3 Live Loads (L, Lr)

Live Loads are as defined in the table below. Other transient loads, except for Environmental loadings, are specified in Chapter 4 of ASCE 7-16.

Item	Weight (PSF)	Alternate Weight, Concentrated Load (lb)
Roof Live Loads	60	
Roof Load Hydraulic Structure	100	
Railing Loads (Pr)	See para 5.4.2.7	7
Floor Live Loads:		
Minimum unless noted otherwise	100	
Grating Floors, Landings and Stairs	100	300
Operating Floor	300	
Equipment and Control Room	200	
Service Bridge	300	50 ton crane or AASHTO HS-20

Table 3-3. Live Loads (L, Lr)

Pedestrian railings shall be designed to carry the following loads:

- 50 lb/ft transverse and vertical simultaneously on all longitudinal members (rails).
- 50 lb/ft per post spacing at height to center of top rail at each post.
- 200 lb concentrated on top rail.

3.8.1.4 Equipment (Q)

The sluice gate equipment force provided below is based on the best available information from the manufacturer.

• The maximum force of gate movement for any water elevation: 99,743 lbs

3.8.1.5 Vehicle (V)

Vehicular live loads shall be applied to all gate structures; design truck load, lane load, vehicular collision loads, dynamic load allowances, and multiple presence factors shall be in accordance with AASHTO Standard Specifications for Highway Bridges. The HS20-44 design truck used is shown in *Figure 6.1*. The design lane load shall be a 640 lb/ft uniform line load running in the longitudinal direction and distributed over an assumed lane width of 10 feet, as per AASHTO Specifications section 3.6.1.2.4. HS20 truck and lane loads shall be combined to create the HL-93 design load as required by section 3.6.1.3 of the AASHTO Specification. Dynamic Load Allowance, IM, shall be 75% for joints and 33% for all other structural components and shall be applied by multiplying the static design load by (1 + IM/100).

Figure 3.1. Design Truck Load

Multiple presence factor, *m*, shall be applied to all vehicular loads per AASHTO Specifications Section 3.6.1.1.2; values of *m* used are shown in **Table 3.3** below.

Number of Loaded Lanes	Multiple Presence Factor, <i>m</i>
-	1.2
N	1.0
ω	0.85
ž	0.65

Table 3-4. Vehicular Multiple Presence Factors

3.8.1.6 Railroad (Vr)

х С

Cooper E80 rail live loads are applied to all crossing structures. Loading follows AREMA MRE Chapter 8 Sections 2.2.3c and 16.4.3 of the AREMA *Manual for Railway Engineering*; axle loads are to be distributed and adjusted for simultaneous loading as described in this section. The axle spacing is shown in the figure below.

Figure 3.2. Design Train Load

also be applied. Other applicable railroad loads such as impact, longitudinal forces, and lateral surcharge shall

3.8.1.7 **Temporary Construction Surcharge (Ls)**

soil and earth moving loads on the culvert. A minimum vertical live load surcharge of 250 psf is applied to the top slab during construction for A minimum horizontal live load surcharge of 300 psf is applied to all abutment walls and wing walls of hydraulic structures in addition to other live loads that may be applicable in accordance with AASHTO.

3.8.1.8 Soil Pressures (EV, EH)

Structures are designed for lateral (EH) and vertical (EV) soil pressures. Vertical pressures are calculated using unit weight of clay, which is based on soil boring data from the site. Lateral pressures are determined using the at-rest coefficients, K₀ obtained from the Geotechnical Report. In 15% Design calculations a value of 0.95 is used because this was recommended in the 2013 Geotechnical Report with regard to the Headworks. This value will be verified and updated as needed based on new geotechnical data and may vary between features if soil conditions differ significantly.

3.8.1.9 Hydrostatic Loads (Hs)

Hydrostatic loads are the vertical and horizontal loads induced by a static water head and buoyant pressures, excluding uplift pressures. Vertical and horizontal hydrostatic pressures are calculated using the unit weight of water and height of the water column in question.

3.8.1.10 Wave and Dynamic Hydrostatic Loads (Hw)

Wave pressures shall be applied to applicable structures within the WSLP levee system. These loads are provided by the USACE for each WSLP Reach within this project. Pressure diagrams use the Goda formulation for computed wave forces.

Dynamic wave load will not be applied to any Maurepas Project structures. The Headworks is set back from and perpendicular to the Mississippi River, resulting in little to no expected dynamic hydraulic forces; the remainder of the Maurepas features are not exposed to wave action.

3.8.1.11 Uplift (Hu)

Uplift loads are defined by two uplift conditions:

- Impervious Uplift condition assumes the sheet pile cutoff wall is fully effective, and
- Pervious Uplift condition assumes the sheet pile cutoff wall is ineffective (pressure assumed to vary linearly across the base).

3.8.1.12 Seismic (EQ)

Earthquake ground motions for the design and evaluation of the structure are the Operating Basis Earthquake (OBE) and the Maximum Design Earthquake (MDE) ground motions as defined by EM 1110-2-6053 and ASCE 7-16. Seismic forces associated with the OBE are considered unusual loads and those of the MDE are considered extreme loads. When applicable, seismic (earthquake) loads are combined with other loads that are expected to be present during routine operations. Earthquake loadings are not combined with hurricane and riverine flood events.

Typically, earthquake ground motion does not govern design of hydraulic structures in this region of Louisiana; flood and other environmental loads tend to govern. However, this assumption shall be validated during the design process.

3.8.1.13 Vibration Loads (Ld)

Vibration loadings are considered negligible and are not included.

3.8.1.14 Impact Loads (I, IM)

No Maurepas Project features are subject to debris, barge, or ship impact loads. The existing Marathon Petroleum dock structures will shelter the Inflow and Gated Structures from large debris or errant ships. If debris does pass through and around the existing docks it will not be able to accelerate to a velocity required to impart significant impact loads. Structures within the Conveyance Channel are sheltered and will not see significant debris loads.

3.8.1.14.1 Debris Impact

WSLP flood-control features will be subject to a debris loading equal to 500 lbs/ft applied at the TOW as described in the HSDRRS Design Guidelines. If a vessel impact is required for WSLP features, this load will govern by inspection over a debris impact case.

3.8.1.14.2 Barge Impact

If WSLP Reaches fall within a requirement for pleasure craft or barge impact loads, these shall be applied to all hardened structures.

3.8.1.15 Wind (W)

Wind forces shall be determined in accordance with ASCE 7-16, which provides a minimum wind velocity of 130 mph for a 3-second gust. Hydraulic concrete structures shall be designed for a wind load no less than 50 psf. Closure gates shall be analyzed for two wind loads, an extreme load of 50psf and an operational load of 15psf, as per ETL 1110-2-584

3.8.1.16 Settlement (ST)

All Maurepas Headworks structures shall be designed for forces generated by settlement in coordination with the U.S. Army Corps of Engineer's previous designs of diversion structures. As per the design criteria from the Davis Pond and Canarvan Diversion Structures, a 600psf adhesion force (downdrag) shall be applied to all wall areas subject to clay backfill. To account for additional vertical forces due to settlement, a contributory area of soil extending at a 45° angle from the top corners of all buried structures shall be added to the column of fill directly over it.

For all WSLP Structures, downdrag on pile foundations shall be included when settlement of soils within the footprint of the foundation induces axial and flexural stresses in a battered pile. Assessment of locations where downdrag may take place and computation of loads shall be provided by the Geotechnical Engineer.

3.8.2 Controlling Elevations

3.8.2.1 Maurepas Headworks

Important design, hydraulic, and groundwater elevations are described below for all structures that make up the Headworks.

	Elevation
Item	(ft-NAVD88)
Top of Levee/Top of Protection*	31.50
Top of Gate Structure (C-1)**	33.50
Top of LA 44 (River Rd.)	10.49 (previously 10.73)
Top of culvert, exterior	5.75
Top of culvert, interior	3.00
Inflow U-frame Starting Invert	-4.00
Culvert & Gate Structure Invert	-7.00
Outflow U-frame Ending Invert	-1.91

Table 3-5. Maurepas Headworks Structural Elevations

 *Mississippi River Flow line at this location, El. 27.1, plus estimated freeboard of 4.4 feet. Levee is at El. 33.50 near Gate Structure to accommodate embedded capped I-wall.
 **Top of Required Protection + 2 feet slab thickness.

Table 3-6. Hydraulic Stages and Design Water Surface Elevations – Normal Operation

Operational Cases	Head Water (ft-NAVD88)	Tail Water (ft-NAVD88)
Minimum River Stage	1.00**	1.00
~500 cfs Operation	3.80	3.80
~1000 cfs Operation	4.90	4.60
~1500 cfs Operation - Low Stage	6.70	5.80
~2000 cfs Operatin - Low Stage	9.10	7.60
~1500 cfs Operation - Medium Stage	9.90	5.80
~2000 cfs Operatin - Medium Stage	9.90	7.60
Maximum River Stage	24.35*	1.00
~1500 cfs Operatin - High Stage	24.35*	5.80
~2000 cfs Operation - High Stage	24.35*	7.60
Hurricane Condition	1.00**	9.00

* Based on Mississippi River Stages at Reserve, LA. See Figures 1, page 12 for hydraulic data. Elevations include geodetic adjustments.

** Minimum River Stage is as per river data is 1.19ft NAVD88. This number has been rounded down slightly for design.

Table 3-7. D	Design Ground	Water Surfac	e Elevations
--------------	---------------	--------------	--------------

Item	Elevation (ft-NAVD88)	
Average Ground Water El.	5.2	
Maximum Ground Water El.	8.10	

Table 3-8. Tail Water at Headworks (USACE - August 7, 2011)

Stage Condition		100-yr (ft-NAVD88)	500-yr (ft-NAVD88)	1000-yr (ft-NAVD88)
Existing		5.2	7.3	8.1
Low	(SLR 1)	10.7	13.3	14.3
Intermediate	(SLR 2)	11.5	14.2	15.1
High	(SLR 3)	13.8	16.5	17.4

1. The stages are shown for hurricane events ranging from the 100-year to the 500-year chance of occurrence.

2. The "Low", "Intermediate" and "High" are future conditions stages for Year 2060. They are the low, intermediate and high Sea Level Rise (SLR) conditions, as projected using the USACE latest design guidance for considering sea level rise.

3.8.2.2 Maurepas CN Crossing

Elevations that control the Canadian National Railroad crossing culvert design are as follows.

	-
ltem	Elevation (ft-NAVD88)
Top of rail	11.98
Top of culvert, exterior	2.75
Top of culvert, interior	0.75
Culvert Invert	-7.25
Bottom of culvert, exterior	-9.75
Conveyance Channel Water surface	8.0

Table 3-9. Maurepas CN Design Elevations

3.8.2.3 Maurepas KCS Crossing

Elevations that control the Kansas City Southern Railroad crossing bridge design are as follows.

Table 3-10. Maurepas KCS Design Elevations

	Elevation
Item	(ft-NAVD88)
Top of rail	8.74 (previously 9.85)
Low chord elevation	6.35
Channel Invert	-6.5 (approx.)
Conveyance Channel Water surface	5.35

3.8.2.4 Airline Hwy Crossing

Elevations that control the Airline Highway crossing culvert design are as follows.

Table 3-11. Maurepas Airline Structural Elevations

Item	Elevation (ft-NAVD88)
Top of road	16.125
Top of culvert, exterior	1.29
Top of culvert, interior	-0.50
Culvert Invert	-9.50
Bottom of culvert, exterior	-12.0
Conveyance Channel Water surface	5.30

3.8.2.5 Interstate-10 Crossing

Elevations that control the Interstate-10 crossing bridge design are as follows.

Item	Elevation (ft-NAVD88)
Top of road	13.00
Low chord elevation	11.75
Channel Invert	-8.0
Conveyance Channel Water surface	0.5 (approx.)

Table 3-12.	Maurepas	Interstate-10	Design	Elevations
-------------	----------	---------------	--------	------------

3.8.2.6 WSLP Reach 1 Design Elevations

The USACE New Orleans District has provided design elevations for Reach 1, which encompasses all WSLP structures within this project. Their provided tables are shown below. All WSLP features shall be designed to meet the 2070 Design Grade.

Table 3-13.	WSLP Reach 1	Water Surface	Elevations	(USACE)
10010 0 101		mator Guinago	Liovacionio	

1% Water Surf	ace Elevations	1% Levee Design Elevations				
Year	90% WSE ft NAVD88(2004.65)	Year	Levee with ft NAVD8	n 1:3 Slope 8(2004.65)		
2020	6.98	2023	8.95			
2070	12.74	2070	16.00			
Stability	Analyses Elevations		F.S. requ	uirements		
Water Grade	Flood Side Canal	Land Side Canal	Spencers Method	MOP Method		
Low Water Level	-2.79	-2.79	1.4	1.3		
Still Water Level	N/A	-1	1.5	1.3		
Water at Project	N/A	-1	1.4	1.2		
Water at Contruction	N/A	-1	1.2	N/A		

Intermediate Sea Level Rise

Table 3-14. WSLP Reach 1 Design Elevations (USACE)

Project Feature		10 - C 1	2020 Design Elevations		2070 Design Elevations	
	Construction Type	Existing Grade	SWL	Design Grade	SWL	Design Grade
MRL Tie-In	Levee	+7.0	+7.0	+8.5	+12.7	+16.0
River Road	Gate	+7.0	+7.0	+8.5	+12.7	+16.0
T-Wall Reach	Structure	+6.0	+7.0	+8.5	+12.7	+16.0
CN Railroad	Gate	+11.0 (Top of Rail)	+7.0	+8.5	+12.7	+16.0
KCS Railroad	Gate	+9.85 (Top of Rail)	+7.0	+8.5	+12.7	+16.0
Airline Hwy	Ramp	+6.0 EB, +7.0 WB	+7.0	+8.5	+12.7	+16.0

3.8.3 Load Combinations

Load Combinations analyzed are based on EM 11110-2-2104 for concrete structures and ETL 1110-2-584 for steel. Conditions differ a great deal between Maurepas and WSLP Projects and between features within the same Project. For this reason, there is no one project-wide master list of load combinations. Instead, every major structure location (e.g. WSLP KCS crossing, Maurepas airline crossing) has its own combination list. In the case of the Maurepas Headworks, multiple combination lists are presented for the range of different load types present.

3.8.3.1 Maurepas Headworks

Table 3-15. Load Combinations for Concrete Design, Monoliths U-1, U-2 & U-3

	DESIGN LOAD CASES		Bivor Wator		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	(ft NAVD88)	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load				
10	Construction	Vertical surcharge	10 5			40.070/
	Construction	Horizontal surcharge	-10.5	Unusual	1.6(D+EH+EV+LS)	16.67%
		Lateral load from dry backfill				
		Dead load				
	Uneven Construction	Vertical surcharge	-10.5	Unusual	1.6(D+EH+EV+LS)	
1b		Horizontal surcharge				16.67%
		Lateral load from uneven dry backfill (5ft differential)				
		Dead Load				
1c	Wind	Wind on walls before backfilling	-10.5	Unusual	1.6(D+W)	33.33%
		Dead Load				
2	Design Flood	Water to T.O. Protection	21.5	Lleuol		0%
2	Condition	Lateral Load from Saturated Soil	51.5	Usuai	2.2(D+nS+en+eV)	0%

1. For Design Flood Load Case, the design water elevation = flowline water level + freeboard (EM 1110-2-2007, Struct. Design of Concrete Lined Flood Channels). This case is designed to mimic TOW Design Check Case A from the HSDRRS Guidelines for T-wall design.

2. Settlement Loading: A copy of each load case is created and the forces due to settlement of fill are added. These load cases are denoted with "-ST" in the name (ex: OP1a-ST is Operational Case 1a plus the addition of settlement forces).

3. Construction Load cases assume a piezometer dewatering system is in place during construction and that the ground water is drawn to below the bottom of the stablization slab which is currently is El. -10.5.

	DESIGN LOAD CASES		Channel		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Water Elevations (ft NAVD88)	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load	, , , , , , , , , , , , , , , , , , ,			
1a	Construction	Vertical surcharge	10.5	Unuqual		16 67%
	Construction	Horizontal surcharge	-10.5	Unusual	1.0(D+EH+EV+L3)	10.07 %
		Lateral load from dry backfill				
	1b Uneven Construction	Dead load				
		Vertical surcharge		Unusual	1.6(D+EH+EV+LS)	
1b		Horizontal surcharge	-10.5			16.67%
		Lateral load from uneven dry backfill (5ft differential)				
	Construction with Wind	Dead Load				
1c		Wind on walls before backfilling	-10.5	Unusual	1.6(D+W)	33.33%
		Dead Load				
2	High Water	Water to T.O. Protection	0.0	Llouol		0%
2	Condition	Lateral load from saturated soil	9.0	Usual	2.2(D+ns+en+ev)	
		Dead Load				
3	Low Water	Water to T.O. Protection	2.0	Heual	2.2(D+Hs+EH+EV)	0%
5	Condition	Lateral load from saturated and dry backfill	2.0	USUAI		070

Table 3-16. Load Combinations for Concrete Design, Monoliths U-4, U-5 & U-6

1. Settlement Loading: A copy of each load case is created and the forces due to settlement of fill are added. These load cases are denoted with "-ST" in the name (ex: OP1a-ST is Operational Case 1a plus the addition of settlement forces).

2. Construction Load cases assume a piezometer dewatering system is in place during construction and that the ground water is drawn to below the bottom of the stablization slab which is currently is El. -10.5.

	DESIG	N LOAD CASES	Water Elevations			Factored Load	Allowable
LC	Load Case Name	Description/Applicable Loads	Head water	Tail water	Load Category	Combinations for Hydraulic Concrete	Overstress for Pile Design
No.			(NAVD88)	(NAVD88)		(EM-1110-2-2104)	(EM-1110-2-2906)
		Dead Load (Concrete & Gate)					
10	Construction	Vertical surcharge	10 5	10 F			16 670/
1a	Construction	Lateral load from dry backfill to T.O. Culvert	-10.5	-10.5	Unusuai	1.6(D+EH+EV+LS)	10.07%
		Dead Load (Concrete & Gate)					
1b	Construction + Top	Vertical surcharge	10 F	10 5	Unusual	1.6(D+EH+EV+LS)	16 670/
	Soil	Lateral load from final backfill placement to T.O. Levee	-10.5 -10.5	-10.5			10.07 %
	Construction + Uneven Fill	Dead Load (Concrete & Gate)		-10.5	Unusual	1.6(D+EH+EV+LS)	16.67%
10		Vertical surcharge	-10.5				
		Lateral load from uneven dry backfill (5ft differential)	-10.5				
	Minimum River Stage	Dead Load (Concrete & Gate)					
OP1	(Gates Closed)	Vertical load from topsoil & Lateral load from backfill	1	1	1 Usual	2.2(D+EH+EV+Hs+Hu)	0.00%
		Impervious Uplift (OP1a) & Pervious Uplift (OP1b)					
	~500cfs Operation	Dead Load (Concrete)					
	(Gates Operating)	Load from gate operation					
OP2		Vertical load from topsoil & Lateral load from backfill	3.8	3.8 Usu	Usual	2.2(D+EH+EV+Hs+Hu+Q)	0.00%
		Impervious Uplift (OP2a) & Pervious Uplift (OP2b)					

Table 3-17. Load Combinations for Concrete Design, Monolith C-1

	DESIGN LOAD CASES		Water El	evations		Factored Load	Allowable
LC	Load Case Name	Description/Applicable Loads	Head water	Tail water	Load Category	Combinations for Hydraulic Concrete	Overstress for Pile Design
NO.			(NAVD88)	(NAVD88)		(EM-1110-2-2104)	(EM-1110-2-2906)
	~1000cfs Operation	Dead Load (Concrete)					
	(Gates Operating)	Load from gate operation					
OP3		Vertical load from topsoil & Lateral load from backfill	4.9	4.6	Usual	2.2(D+EH+EV+Hs+Hu+Q)	0.00%
		Impervious Uplift (OP3a) & Pervious Uplift (OP3b)					
	~1500cfs Operation -	Dead Load (Concrete)					
OP4	Low Stage	Load from gate operation					
	(Gates Operating)	Vertical load from topsoil & Lateral load from backfill	6.7	5.8	Usual	2.2(D+EH+EV+Hs+Hu+Q)	0.00%
		Impervious Uplift (OP4a) & Pervious Uplift (OP4b)					
	~2000cfs Operation -	Dead Load (Concrete)					
	Low Stage	Load from gate operation					
OP5	(Gates Operating)	Vertical load from topsoil & Lateral load from backfill	9.1	7.6	Usual	2.2(D+EH+EV+Hs+Hu+Q)	0.00%
		Impervious Uplift (OP5a) & Pervious Uplift (OP5b)					
	~1500cfs Operation -	Dead Load (Concrete)					
	Medium Stage	Load from gate operation					
OP6	(Gates Operating)	Vertical load from topsoil & Lateral load from backfill	9.9	5.8	Usual	2.2(D+EH+EV+Hs+Hu+Q)	0.00%
		Impervious Uplift (OP6a) & Pervious Uplift (OP6b)					

	DESIGN LOAD CASES		Water Elevations			Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Head water	Tail water	Load Category	Combinations for Hydraulic Concrete Design	Overstress for Pile Design
			(NAVD88)	(NAVD88)		(EM-1110-2-2104)	(EM-1110-2-2300)
OP7	~2000cfs Operation -	Dead Load (Concrete)					
	Medium Stage	Load from gate operation					
	(Gates Operating)	Vertical load from topsoil & Lateral load from backfill	9.9	7.6	Usual	2.2(D+EH+EV+Hs+Hu+Q)	0.00%
		Impervious Uplift (OP7a) & Pervious Uplift (OP7b)					
	Maximum River Stage	Dead Load (Concrete & Gate)					
OP8	(Gates Closed)	Vertical load from topsoil & Lateral load from backfill	23.73	1	Usual	2.2(D+EH+EV+Hs+Hu)	0.00%
		Impervious Uplift (OP8a) & Pervious Uplift (OP8b)					
	~1500cfs Operation -	Dead Load (Concrete)					
	High Stage	Load from gate operation					
OP9	(Gates Operating)	Vertical load from topsoil & Lateral load from backfill	23.73	5.8	Usual	2.2(D+EH+EV+Hs+Hu+Q)	0.00%
		Impervious Uplift (OP9a) & Pervious Uplift (OP9b)					
	~2000cfs Operation -	Dead Load (Concrete)					
	High Stage	Load from gate operation					
OP10	(Gates Operating)	Vertical load from topsoil & Lateral load from backfill	23.73	7.6	Usual	2.2(D+EH+EV+Hs+Hu+Q)	0.00%
		Impervious Uplift (OP10a) & Pervious Uplift (OP10b)					
OP11	Huminona/ Doverse	Dead Load (Concrete & Gate)					
	Head Condition ⁴	Vertical load from topsoil & Lateral load from backfill	1	9	Usual	2.2(D+EH+EV+Hs+Hu)	0.00%
	(Gates Closed)	Impervious Uplift (OP11a) & Pervious Uplift (OP11b)					

	DESIGN LOAD CASES		Water Elevations			Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Head water	Tail water	Load Category	Combinations for Hydraulic Concrete	Overstress for Pile Design
			(NAVD88)	(NAVD88)		(EM-1110-2-2104)	(EM-1110-2-2906)
DC A	Design Flood Load Case (Gates Closed) Max Flood Elevation ¹	Dead Load (Concrete & Gate)					
		Water to T.O. MRL Protection		1 Unus		1.6(D+EH+EV+Hs+Hu)	33.33%
		Impervious Uplift (DC Aa) & Pervious Uplift (DC Ab)	31.5		Unusual		
		Levee soil submerged on Flood Side of cutoff, Levee soil dry on Protected Side, Lateral load from dry backfill	01.0				
		Dead Load (Concrete & Gate)				1.6(D+EH+EV+Hs+Hu)	33.33%
D1	Maintenance Dewatering Type 1	Internal water pressure in two exterior culverts from Maximum River Stage	23.73	23.73	Unusual		
	(Center Culvert Dewatered)	Vertical load from topsoil & Lateral load from backfill					
		Impervious Uplift (D1a) & Pervious Uplift (D1b)					
		Dead Load (Concrete & Gate)	23.73	23.73	Unusual	1.6(D+EH+EV+Hs+Hu)	33.33%
D2	Maintenance Dewatering Type 2	Internal water pressure in one exterior culvert from Maximum River Stage					
	(One Edge Culvert in Operation)	Vertical load from topsoil & Lateral load from backfill					
		Impervious Uplift (D2a) & Pervious Uplift (D2b)					

1. For Design Flood Load Case, the design water elevation = flowline water level + freeboard (EM 1110-2-2007, Struct. Design of Concrete Lined Flood Channels). This case is designed to mimic TOW Design Check Case A from the HSDRRS Guidelines for T-wall design.

2. Settlement Loading: A copy of each load case is created and the forces due to settlement of fill are added. These load cases are denoted with "-ST" in the name (ex: OP1a-ST is Operational Case 1a plus the addition of settlement forces).

3. Hurricane Case (OP11): tailwater expected as per USACE analysis for existing river stages is EL 8.10. EL 9.0 is used because this is the top of the channel levees in the outflow canal, and therefore is the highest possible tailwater level. This creates a more conservative reverse head condition.

- 4. Maximum and Minimum River Levels taken from Mississippi River Hydrographs at Reserve, LA.
- 5. Construction Load cases assume a piezometer dewatering system is in place during construction and that the ground water is drawn to below the bottom of the stablization slab which is currently is El. -10.5.

	DESIGN LOAD CASES				Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Elevations	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
1a	Construction	Dead load	-10.5	Unusual	1.6(D+EH+EV+Ls)	16.67%
		Lateral load from dry backfill to T.O. Levee				
1b	Uneven Construction	Dead load	-10.5		1.6(D+EH+EV+Ls) 33.33%	
		Vertical surcharge		Unusual		33.33%
		Lateral load from uneven dry backfill (5ft differential)				
	Maximum River Stage with Uplift	Dead Load	23.73			0.00%
		Culverts empty				
		Uplift from Maximum River Stage				
2a		Average groundwater table outside culvert		Usual	2.2(D+EH+EV+Hs+Hu)	
		Vertical & Lateral load from semi- saturated backfill				
2b	Maximum River Stage, no Uplift	Dead Load	23.73		2.2(D+EH+EV+Hs)	0.00%
		Culverts flowing full				
		Average groundwater table outside culvert		Usual		
		Vertical & Lateral load from semi- saturated backfill				

	DESIGN LOAD CASES				Factored Load	Allowable
LC	Load Case Name	Description/Applicable Loads	Elevations Load Category	Combinations for Hydraulic Concrete Design	Overstress for Pile Design	
NO.			(ft NAVD88)		(EM-1110-2-2104)	(EM-1110-2-2906)
3а	Minimum River Stage with Uplift	Dead Load	1		2.2(D+EH+EV+Hs+Hu)	0.00%
		Culverts empty		Usual		
		Uplift from Minimum River Stage				
		Average groundwater table outside culvert				
		Vertical & Lateral load from semi- saturated backfill				
3b	Minimum River Stage without Uplift	Dead Load	1			0.00%
		Culverts flowing at Mininmum River Stage water level				
		Average groundwater table outside culvert		Usual	2.2(D+EH+EV+Hs)	
		Vertical & Lateral load from semi- saturated backfill				
	Maintenance Dewatering Type 1 (Center Culvert Dewatered) with Uplift	Dead Load	23.73			33.33%
		Two exterior culverts flowing full			1.6(D+EH+EV+Hs+Hu)	
D1a		Uplift from Maximum River Stage				
		Average groundwater table outside culvert		Unusual		
		Vertical & Lateral load from semi- saturated backfill				
D1b	Maintenance Dewatering Type 1 (Center Culvert Dewatered) without Uplift	Dead Load	23.73		1.6(D+EH+EV+Hs) 33.33	
		Two exterior culverts flowing full				33.33%
		Average groundwater table outside culvert		Unusual		
		Vertical & Lateral load from semi- saturated backfill				
_	DESIC	GN LOAD CASES			Factored Load	Allowable
-----------	--	--	------------------------	------------------	---	---
LC No.	Load Case Name	Description/Applicable Loads	Elevations (ft NAVD88)	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead Load				
	Maintenance	One exterior culvert flowing full				
	Dewatering Type 2	Uplift from Maximum River Stage	23.73	Unusual	1.6(D+EH+EV+Hs+Hu)	33.33%
D2a	(One Edge Culvert Operational) with Uplift	Average groundwater table outside culvert				
		Vertical & Lateral load from semi- saturated backfill				
		Dead Load				
	Maintenance Dewatering Type 2	One exterior culvert flowing full				
D2b	(One Edge Culvert Operational)	Average groundwater table outside culvert	23.73	Unusual	1.6(D+EH+EV+Hs)	33.33%
	without Uplift	Vertical & Lateral load from semi- saturated backfill				

1. Average Groundwater Table is EL 5.2 NAVD88.

2. Settlement Loading: A copy of each load case is created and the forces due to settlement of fill are added. These load cases are denoted with "-ST" in the name (ex: OP1a-ST is Operational Case 1a plus the addition of settlement forces).

3. Maximum and Minimum River Levels taken from Mississippi River Hydrographs at Reserve, LA.

4. Construction Load cases assume a piezometer dewatering system is in place during construction and that the ground water is drawn to below the bottom of the stabilization slab which is currently is El. -10.5.

_	DE	SIGN LOAD CASES			Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Elevations	Load Category	Combinations for Hydraulic Concrete Design (FM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load				
10	Construction	Vertical surcharge	10 5			16 670/
Ia	Under Roadway	Lateral load from dry backfill to T.O. Road	-10.5	Unusual	1.0(D+EH+EV+LS)	10.07 %
		Dead load				
1h	Uneven	Vertical surcharge	-10.5	Unusual		33 330/
10	Construction	Lateral load from uneven dry backfill (5ft differential)	-10.5 Offusual		00.00 /0	
	Maximum River Stage with Uplift, Roadway	Dead load	23.73 Usua			
		Culverts empty				
		Uplift from Maximum River Stage		Usual	2.2(D+EH+EV+Hs+Hu+V)	
2a		Average groundwater table outside culvert				0.00%
		Vertical & Lateral load from semi- saturated backfill to T. O. Road				
		Dead load				
		Culverts empty				
	Maximum River	Uplift from Maximum River Stage				
2a_6	Stage with Uplift, C-6 Soil Cover	Average groundwater table outside culvert	23.73	Usual	al 2.2(D+EH+EV+Hs+Hu)	0.00%
		Vertical & Lateral load from semi- saturated backfill to EL +8.0				

	DE	SIGN LOAD CASES			Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Elevations	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load			, , , , , , , , , , , , , , , , , , , ,	
	Maximum Divor	Culverts flowing full				
2b	Stage without	Average groundwater table outside culvert	23.73	Usual	2.2(D+EH+EV+Hs+V)	0.00%
		Vertical & Lateral load from semi- saturated backfill to T. O. Road				
		Dead load				
		Culverts empty		Usual	2.2(D+EH+EV+Hs+Hu+V)	0.00%
	Minimum River Stage with Uplift, Roadway	Uplift from Minimum River Stage	1			
3a		Average groundwater table outside culvert				
		Vertical & Lateral load from semi- saturated backfill to T. O. Road				
		Dead load			2.2(D+EH+EV+Hs+Hu)	
		Culverts empty				
	Minimum River	Uplift from Maximum River Stage				
3a_6	Stage with Uplift, C-6 Soil Cover	Average groundwater table outside culvert	1	Usual		0.00%
		Vertical & Lateral load from semi- saturated backfill to EL +8.0				
		Dead load				
Зb	Minimum River	Culverts flowing at Minimum River Stage water level				
	Stage without Uplift, Roadway	Average groundwater table outside culvert	1	Usual	2.2(D+EH+EV+Hs+V)	0.00%
		Vertical & Lateral load from semi- saturated backfill to T. O. Road				

	DE	SIGN LOAD CASES	DiverMeter		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Elevations	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load				
	Maint. Dewatering	Two exterior culverts flowing full				
	Type 1 (Center	Uplift from Maximum River Stage				
D1a	Culvert Dewatered) with Uplift,	Average groundwater table outside culvert	23.73	Unusual	1.6(D+EH+EV+Hs+Hu+V)	33.33%
	Roadway	Vertical & Lateral load from semi- saturated backfill to T. O. Road				
		Dead load				
	Maint. Dewatering Type 1 (Center Culvert Dewatered) with Uplift, C-6 Soil Cover	Two exterior culverts flowing full			1.6(D+EH+EV+Hs+Hu)	33.33%
		Uplift from Maximum River Stage				
D1a_6		Average groundwater table outside culvert	23.73	Unusual		
		Vertical & Lateral load from semi- saturated backfill to EL +8.0				
		Dead load				
	Maint. Dewatering	Two exterior culverts flowing full		Usual	1.6(D+EH+EV+Hs+V)	
D1b	Culvert Dewatered)	Average groundwater table outside culvert	23.73			33.33%
	Roadway	Vertical & Lateral load from semi- saturated backfill to T. O. Road				
		Dead load				
		One exterior culvert flowing full				
D2a	Maint. Dewatering	Uplift from Minimum River Stage				
	Culvert Full) with Uplift, Roadway	Average groundwater table outside culvert	1	Usual	1.6(D+EH+EV+Hs+Hu+V)	33.33%
	Uplint, Koadway	Vertical & Lateral load from semi- saturated backfill to T. O. Road				

	DE	SIGN LOAD CASES			Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Elevations	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load				
	Maint. Dewatering	One exterior culvert flowing full				
	Type 2 (One Edge	Uplift from Minimum River Stage	1	Usual	1.6(D+EH+EV+Hs+Hu)	33.33%
D2a_6	Culvert Full) with Uplift, C-6 Soil Cover	Average groundwater table outside culvert				
		Vertical & Lateral load from semi- saturated backfill to EL +8.0				
		Dead load				
	Maint. Dewatering	One exterior culvert flowing full				
D2b	Type 2 (One Edge Culvert Full) without	Average groundwater table outside culvert	1	Usual	1.6(D+EH+EV+Hs+V)	33.33%
	Uplift, Roadway	Vertical & Lateral load from semi- saturated backfill to T. O. Road				

1. Average Groundwater Table is EL 5.2 NAVD88.

2. Construction Load cases assume a piezometer dewatering system is in place during construction and that the ground water is drawn to below the bottom of the stablization slab which is currently is El. -10.5.

3. Maximum and Minimum River Levels taken from Mississippi River Hydrographs at Reserve, LA.

4. Settlement Loading: A copy of each load case is created and the forces due to settlement of fill are added. These load cases are denoted with "-ST" in the name (ex: OP1a-ST is Operational Case 1a plus the addition of settlement forces).

5. Traffic Loading: Four worst-case traffic conditions were developed. Each load case with the "Roadway" fill condition is copied and one of the four traffic conditions is added. These cases are denoted with "_T1", "_T2", "_T3" or "_T4" in the name (ex: 1a_T1 would be load case 1a with the addition of traffic condition 1).

3.8.3.2 Canadian National Railroad Culvert

Note, if KCS chooses to construct a concrete culvert instead of a bridge, load combinations for the KCS crossing will be the same as what follows.

	DESI	GN LOAD CASES	Channel		Factored Load	Allowable
LC No	Load Case Name	Description/Applicable Loads	Water Elevation	Load Category	Combinations for Hydraulic Concrete Design	Overstress for Pile Design
110.			(ft NAVD88)		(EM-1110-2-2104)	(EM-1110-2-2906)
		Dead Load				
19	Construction	Vertical Surcharge Loads	-9.75	ادىرورا ا		16 67%
īα	Construction	Vertical & Lateral load from dry backfill	-3.75	Unusual	1.0(D+L11+L V+L3)	10.07 %
1b		Dead Load				
	Uneven Construction	Vertical Surcharge Loads	-9.75 Unusual	Unuqual	1 6(D+I +EH+EV+I S)	33 33%
		Lateral load from uneven dry backfill (5ft differential)			55.55 %	
		Dead Load (Concrete and Rail)	8.0			
		Culverts flowing full		8.0 Usual	2.2(D+EH+EV+Hs+Hu)	
2a	Maximum Water Table with Uplift (Full Flow)	Maximum groundwater table outside culvert (including uplift)				0.00%
		Vertical & Lateral load from semi- saturated backfill				
		Dead Load (Concrete and Rail)				
		Culverts flowing full				
2a_t	Maximum Water Table with Uplift (Full Flow)	Maximum groundwater table outside culvert (including uplift)	8.0	Usual	2.2(D+EH+EV+Hs+Hu+V)	0.00%
	+ Cooper E-80	Vertical & Lateral load from semi- saturated backfill				
		Cooper E-80				

Table 3-20. Load Combinations for Concrete Design, CN Railroad Culverts

	DESI	GN LOAD CASES	Channel		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Water Elevation	Load Category	Combinations for Hydraulic Concrete Design	Overstress for Pile Design (EM-1110-2-2906)
			(ft NAVD88)		(EM-1110-2-2104)	
		Dead Load (Concrete and Rail)				
	Minimum Water Table	Culverts flowing full				
2b	(Full Flow)	Groundwater below culvert	8.0	Usual	2.2(D+EH+EV+Hs)	0.00%
		Vertical & Lateral load from dry backfill				
		Dead Load (Concrete and Rail)				
		Culverts flowing full		Usual	2.2(D+EH+EV+Hs+V)	
	Minimum Water Table (Full Flow) + Cooper E-80	Groundwater below culvert	8.0			0.000/
2b_t		Vertical & Lateral load from dry backfill				0.00 /8
		Cooper E-80				
		Dead Load (Concrete and Rail)		Usual	2.2(D+EH+EV+Hs+Hu)	
		Culverts empty				
За	Maximum Water Table with Uplift (Empty)	Maximum groundwater table outside culvert (including uplift)	-9.75			0.00%
		Vertical & Lateral load from semi- saturated backfill				
		Dead Load (Concrete and Rail)				
		Culverts empty				
3a_t	Maximum Water Table with Uplift (Empty) +	Maximum groundwater table outside culvert (including uplift)	-9.75	Usual	al 2.2(D+EH+EV+Hs+Hu+V)	0.00%
	Cooper E-80	Vertical & Lateral load from semi- saturated backfill				
		Cooper E-80				

	DESI	GN LOAD CASES	Channel		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Water Elevation (ft NAVD88)	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead Load (Concrete and Rail)				
3b	Minimum Water Table	Culverts empty		Usual	2.2(D+EH+EV)	0.00%
	(Empty)	Groundwater below culvert	-9.75			
		Vertical & Lateral load from dry backfill				
		Dead Load (Concrete and Rail)				
		Culverts empty				0.00%
2h +	Minimum Water Table	Groundwater below culvert	0.75	Llouol	I 2.2(D+EH+EV+V)	
50_1	Cooper E-80	Vertical & Lateral load from dry backfill	-9.75	USUAI		0.00 %
		Cooper E-80				

1. Maximum groundwater and maximum water level in channel are EL 8.0. Minimum groundwater and minimum water level in channel are assumed to be below the structure.

2. Construction Load cases assume a piezometer dewatering system is in place during construction and that the ground water is drawn to below the bottom of the structure, which is currently is El. -9.75.

3.8.3.3 Airline Highway Culvert

Table 3-21. Load Combinations for Concrete Design, Airline Highway Culverts

	DE	SIGN LOAD CASES	Channel		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Water Elevations	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load	((,	
1a	Construction Under Roadway	Vertical surcharge Vertical & Lateral load from dry backfill to T.O. Road	-12.0	Unusual	1.6(D+EH+EV+Ls)	16.67%
		Dead load				
1b	Uneven	Vertical surcharge	-12.0 Unusual	Unusual	1.6(D+EH+EV+Ls)	33.33%
15	Construction	Lateral load from uneven dry backfill (5ft differential)		, , , , , , , , , , , , , , , , , , ,		
	Maximum Water Table with Uplift (Full Flow)	Dead load	5.3 Usual	Usual		
		Culverts flowing full			2.2(D+EH+EV+Hs+Hu)	
2a		Maximum groundwater table outside culvert (including uplift)				0.00%
		Vertical & Lateral load from semi- saturated backfill				
		Dead load				
		Culverts flowing full				
2a_t	Maximum Water Table with Uplift (Full Flow) + Traffic Loads	Maximum groundwater table outside culvert (including uplift)	5.3	Usual	2.2(D+EH+EV+Hs+Hu+V)	0.00%
		Vertical & Lateral load from semi- saturated backfill				
		Traffic				

	DE	SIGN LOAD CASES	Channel		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Water Elevations	Load Category	Combinations for Hydraulic Concrete Design (EM 1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load			(EWF1110-2-2104)	
		Culverts flowing full				
2h	Minimum Water	Groupdwater below culvert	-12.0	llsual	2 2(D+EH+E\/+Hs+\/)	0.00%
20	Table (Full Flow)	Vertical & Lateral load from dry	12.0	03001	2.2(0121112011310)	0.0070
		backfill				
		Dead load				
		Culverts flowing full				
2h +	Minimum Water Table (Full Flow) + Traffic Loads	Groundwater below culvert	-12.0	Lloual		0.00%
20_t		Vertical & Lateral load from dry backfill		oodal	2.2(0+2+++++++++++++++++++++++++++++++++	
		Traffic				
		Dead load		Usual	2.2(D+EH+EV+Hs+Hu)	
		Culverts empty				
3a	Table with Uplift	Maximum groundwater table outside culvert (including uplift)	5.3			0.00%
	(======)	Vertical & Lateral load from semi- saturated backfill				
		Dead load				
		Culverts empty				
3a_t	Maximum Water Table with Uplift	Maximum groundwater table outside culvert (including uplift)	5.3	Usual	al 2.2(D+EH+EV+Hs+Hu+V)	0.00%
	(Empty) + Traffic	Vertical & Lateral load from semi- saturated backfill				
		Traffic				

	DE	SIGN LOAD CASES	Channel		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Water Elevations (ft NAVD88)	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
		Dead load				
3b	Minimum Water Table (Empty)	Culverts empty	-12.0 Us	Usual	2.2(D+EH+EV)	0.00%
		Groundwater below culvert				
		Vertical & Lateral load from dry backfill				
		Dead load				
		Culverts empty				0.000/
2h +	Minimum Water	Groundwater below culvert	12.0	Lleuol		
30_1	Traffic Loads	Vertical & Lateral load from dry backfill	-12.0	Usual	2.2(D+EH+EV+V)	0.00 %
		Traffic				

1. Maximum groundwater and maximum water level in channel are EL 5.3. Minimum groundwater and minimum water level in channel are assumed to be below the structure.

2. Construction Load cases assume a piezometer dewatering system is in place during construction and that the ground water is drawn to below the bottom of the structure, which is currently is El. -12.0.

3.8.3.4 WSLP River Road, CN Railroad & KCS Railroad Crossings

Table 3-22. Load Combinations for Concrete Design, WSLP Gated Crossings

	DESIGN LOAD CASES		Flood Side		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Water Elevation	Load Category	Combinations for Hydraulic Concrete Design	Overstress for Pile Design
			(ft NAVD88)		(EM-1110-2-2104)	(EM-1110-2-2906)
		Dead Load				
1a	Construction	Construction surcharge loads	B.O. Slab	Unusual	1.6(D+EH+EV+Ls)	16.67%
		Soil backfill in place				
		Dead Load				
1b	Construction + Wind	No soil placed	B.O. Slab	Unusual	1.6(D+W)	33.33%
		Wind from Protected Side				
	Water to SWL (Impervious)	Dead Load	12.7	Usual	2.2(D+EH+EV+Hs+Hu)	0.00%
0.5		SWL Flood hydrostatic load				
Za		Impervious Uplift				
		Vertical & Lateral load from backfill				
	Water to SWL (Pervious)	Dead Load	12.7	Usual	2.2(D+EH+EV+Hs+Hu)	0.00%
0 h		SWL Flood hydrostatic load				
20		Pervious Uplift				
		Vertical & Lateral load from backfill				
		Dead Load			1.6(D+EH+EV+Hs+Hu+W)	33.33%
		SWL Flood hydrostatic load				
2c	Water to SWL + Wind	Impervious Uplift	12.7	Unusual		
	(Impervious)	Vertical & Lateral load from backfill				
		Wind from Flood Side above SWL				

	DESIGN LOAD CASES		Flood Side		Factored Load	Allowable
LC No	Load Case Name	Description/Applicable Loads	Water Elevation	Load Category	Combinations for Hydraulic Concrete Design	Overstress for Pile Design
			(ft NAVD88)		(EM-1110-2-2104)	(EM-1110-2-2906)
		Dead Load				
		SWL Flood hydrostatic load		Unusual		
2d	Water to SWL + Wind	Pervious Uplift	12.7			33 33%
20	(Pervious)	Vertical & Lateral load from backfill	12.7		1.0(D+En+Ev+ns+nu+vv)	33.33%
		Wind from Flood Side above SWL				
		Dead Load				
		SWL Flood hydrostatic load		Unusual	1.6(D+EH+EV+Hs+Hu+Hw)	33.33%
3a	Water to SWL + Wave (Impervious)	Impervious Uplift	12.7			
		Vertical & Lateral load from backfill				
		SWL Wave load				
	Water to SWL + Wave (Pervious)	Dead Load			1.6(D+EH+EV+Hs+Hu+Hw)	
		SWL Flood hydrostatic load		Unusual		
26		Pervious Uplift	10.7			33.33%
30		Vertical & Lateral load from backfill	12.7			
		SWL Wave load				
		Dead Load				
		SWL Flood hydrostatic load				
		Impervious Uplift				
4a	Water to SWL + Wind +	Vertical 8 Lateral land from bookfill	12.7	Extreme	0.9D+(1.35/0.9)EH+1.0EV+	33.33%
	impact (impervious)	vertical & Lateral load from backfill			1.3HS+1.3Hu+1.0VV+11.0)	
		Wind from Flood Side above SWL				
		Boat/Debris Impact Load				
4b		Dead Load	12.7	Extreme		33.33%

	DESIGN LOAD CASES		Flood Side		Factored Load	Allowable
LC No.	Load Case Name	Description/Applicable Loads	Water Elevation (ft NAVD88)	Load Category	Combinations for Hydraulic Concrete Design (EM-1110-2-2104)	Overstress for Pile Design (EM-1110-2-2906)
	Water to SWL plus Wind + Impact (Pervious)	SWL Flood hydrostatic load Pervious Uplift Vertical & Lateral load from backfill Wind from Flood Side above SWL Boat/Debris Impact Load			0.9D+(1.35/0.9)EH+1.0EV+ 1.3Hs+1.3Hu+1.6W+I1.0)	
5a	Water to Reverse Head (Impervious/Pervious)	Dead Load Reverse Head hydrostatic load Impervious/Pervious Uplift Vertical & Lateral load from backfill	B.O. Slab	Usual	2.2(D+EH+EV+Hs+Hu)	0.00%
5b	Water to Reverse Head (Impervious/Pervious)	Dead Load Reverse Head hydrostatic load Impervious/Pervious Uplift Vertical & Lateral load from backfill Wind from Protected Side above water	B.O. Slab	Unusual	1.6(D+EH+EV+Hs+Hu+W)	33.33%
A	Water to TOW (Impervious/Pervious)	Dead Load TOW Flood hydrostatic load Impervious/Pervious Uplift from TOW Elev	16	Unusual	1.6(D+EH+EV+Hs+Hu)	33.33%

1. If unbalanced loads are found with subsequent geotechnical stability analysis these loads will be added to the above load combinations in agreement with the HSDRRS Design Guidelines.

	DESIGN LOAD CASES		Flood Side	Factored Load
LC No.	Load Case Name	Description/Applicable Loads	Water Elevation (ft NAVD88)	Combinations for Hydraulic Steel Design (ETL 1110-2-584)
1	Strength I, TOW Hydrostatic	Gate Closed	16	0D + 1.4Hs2
		TOW Flood hydrostatic load	10	
	Strength I, Wind	Gate Closed		
2		Dead Load	N/A	1.2D + 1.3W
		Wind Load (extreme)		
	Strength II, Operating + Wind (Hinged Gate)	Gate being operated (opened/closed)		
3		Dead Lead	N/A	1.2D + 1.3W
		Wind Load (operation)		
4	Strength II, Operating	Gate being operated (opened/closed)	NI/A	00 + 1 20
	(Roller Gate)	Operating Machinery (winch load)	IN/A	00 + 1.30

Table 3-23. Load Combinations for	r Steel Design,	WSLP Gated	Crossings
-----------------------------------	-----------------	------------	-----------

1. Load abbreviations differ slightly from Table 6-1. These abbreviations match ETL 1110-2-584 Appendix F Design Loads.

4. CIVIL DESIGN

4.1 Codes, Standards, and Guidelines

4.1.1 Industry Codes, Standards and References

- DOTD Roadway Design Procedures and Details (often referred to as the Roadway Design Manual), latest edition
- DOTD Minimum Design Guidelines dated March 6, 2017
- AASHTO A Policy on Geometric Design of Highways and Streets, 2011 Edition
- AASHTO Roadside Design Guide, 4th Edition
- AASHTO Highway Safety Manual, 2012 Edition
- DOTD Guidelines for Conducting a Safety Analysis for Transportation Management Plans and Other Work Zone Activities
- DOTD Traffic Management Plan
- DOTD Construction Plans Quality Control/Quality Assurance Manual v2013
- DOTD Office of Highways Roadway Plan Preparation Manual
- DOTD Erosion Control Guidelines
- DOTD Louisiana Standard Specifications for Roads and Bridges
- American Railway Engineering and Maintenance-of-Way Association (AREMA).
- American Welding Society (AWS) AWS D1.5.
- Louisiana State Plumbing Code, 2013
- Code of Ordinances St. John the Baptist Parish, 2016
- Louisiana Department of Environmental Quality Codes and Regulations, 2018
- ADA Standards for Accessible Design, 2010 (including 28 CFR 35.151 and 2004 ADAAG at 36 CFR part 1191, Appendices B and D)
- ANSI, American National Standards Institute
- ASTM, American Society for Testing and Materials
- Code of Federal Regulations, Title 29-Labor, Chapter XVII, Occupational Safety and Health Administration (OSHA), 1976
- Engineering Directives and Standards Manual (EDSMs)

4.1.2 USACE Engineering Manuals and Guidelines

- EM 1110-2-1601, Hydraulic Design of Flood Control Channels, 1 July 1991
- EM 1110-2-1913, Design & Construction of Levees, 30 April 2000

• New Orleans District Engineering Division, *Hurricane and Storm Damage Risk Reduction System Design Guidelines* (HSDRRS-DG), with all revisions and addendums, dated June 2012

4.1.3 Computer Programs

- AutoCad Civil3D (version 2020)
- Microstation In-Roads (version 2018)
- ESRI ArcGIS
- HYDRWIN (LADOTD hydraulics Program)
- STADD Pro for the railroad bridge
- PG Super for prestressed concrete beams.
- LPILE for lateral analysis of the prestressed concrete piles.
- SP Column for the design of the prestressed concrete piles.
- CAP 18 and Excel spreadsheets for design and analysis for the cap.

4.2 Design Criteria

4.2.1 Site Civil Design

Levee design grade elevations are as follows:

- Mississippi River Levee (MRL): EL 16.4 or EL 20.1
- Guide Levees on protected side of MRL: EL 13.6
- Guide Levees at back structure/outfall: EL 11.6
- Hurricane Levee (current): EL 12.1
- Hurricane Levee (future): EL 15.6
- See Tables 2-2 and 2-3 for related design stages

4.2.1.1 Conveyance Channel Bottom

Based on the available soils investigation data collected, the Conveyance Channel bottom is comprised of dispersive clays which are subject to erosion. Under normal operating conditions, the depth-averaged velocity in the center of the channel is 7.21 ft/s. Based on the USACE EM 1110-2-1601 design guidance the required revetment to prevent erosion at that velocity equates to a DOTD Class 10-lb stone. Using the Factor of Safety design approach put forth in the National Concrete Masonry Association's Design Manual for ACB Revetment Systems indicates that a 4-inch thick Articulated Concrete Block mat system is sufficient to protect the channel bottom. The decision between using riprap or ACBs has not been made yet; however, either are capable of providing the required erosion control.

During storm surge/hurricane conditions there will be significant wind-driven wave action at the surface of the channel, these forces will be the governing ones determining the revetment protection required on the channel slopes and stability berms. However, the significant depth of the channel bottom prevents those forces from being translated down to EL -25. Therefore, the design of the channel bottom revetment is the same for both the normal operation and

storm/hurricane condition, which would be either the DOTD Class 10 lb Stone or the 4-inch thick ACB mat system.

4.2.1.2 Civil Sitework

The site layout will be designed to allow for ease of access during levee, structure and channel maintenance activities. The site layout for the camp reservation will be designed as a 12-inch thick limestone roadway/parking surface with a 12-inch thick sand subbase and will allow for ease of construction during levee, structure and channel maintenance activities; includes subsurface drainage, utility service such as sewer treatment, water, power, telephone/cable etc. with security fencing, lighting, parking facilities, and sidewalks. The radii, turning movements and curb design assumption are using a WB-40 tractor trailer design vehicle and a 40 foot turning radius. Reservation access roads will be surfaced with 12-inch thick limestone, or 2-inch thick asphalt, and sand subbase with swale drainage. The levee surface roads design will be asphalt with stone base course and sand subbase and turning movements for WB-40 tractor trailer design vehicle. Minimum width for one-way haul/access roads will be 15 feet; for two-way, minimum width will be 24 feet.

4.2.1.3 Security Fencing

Security Fencing will be a minimum of 10-feet high with a barbed-wire apron with extension arms. Fencing will be per typical USACE details.

4.2.1.4 Erosion and Sedimentation Control

Erosion and sedimentation control will be provided to prevent violations of water quality standards. Controls will be installed per LDEQ requirements.

4.2.1.5 Signs

Where required, signs will be in accordance with applicable codes and standards (e.g. – MUTCD, NFPA, ADA, etc.). See Section 10 for applicable guidelines and criteria.

4.2.2 Roadway Design Criteria

There are two roadway crossings in the subject Project: 1) LA 44 (River Road), and 2) US 61 (Airline Highway). A bypass roadway will be constructed to reroute River Road during construction of the Project to facilitate installation of the culverts under the road and the attached U-frame channels on each side. The proposed alternative selected for Airline Highway is to raise the road to the 2070 flood protection elevation. The design of the re-routed and raised roadways will be performed according to the criteria outlined in the DOTD and AASHTO references listed above. The following sections outline the specific design criteria for each roadway.

4.2.2.1 LA 44 (River Road)

River Road is classified as a Rural Minor Arterial, the appropriate guidelines in the Roadway Design Manual would be followed and are included below. Refer to Table 1.1 below for design criteria.

	•	•	,	
Detour Posted Spee	d (mph)	35		
Lane Width (ft)		12		
		Preferred	8	
Shoulder Width (ft)	(Inside)	Acceptable	2	
	(0.1.1.)	Preferred	8	
Shoulder Width (π)	(Outside)	Acceptable	2	
Min. Lateral Offset (ft)	4		
Class Zana (H)		Foreslope	16	
clear zone (ft)		Backslope	16	
Man Landitudiaal C	d- (%)	Preferred	-	
Max. Longitudinal G	rade (%)	Acceptable	5	
Fore Slopes		Acceptable	4:1	
Back Slopes		Acceptable	3:1	
	Crest	LVC _{MIN} (ft)	105	
		SSD _{CREST} (ft)	250	
Vertical Curve		K _{MIN}	29	
Criteria		LVC _{MIN} (ft)	105	
	SAG	SSD _{SAG} (ft)	250	
		K _{MIN}	49	
Lane Width Taper Le	ength (ft)	120		
ADT (vpd) (2017)		5,502		
		Emax.	4%	
Horizontal Curve Data		Design Speed	35	
		Min. Radius _{NC} (ft)	527	

Table 4-1. Basic Design Criteria for LA 44 (River Road)

4.2.2.2 US 61 (Airline Highway)

Airline Highway is federal roadway classified as an Urban Principal Arterial. It is a 4-lane divided highway with a 30-ft wide median. The Maurepas Diversion elements, the WSLP flood protection features, and the culverts of the re-routed drainage ditches all cross the roadway. Table 1.1 lists the applicable specific design criteria.

Posted Speed (mp	oh)	65		
Lane Width (ft)		12		
Shoulder Width (f	t) (Inside)	4		
Shoulder Width (f	t) (Outside)	8		
Min. Lateral Offse	t (ft)	4		
Max Longitudina	Grade (%)	Preferred	3	
	Grade (%)	Acceptable	5	
Eoro Slonos		Preferred	6:1	
Fore Slopes		Acceptable	4:1	
Pack Clance		Preferred	4:1	
Back Slopes		Acceptable	3:1	
		LVC _{MIN} (ft)	1056	
	Crest	SSD _{CREST} (ft)	645	
Vertical Curve		K _{MIN}	193	
Criteria		LVC _{MIN} (ft)	477	
	SAG	SSD _{SAG} (ft)	645	
		K _{MIN}	157	
Lane Width Taper	Length (ft)	780		
ADT (vpd) (2017)		20,755		

Table 4-2. Basic Design Criteria for US 61 (Airline Highway)

4.2.3 Railroad Design Criteria

The following will be the Design Criteria for the proposed work on the CN and KCS railroads. Railroad track and bridge design shall comply with the requirements of 2016 American Railway Engineering and Maintenance-of-Way Association (AREMA) *Manual for Railway Engineering* and the pertinent requirements of the CN RR and KCS RR.

4.2.3.1 Track Work

Track operating speed for the CN RR shall be 60 mph for the main spur track and the interchange and facility site. Adjacent parallel tracks should have minimum track centers of at least 9 feet.

4.2.3.1.1 Track Embankment Design

All permanent side slopes are to be no steeper than 3:1. Staged construction side slopes may be as steep as 2:1. The top width of the subgrade should be 13 feet from the track centerline to the

outside shoulder. The top of the subgrade should be crowned for drainage at a minimum slope of 2 percent. A minimum of 12 inches of sub-ballast should be used. Ballast beneath the ties will be a minimum thickness of 8 inches. Track should be constructed with 7-in x 9-in x 9-ft hardwood timber crossties spaced at 19-ft 6-in on center. The rail material shall be new 115# CWR.

4.2.3.1.2 Horizontal Alignment

Curves shall be designed using the chord definition. Maximum degree of curvature for the spur track should be 10°. Superelevation and spirals shall be added to curves that have 1-in or greater unbalance, in accordance with the CN RR and KCS RR standards. Where superelevation and spirals are required, minimum spiral length is 25-ft. Maximum superelevation is 3-in. Turnouts should be No. 20 to support operations to or from the main line at 15 mph. Minimum tangent distance between curves should be 300-ft for the main spur tracks and 150-ft at the interchanges and the Marathon facility site.

4.2.3.1.3 Vertical Alignment

Maximum grade shall be 1.5%. Maximum rate of change for sag curves should be 0.12 (ft/ft) with a desirable value of 0.06 (ft/ft). Maximum rate of change for summit (crest) curves should be 0.20 (ft/ft) with a desirable value of 0.10 (ft/ft).

4.2.3.1.4 Drainage

Drainage design shall be in accordance with CN RR, KCS RR, and LADOTD requirements. Design of drainage features for significant waterbody crossings shall use a 50-yr design storm return interval. Minor culverts shall use a 25-yr design frequency.

4.2.3.2 Railroad Bridge

Structural design of bridges and wingwalls shall be in accordance with the 2016 American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering, plus pertinent requirements of CN and KCS Railroads. Welding would be in accordance with the AWS Bridge Welding Code D1.5, as amended and complemented by the 2012 AREMA Manual for Railway Engineering specifications.

4.2.3.2.1 Track Clearances

There are no overhead clearance restrictions in the Project. Vertical clearances shall comply with CN RR and KCS RR criteria. Low Chord requirements over waterways shall comply with KCS RR standards. Horizontal clearances of 9'-0" from centerline of railroad bridges to the face of the bridge handrail would be provided. Handrails would be provided on each side of the bridge. Minimum horizontal clearance to a proposed bridge substructure is 25'-0" without crash walls to protect the proposed substructure.

4.2.3.2.2 Design Loads

Train Live loads will be Cooper E-80. Deck plate girders and diaphragms would be checked for an alternative loading condition of 4 axles at 1.25 times the maximum Cooper axle load (100 kips) at 5-ft, 6-ft, and 7-ft axis spacing. A minimum 200 psf live load shall be applied where rail and road loadings are not applied. Wind loads would be applied in accordance with 2016 AREMA Manual for Railway Engineering Chapters 8 and 15. Other loads, as applicable, would be considered in accordance with 2012 AREMA Manual for Railway Engineering specifications.

4.2.3.2.3 Materials

Painted steel conforming to requirements of ASTM A709 Grade 50 would be used. All steel shall be coated or galvanized. Structural concrete would have a minimum 28-day strength of 4,000 psi or higher, as required by design. Reinforcing steel will be deformed billet steel bars conforming to requirements of ASTM A615 Grade 60.

Design Aspect	Design Parameter	Criterion
	Track operating speed (main spur track)	20 mph
General	Track operating speed (interchange and facility site)	20 mph
	Double track spacing	20 feet
	Subgrade width from centerline to edge of trackbed	13 feet
	Subgrade width increase per inch of superelevation	6 inches
	Minimum cross slope	1% - 2% utilized
Trackbed	Min. depth of longitudinal ditches below top of subgrade	3 feet
	Minimum grades of ditches	0.20%
	Maximum fore slope	3:1
	Maximum back slope	2:1 (3:1 desired)
	Minimum width of ditches (flat bottom)	10 feet
	Sub-ballast depth (minimum)	12 inches
	Ballast depth (minimum)	8 inches
	Wood ties	7 in x 9 in x 9 ft
	Track (continuous welded rail)	115 CWR
	Maximum curvature – chord definition (main spur track/Industry Track)	7° 00′
	Superelevation and spiral length	E = S (0.0007 SD) - 1"
Horizontal Geometry	Minimum tangent distance between curves (main spur track)	300 feet
Coomeray	Minimum tangent distance between curves (interchange and facility site)	150 feet
	Minimum distance between switch points (main spur track)	125 feet
	Minimum distance between switch points (plant site)	100 feet
	Main line turnout	No. 11
	Interchange and facility site turnout	No. 11
	Minimum grade	0.00%
	Maximum grade	1.50% (1.00% desired)
Vertical	Maximum rate of change – sag curve	0.12-(0.06 desired)
Geometry	Maximum rate of change – summit curve	0.20-(0.10 desired)
	Vertical curve should not fall within the limits of horizontal curves or turnouts (general rule)	

Table 4-3.	Railroad	Design	Criteria	Summary
------------	----------	--------	----------	---------

5. HYDRAULIC DESIGN

5.1 Introduction

There are several aspects to the Hydrologic and Hydraulic (H&H) design of the Project:

- Hydrologic analyses to estimate the stormwater runoff at various points throughout the project area.
- Hydraulic analyses to calculate the flow capacities and water surface elevations in the existing and proposed drainage ditches.
- Hydraulic analyses to calculate the flow capacities and water surface elevations in the Conveyance Channel.
- The modeling of the dispersion into the southern portion of the Maurepas Swamp from the proposed drainage routing. and
- The modeling of the dispersion of the water and nutrients into the northern portion of the swamp from the Maurepas Diversion discharge.

5.2 Codes, Guidelines, and References

- DOTD, Hydraulics Manual, 2011
- Natural Resources Conservation Service TR-55 methodology Urban Hydrology for Small Watersheds, USDA, NRCS, Technical Release 55, June 1986
- SCS Unit Hydrograph Method
- Muskingum-Cunge Routing
- Rainfall Distribution SCS Type III
- Rainfall depth comes from the NOAA Atlas 14 Volume 9 Version 2PDS Estimates for Garyville LA, Table 3.4-2 Louisiana Rainfall Depths (inches for 100 Year Return Period Duration (Hour) 24.,
- LiDAR data 2017,
- USGS Quad Maps and Aerial Photography,
- National Hydrographic Dataset,
- Historical SWMM modeling (performed in the St. John the Baptist Parish area)
- USACE Report "West Shore Lake Pontchartrain Hydraulic Design of Pump Stations and Drainage Structures Draft Repot April 2019"
- USACE Report "West Shore Lake Pontchartrain Hydraulic Design of Pump Stations and Drainage Structures Addendum to Main H&H Report September 2019"
- Fenstermaker Survey and LiDAR collected specifically for this project

5.3 Computer Programs

The following computer programs were used as tools to perform the various H&H calculations:

• HEC-HMS 4.6.1 – for determining the peak values of existing and proposed conditions for the sub basins flowing into Hope Canal and Marathon Ditch

- Hydraulic Toolbox- for checking ditch sizing using peak values form HEC-HMS
- HEC-RAS 1D converted to version 5.0.7- the original 2007 Diversion modeling was done in 1D.
- HEC-RAS 2D version 5.0.7- The USACE model was adjusted and limited to the proposed site from the MS River to Airline Highway for the purposes of developing the existing and proposed conditions. The existing conditions are those as of Fall 2020, compared to the proposed conditions of a diversion channel and West Shore Lake Pontchartrain (WSLP) levee system. Also included in the proposed conditions are the proposed east and west ditches to convey water that would have otherwise flowed past the diversion or into Angelina canal.
- ESRI ArcMap 10.8. GIS software was used to process LiDAR raster data, develop exhibits, process the proposed channel and existing survey shapefiles, and view land coverage raster files.

5.4 Design Criteria

The following limitations and constraints were applied to the data analysis and design of the proposed features:

- Maintain the increase in WSE in the CN RR ditch < 0.1-ft,
- Maintain the increase in WSE in the Marathon detention pond < 0.1-ft,
- Minimize the required acquisition of land to the east of the project (by keeping width of west ditch as small as possible)
- Minimize impacts to the existing portions of St. John the Baptist Parish.

6. MECHANICAL DESIGN

6.1 Codes, Standards, and Guidelines

There are numerous Codes, Standards, and Guidelines that will apply to the design of the Mechanical, Plumbing, and Fire Protection Systems. Key documents include, but are not limited to, the following:

- IBC, International Building Code, 2015.
- NFPA 101, Life Safety Code, 2015.
- NFPA 30, Flammable and Combustible Liquids Code, 2015.
- International Plumbing Code, 2012 with amendments.
- International Fuel Gas Code, 2012.
- International Mechanical Code, 2012.
- ASHRAE 90.1, Energy Code, 2007.
- NFPA 13, Standard for the Installation of Sprinkler Systems, 2016.
- NFPA 37, Stnd for Installation & Use of Stationary Combustion Engines & Gas Turbines, *2015*.

- NFPA 90A, Standard for the Installation of Air-Conditioning and Ventilating Systems, 2015.
- NFPA 110, Standard for Emergency and Standby Power Systems, 2013.
- Hurricane Storm Reduction List Design Guidelines, Chapter 6, 04 October 2007.
- 40 CFR 112, EPA Spill Prevention, Control and Countermeasure (SPCC) Regulation.
- UFC 1-200-01, DOD Building Code (General Building Requirements), *Change 2, 01 Nov 2018*.
- UFC 3-401-01, Mechanical Engineering, *Change 1, October 2015.*
- UFC 3-410-01, Heating, Ventilating, and Air Conditioning Systems, Change 4, 01 November 2017.
- UFC 3-410-02, Direct Digital Control for HVAC and Other Building Control Systems, *18 July 2018*.
- UFC 3-410-04N, Industrial Ventilation, 25 October 2004.
- UFC 3-420-01, Plumbing Systems, *Change 10, October 26, 2015.*
- UFC 3-420-02FA, Compressed Air, *Change 1, December 2007*.
- UFC 3-600-01 Fire Protection Engineering for Facilities, *Change 2, 25 March 2018*.
- UFC 4-023-10, Safe Havens, *1 June 2016*.
- UFC 4-610-01, Administrative Facilities, *Change 2, 21 May 2014*.

6.2 References

There are numerous standards that will be referenced by the design specifications. Key organizations with standards referenced will include, but are not limited to, the following:

- ABMA, American Bearing Manufacturers Association.
- AGMA, American Gear Manufacturers Association
- ASTM, American Society for Testing and Materials
- AHRI, Air-Conditioning, Heating and Refrigeration Institute.
- AISC, American Institute of Steel Construction
- AISI, American Iron and Steel Institute.
- AMCA, Air Movement and Control Association International.
- ANSI, American National Standards Institute.
- ASHRAE, American Society of Heating, Refrigerating and Air-Conditioning Engineers.
- ASME, American Society of Mechanical Engineers.
- ASSE, American Society of Sanitary Engineering.
- ASTM, American Society for Testing and Materials.
- AWS, American Welding Society.
- AWWA, American Water Works Association.

- CAGI, Compressed Air and Gas Institute.
- CGA, Compressed Gas Association.
- ISA, International Society of Automation.
- ISO, International Organization for Standardization.
- MSS, Manufacturers Standardization Society of the Valve and Fittings Industry.
- NEMA, National Electrical Manufacturer's Association.
- NSF, National Sanitation Foundation.
- PPFA, Plastic Pipe and Fittings Association.
- PDI, Plumbing and Drainage Institute.
- SAE, Society of Automotive Engineers International.
- SMACNA, Sheet Metal and Air Conditioning Contractors' National Association.
- UL, Underwriters Laboratories.

Key specific standards referenced will include, but not be limited to, the following:

- Code of Federal Regulations, Title 29-Labor, Chapter XVII, Occupational Safety and Health Administration (OSHA).
- AGMA, American Gear Manufacturers Association. 6010 (1997f) Standard for Spur, Helical,
- Herringbone, and Bevel Enclosed Drives
- ASTM INTERNATIONAL (ASTM) A126 (2004; R 2009) Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings
- ASTM A269 (2010) Standard Specification for Seamless and Welded Austenitic Stainless Steel
- Tubing for General Service
- ASTM B21 (2001e1) Standard Specification for Naval Brass Rod, Bar, and Shapes
- ASTM B584 (2012a) Standard Specification for Copper Alloy Sand Castings for General Applications

6.3 Computer Programs

Design of Mechanical and Plumbing Systems will utilize the following programs:

- Carrier HAP.
- COMCheck for Energy Code Compliance.
- AutoCAD Civil3D
- Specs-In-Tact for development of specifications.

6.4 Design Criteria

6.4.1 Sluice Gates & Actuators

The sluice gates within the Headworks Structure are hydraulically actuated. They will be specified as complete units, consisting of gate frames and guides; gate slides; and wall thimbles. A central hydraulic power unit will provide the energy to operate the gates via linear piston actuators coupled to gate valves for control of the hydraulic fluid.

6.4.1.1 Guidelines:

The following latest revision of the US Army Corps of Engineers Engineering documents will be used for designing the mechanical components:

- ETL 1110-2-584, Design of Hydraulic Steel Structures, 30 June 2014
- EM 1110-2-2610, Mechanical and Electrical Design for Lock and Dam Operating Equipment, 30 June 2013
- EM 1110-2-3200, *Wire Rope Selection Criteria for Gate-Operating Devices*, 30 November 2016
- AWWA C501-87, Standard for Cast-Iron Sluice Gates

The AWWA standard covers wall-thimble, vertically mounted, cast-iron sluice gates designed for either seating head or unseating head, or both. The cast-iron sluice gates have machined metal faces and machined adjustable wedging devices, and can be used for square, rectangular, or round openings. They may be of the conventional-closure or the flush-bottom-closure type. The standard also covers manual sluice gate actuator mechanisms together with standard accessories.

6.4.2 Fire Protection

No assumptions will be made regarding available water pressure and flow from the City. Pressure and flow tests will need to be performed as near to the site as possible to determine available city water capacity, which in turn will be used for pipe sizing calculations. While it is not anticipated that a fire pump will be necessary, information will also be used to size the fire pump, if needed.

6.4.3 Plumbing

No assumptions will be made regarding available water pressure and flow from the City. Pressure and flow tests will need to be performed as near to the site as possible to determine available city water capacity, which in turn will be used for pipe sizing calculations. While it is not anticipated that domestic water booster pumps will be necessary, information will also be used to size domestic water booster pumps, if needed.

6.4.4 Fuel Storage and Distribution

Fuel tank(s) will be sized for operating on-site generating equipment at full load for 3 days.

6.4.5 Heating and Ventilation

HVAC Systems for conditioned spaces within the Control House will be designed to maintain a temperature of 75-degrees Fahrenheit. Actual R-values of designed building insulation materials will be utilized for calculations. Outside air temperature will be assumed to be between 32-degrees Fahrenheit and 95-degrees Fahrenheit; outside air relative humidity will be assumed to be between 50% RH and 100% RH.

Ventilation Systems for non-conditioned spaces will be designed for a minimum of 6 air-changes per hour at a static pressure of 0.25-inches water, and with velocity limited to a maximum of 750 CFM.

The PLC cabinet will be conditioned with an enclosure-mounted air conditioner. Sizing will be based on the heat release information of the Basis of Design PLC equipment and associated power supplies. System will be designed to maintain an internal cabinet temperature between 40-degrees Fahrenheit and 90-degrees Fahrenheit. Cabinet humidity will be maintained below 80% RH.

Ventilation Systems for non-conditioned spaces within the Safe House will be designed for a minimum of 12 air changes per hour at a static pressure of 0.25-inches water, and with velocity limited to a maximum of 500 CFM to limit water intrusion.

The Control House, if separate from the Safe House, will be ventilated, not conditioned, with the system designed for a minimum of 12 air changes per hour at a static pressure of 0.25-inches water, and with velocity limited to a maximum of 500 CFM to limit water intrusion.

7. ELECTRICAL & INSTRUMENTATION DESIGN

7.1 Codes, Standards and Guidelines

There are numerous Codes, Standards, and Guidelines that will apply to the design of the Electrical, Fire Alarm, and Control/Instrumentation Systems. Key documents include, but are not limited to, the following:

- NFPA 70, National Electrical Code, 2014.
- NFPA 72, National Fire Alarm and Signaling Code, 2013.
- NFPA 101, Life Safety Code, 2015.
- IBC, International Building Code, 2015.
- ASHRAE 90.1, Energy Code, 2007.
- NFPA 110, Standard for Emergency and Standby Power Systems, 2013.
- NFPA 780, Standard for the Installation of Lightning Protection Systems, 2014
- IESNA Lighting Handbook, Nineth Edition
- Entergy Customer Installation Standards for Electric Service, September 4, 2018.
- Hurricane Storm Reduction List Design Guidelines, Chapter 6, 04 October 2007.
- EM 1110-2-2610, Mechanical and Electrical Design for Lock and Dam Operating Equipment, 30 June 2013.
- UFC 1-200-01, DOD Building Code (General Building Requirements), Change 2, 01 November 2018.
- UFC 3-501-01, Electrical Engineering, October 6, 2015.
- UFC 3-520-01, Interior Electrical Systems, October 6, 2015.
- UFC 3-530-01, Interior and Exterior Lighting Systems and Controls, Change 3, 01 June 2016.

- UFC 3-540-01, Engine-Driven Generator Systems for Prime and Standby Power Applications,
- Change 1, 24 October 2017.
- UFC 3-575-01, Lightning and Static Electricity Protection Systems, July 1, 2012.
- UFC 3-580-01, Telecommunications Interior Infrastructure Planning and Design, Change 1, 01 June 2016.
- UFC 3-600-01 Fire Protection Engineering for Facilities, Change 2, 25 March 2018.
- UFC 4-021-02, Electronic Security Systems, 1 October 2013.
- UFC 4-023-10, Safe Havens, 1 June 2016.
- UFC 4-610-01, Administrative Facilities, Change 2, 21 May 2014.

7.2 References

There are numerous standards that will be referenced by the design specifications. Key organizations with standards referenced will include, but are not limited to, the following:

- ANSI, American National Standards Institute.
- ASME, American Society of Mechanical Engineers.
- ASTM, American Society for Testing and Materials.
- NEMA, National Electrical Manufacturer's Association.
- NETA, International Electrical Testing Association
- ICEA, Insulated Cable Engineers Association.
- IEEE, Institute of Electrical and Electronics Engineers.
- IES, Illuminating Engineering Society.
- ISA, International Society of Automation.
- ISO, International Organization for Standardization.
- TIA, Telecommunications Industry Association.
- UL, Underwriters Laboratories.

Key specific standards referenced will include, but not be limited to, the following:

- Code of Federal Regulations, Title 29-Labor, Chapter XVII, Occupational Safety and Health Administration (OSHA).
- NFPA 70E, Standard for Electrical Safety in the Workplace.

7.3 Computer Programs

Design of electrical and Instrumentation Systems will utilize the following programs:

- Microsoft Excel for load calculations, conduit fill calculations, and voltage drop calculations.
- Litepro for simple interior and exterior lighting calculations.

- AGI32 for complex interior and exterior lighting calculations and for roadway lighting calculations.
- ElumTools for Revit-based lighting calculations.
- Cummins PowerSuite for generator sizing calculations
- COMCheck for Energy Code compliance.
- AutoCAD for drawing development.
- Specs-In-Tact for development of specifications.

7.4 Design Criteria

7.4.1 Power Distribution

Feeders will be sized to limit voltage drop to a maximum of 2%. Branch circuits will be sized to limit voltage dip to a maximum of 3%. Total voltage drop from source to load will be limited to 5%.

Distribution equipment will be sized to allow for future load increases of 25%, minimum.

7.4.2 Back-up Power Systems

Generating equipment will be sized per the following:

- Max Step Voltage Dip: 20%
- Max Step Voltage Recovery Time: 3 seconds. Max Step Frequency Dip: 5%
- Max Step Frequency Recovery Time: 3 seconds. Peak Voltage Dip (Cyclic Loads): 15%
- Peak Frequency Dip (Cyclic Loads): 3%
- Steady State Operational Bandwidth (Voltage): +/- 0.5% Steady State Operational Bandwidth (Frequency): +/- 0.25%
- Min Connected Load: 30% of generator set rating.
- Max Connected Load: 80% of generator set rating.

7.4.3 Lighting

IES standard building reflectances of 80%/50%/20% (Ceiling/Wall/Floor) will be used for preliminary interior lighting calculations (conditioned spaces). Final calculations will utilize actual material and finish reflectances to the greatest extent possible.

Lighting calculations for mechanical and electrical spaces will utilize industrial reflectances.

Roadway lighting calculations will utilize IES-recommended design criteria for roadway reflectance based on concrete/asphalt construction.

Light Levels: Minimum average horizontal foot-candle light levels for interior spaces will be designed to meet IES recommended average levels. In mechanical and electrical spaces, levels will be designed to an average of 50 foot-candles average, measured 30-inches AFF.

Uniformity: Max-to-Min foot-candle levels within any single interior space will be limited to 4:1 to be considered "acceptable"; however, design will strive to limit uniformity to below 3:1.

Emergency Lighting: Per NFPA requirements, emergency lighting will be designed for a minimum of 1 foot-candle average and a max-to-min no greater than 40:1 for paths of egress. Per NFPA 110, design will include emergency lighting in Generator Rooms. As an additional measure of safety, we also intend to specify emergency lighting in mechanical and electrical spaces.

7.4.4 Grounding and Lightning Protection

Grounding electrode system will be site-wide and consist of multiple ground rods connected together with underground electrode conductors (ground loops). Ground loops will be specified around each building, pad-mounted transformers, generating equipment, and fuel tanks. All ground loops will be connected together.

Ground rods will be copper-bonded steel or stainless steel.

Separately derived systems will be grounded to the grounding electrode system in accordance with NEC requirements.

An equipment grounding conductor will be specified for each branch circuit and feeder. Where conductor sizes are increased to limit voltage drop or for other reasons, equipment grounding conductor sizes will be increased proportionally.

Lightning Protection Systems will tie into the site-wide grounding electrode system.

7.4.5 Gate Controls

Gate controls will be designed to limit single points of failure. Multiple control schemes (Local/Remote, PLC/Manual) will be implemented.

Backup power for PLC-based instrumentation and controls will be provided by a UPS capable of operating PLC-based equipment and instrumentation for a minimum of 4-hours.

7.4.6 Network Communication

Network equipment ports and media that connect to the utility or to other network equipment (network backbone) will be designed for Giga-bit speeds. Backbone media will be fiber, unless otherwise required for connection to the utility. Connections to user terminals and surveillance cameras will be designed for 100 Mega-bit speeds. Copper media will be used within buildings for connections to workstations; fiber media will be used for connections to exterior surveillance cameras.

Network equipment, including that associated with surveillance cameras, PLC Ethernet communications, and connection to the Metro Ethernet, will be powered by UPS equipment sized to keep the equipment operating for a minimum of 4-hours when neither utility nor standby generator power are available.

7.4.7 Security Systems

Access Control System door strikes for perimeter doors will be fail-secure, with door hardware configured to allow egress, but not entrance, upon loss of power. For interior, double-egress doors, a fail-safe strike or mag lock will be specified so that a loss of power will not prevent egress in either direction.

Backup DC power for the Access Control System will be provided by batteries sized to provide a minimum of 4-hours of backup power when neither utility nor standby generator power are available.

7.4.8 Fire Alarm Systems

Backup DC power will be provided by batteries sized to provide a minimum of 24-hours of backup power when neither utility nor standby generator power are available.

HYDROLOGIC AND HYRAULIC DESIGN REPORT

RIVER REINTRODUCTION INTO MAUREPAS SWAMP AND WEST SHORE LAKE PONTCHARTRAIN FLOOD RISK REDUCTION PROJECT PO-0029

Prepared for: CPRA

November 2020

Prepared by:

1555 Poydras St, Suite 1200 New Orleans, Louisiana 70112 T 1-504-586-8111 F 1-504-522-9554 AECOM Project 60632162

1	SECTION 1 - INTRODUCTION	1-1
1.1	Purpose	1-1
1.2	Proposed Design	
1.	2.1 Location and Watershed	1-2
2	SECTION 2 – EXISTING CONDITIONS HYDROLOGICAL ANALYSIS	2-4
2.1	Introduction	
2.2	Existing Conditions Drainage Areas	
2.3	Loss Method – SCS Curve Number	2-5
2.4	Transform Method – SCS Unit Hydrograph	2-6
2.5	Muskingum-Cunge Routing	
2.6	Rainfall Data	2-9
2.7	Design Storm Peak Flows	2-10
3	SECTION 3 – EXISTING CONDITIONS HYDRAULIC ANALYSIS	3-1
3.1	Methodology	
3.2	Geometry	
3.4	Flow Files	3-3
3.5	HEC-RAS Results	
4	SECTION 4 – PROPOSED CONDITIONS HYDROLOGICAL ANALYSIS	4-1
4.1	Introduction	4-1
4.2	Proposed Conditions Drainage Areas	
4.3	Loss Method – SCS Curve Number	
4.4	Transform Method – SCS Unit Hydrograph	
4.5	Muskingum-Cunge Routing	
4.6	Rainfall Data	
4.7	Design Storm Peak Flows	
5	SECTION 5 - PROPOSED CONDITIONS HYDRAULIC ANALYSIS	5-6
5.1	Methodology	5-6
5.2	Geometry	5-6
5.3	Flow Files	5-7
5.4	HEC-RAS Results	5-8
5.5	Scour Protection	5-11
6	SECTION 6 – ANALYSIS OF RESULTS	6-11
6.1	Results	6-11
6.2	Conclusion	6-12
6.3	35% Design Considerations	6-12
APP	ENDIX A: CURVE NUMBERS	1
APP	ENDIX B: TIMES OF CONCENTRATION AND LAG TIMES	1

APPENDIX C: MUSKINGUM-CUNGE ROUTING REACHES	2
APPENDIX D: MAUREPAS MS RIVER DIVERSION WATER SURFACE PROFILES	1
APPENDIX E: ADDITIONAL FIGURES	1
Table of Figures	
FIGURE 1-1: VICINITY MAP	1-43
FIGURE 1-2: WATERSHED MAP	1-4
FIGURE 2-1: EXISTING CONDITIONS HEC-HMS SCHEMATIC	2-9
FIGURE 2-2: SCS STORM TYPES MAP	2-10
FIGURE 3-1 EXISTING CONDITIONS HEC-RAS GEOMETRY	3-2
FIGURE 4-1: PROPOSED CONDITIONS HEC-HMS SCHEMATIC	4-3
FIGURE 5-1: PROPOSED DIVERSION AND DITCH ALIGNMENT	5-107
FIGURE 5-2: PROPOSED CONDITIONS HEC-RAS GEOMETRY	5-10
FIGURE 6-1: UNSTEADY COMPARISON OF PEAK WSE AT MARATHON DITCH CONFLUENCE WITH SWAMP	6-12
Table of Tables	
TABLE 2-1: TYPICAL CURVE NUMBERS FOR RURAL AREAS	2-5
TABLE 2-2: EXISTING CONDITIONS CURVE NUMBERS	2-6
TABLE 2-3 EXISTING CONDITIONS TIMES OF CONCENTRATION AND LAG TIMES	2-7
TABLE 2-4: HEC-HMS RAINFALL	2-10
TABLE 2-5: EXISTING CONDITIONS HEC-HMS PEAK FLOWS	2-11
TABLE 3-1: SUMMARY OF EXISTING CONDITIONS HEC-RAS RESULTS	3-3
TABLE 4-1: PROPOSED CONDITIONS CURVE NUMBERS	4-1
TABLE 4-2: PROPOSED CONDITIONS TIMES OF CONCENTRATION AND LAG TIMES	4-2
TABLE 4-4: EXISTING CONDITIONS VERSUS PROPOSED CONDITIONS PEAK RUNOFF COMPARISONS	4-4
TABLE 5-1: MAUREPAS\WSLP, EAST AND WEST DITCH GEOMETRY	5-6
TABLE 5-2: PROPOSED CROSSINGS	5-7
TABLE 5-3: PROPOSED CONDITIONS HEC-RAS RESULTS	5-8
TABLE 6-1: EXISTING CONDITIONS VERSUS PROPOSED CONDITIONS RESULTS COMPARISONS	6-11

LIMITATIONS AND DISCLAIMERS

Background information, design bases, and other data have been furnished to AECOM by third parties, which AECOM has used in preparing this Hydrologic and Hydraulic Design Report. AECOM has relied on this information as furnished and is neither responsible for nor has confirmed the accuracy of the information.

This report has been prepared based on certain key assumptions made by AECOM which substantially affect the conclusions and recommendations herein. These assumptions, although thought to be reasonable and appropriate, may not prove to be true in the future. The conclusions and recommendations of AECOM are conditioned upon these assumptions.

The scope of services performed during preparation of this document may not be appropriate to satisfy the needs of other users, and any use or re-use of this document or of the findings, conclusions, or recommendations presented herein is at the sole risk of said user.

EXECUTIVE SUMMARY RIVER REINTRODUCTION INTO MAUREPAS SWAMP AND WEST SHORE LAKE PONTCHARTRAIN FLOOD RISK REDUCTION PROJECT PO-0029 <u>BASIS OF DESIGN REPORT</u>

Introduction

This Hydrologic and Hydraulic Design Report has been prepared for the Coastal Protection and Restoration Agency (CPRA) and analyses contained in this document pertain to the construction of the *River Reintroduction Into Maurepas Swamp And West Shore Lake Pontchartrain Flood Risk Reduction Project Po-0029* in St. John the Baptist Parish, near Garyville, Louisiana.

Existing Site Drainage Characteristics

Most of the site drains into Angelina Canal and Bourgeois Canal, which flow northward into Hope Canal and ultimately the Maurepas Swamp. The Marathon property is self-contained for storm water with onsite retention ponds that flow under the railroad into Marathon Ditch (old Sugar Mill Ditch) and under Airline Highway into Hope Canal. There are also large offsite areas located on the west side of the Marathon property that are self-contained and flow across Airline Highway in independent channels. The existing area of focus is considered to extend from State Route 3213 to the west, State Route 54 to the east, the MS river levees to the south and Airline Highway to the north.

Proposed Conditions Analysis

With construction of the Maurepas River Diversion, the existing drainage patterns will be split into two areas - an east side and west side. Areas on the west side that currently flow into Angelina Canal will be carried under the railroad and into a new West Ditch along the eastern boundary of the Marathon property, under the KCS railroad, and under Airline Highway. The West Ditch will join with the Marathon Ditch downstream of Airline Highway and its flow will be dispersed into the Maurepas Swamp. The Marathon property will not be impacted and all internal drainage that currently flow into the Marathon Ditch will continue to do so under the proposed conditions. The areas that flow into Angelina Canal from the east side will be carried in a new East Ditch along the edge of the diversion right of way adjacent to the current Angeline Canal. This East Ditch will follow the path of the Maurepas Diversion\WSLP Project until Airline Highway where it will connect with the USACE's rerouted Hope Canal from which it will be dispersed into Maurepas Swamp.

Summary and Conclusion

All design storm peak water surface elevations and peak discharges will be at or below existing site conditions levels. From this analysis, it is concluded that the designed East and West Ditches will not cause adverse drainage or flooding effects to any surrounding properties or areas.

1 Section 1 - Introduction

1.1 Purpose

AECOM is submitting this Hydrologic and Hydraulic Design Report to the Coastal Protection and Restoration Authority (CPRA). This analysis is being submitted as part of the 15% Design process for the proposed "River Reintroduction into Maurepas Swamp and West Shore Lake Pontchartrain Flood Risk Reduction Project PO-0029" in St. John the Baptist Parish, near Garyville, Louisiana. The analyses and results presented in this report are intended as proof to CPRA, USACE and St. John the Baptist Parish, and Marathon Petroleum that the proposed diversion and flood protection features, with the herein proposed local drainage improvements, will not cause adverse drainage impacts to any surrounding properties or areas.

1.2 Proposed Design

The Maurepas Diversion is a proposed 2,000 cubic foot per second (cfs) freshwater diversion from the Mississippi River into the Maurepas Swamp. The intake to the diversion is located at approximately River Mile 144 and the inland features will be in St. John the Baptist Parish, Louisiana. The basic components are an intake channel in the batture; a gated structure in the Mississippi River levee; a sedimentation basin; a 5½ mile long open conveyance channel; crossings at the Canadian National (CN) and Kansas City Southern (KCS) railroads; crossings at River Road, Airline Highway, and Interstate 10; submerged weirs in Bayou Secret and Bourgeois Canal; embankment cuts in the existing ridge of an old cypress logging trail; and check valves on the northern side of culverts underneath I-10.

AECOM submitted the latest plans and specifications for the Maurepas Diversion to CPRA in September of 2013. Since that time, major changes to both the existing conditions as well as the overall Scope of Work have been made. The primary changes in conditions have been: 1) the development of the Marathon Petroleum Mt. Airy Terminal facilities on land adjacent to the proposed Maurepas Diversion alignment, and 2) the construction of a Marathon Petroleum marine docking facility upstream of the diversion intake. The permitting of a second marine dock facility, which will include a pipe-bridge across the intake, is currently in progress. The primary change to the Scope of Work is the addition of the design of those components of the USACE WSLP flood protection project that parallel the Maurepas Diversion project from the south side of River Road to the north side of Airline Highway, which includes levees, floodwalls, and gates.

The West Shore Lake Pontchartrain (WSLP) project will provide hurricane and storm-damage risk reduction in St. Charles and St. John the Baptist Parishes. The recommended plan includes the construction of a levee system around the communities of Montz, Laplace, Reserve, and Garyville. The system will consist of approximately 18 miles of earthen levees and floodwalls, 4 floodgates, a drainage canal running parallel to the levee, 2 drainage structures, and 4 pump stations along the

alignment. The flood protection features of the final three reaches of the WSLP project (WSLP-111, WSLP-112, and WSLP-113) are to be constructed parallel to and immediately adjacent to the Maurepas Diversion. The main design features of these reaches include an earthen tie-in to the Mississippi River levee, a gated crossing at River Road, a combination of levees and structural walls throughout the alignment, gated crossings at both the CN and KCS railroads, a raised crossing of Airline Highway, and a tie-in to the flood protection levee at Reach WSLP-110.

The purpose of this report is to document the viability of the construction features proposed to facilitate drainage in the area surrounding the Maurepas Diversion\WSLP Project. Construction of the project will require clearing and grading of the project area for both the diversion and flood protection features and the associated drainage infrastructure. The projects, once constructed, will enable water to be diverted from the Mississippi River into the Maurepas Swamp and provide flood protection to the majority of the developed areas of St. John the Baptist and St. Charles Parishes. In addition, the location of the various project elements minimizes impacts to potential jurisdictional wetlands, sensitive habitats, cultural resources, and populated areas to the extent practicable.

1.2.1 Location and Watershed

The proposed project is located near Garyville, Louisiana, in St. John the Baptist Parish. The overall site for this analysis is bounded by a point 2,500-ft beyond Airline Highway to the north, the Mississippi River to the south, LA-3213 to the west, and LA-54 to the east. Figure 1-1 shows a map of the project area.

Figure 1-1: Vicinity Map

The overall watershed map can be found on Figure 1 in Appendix E. The watershed area for the project site spans 1162 acres.

Figure 1-2: Watershed Map

2 Section 2 – Existing Conditions Hydrological Analysis

2.1 Introduction

The U.S. Army Corps of Engineer's Hydrologic Engineering Center – Hydrologic Modeling System (HEC-HMS) software version 4.6.1 was used to model the rainfall effects and hydrology of the project area and watershed. HEC-HMS models consist of three main components: a basin manager which includes the physical characteristics of the watershed; a meteorological model containing the rainfall data; and a control specification defining the computational simulation period and calculation interval for the desired simulation. Each of these is described in subsequent subsections.

2.2 Existing Conditions Drainage Areas

Using a combination of LiDAR data; USGS Quad Maps and Aerial Photography; National Hydrographic Dataset; and historical SWMM modeling, the project watershed was divided into subbasins. These subbasins comprise the entire project area, including all -areas beyond the

Project boundaries that drain to the project site. The subbasins are shown in Figure 1: Existing Conditions Drainage Area Map in Appendix E.

2.3 Loss Method – SCS Curve Number

During rainfall events, a portion of the rainwater seeps into the ground and does not contribute to runoff. To account for this in HEC-HMS, the loss function is used. There are several different methods of estimating the rainfall loss amount. In this analysis, the development of hydrologic characteristics was based on the SCS Curve Number Method (Natural Resources Conservation Service TR-55 methodology - Urban Hydrology for Small Watersheds, USDA, NRCS, Technical Release 55, June 1986) for drainage areas ranging from 200 to 2000 acres. This method is widely used to model rainfall runoff.

In the SCS curve number method, a curve number (CN) is assigned to each area based on that area's hydrologic soil group, land cover, and hydrologic condition. Table 2-1 shows typical CN values for a range of rural land uses.

For each subbasin, a weighted average CN was computed using a combination of aerial photography, site photos, and USGS maps. Each assigned CN represents a weighted CN for each subbasin based on land-use, land cover, and percent impervious area.

Cover description		Curve numbers for ———— hydrologic soil group ————			
Cover type	Hydrologic condition	A	В	C	D
Pasture, grassland, or range—continuous	Poor	68	79	86	89
forage for grazing.2	Fair Good	49 39	69 61	79 74	84 80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	-	30	58	71	78
Brush—brush-weed-grass mixture with brush	Poor	48	67	77	83
the major element. ⅔	Fair	35	56	70	77
	Good	30 ≇	48	65	73
Woods—grass combination (orchard	Poor	57	73	82	86
or tree farm).⊉	Fair	43	65	76	82
	Good	32	58	72	79
Woods. 5/	Poor	45	66	77	83
	Fair	36	60	73	79
	Good	30 ⊈⁄	55	70	77
Farmsteads—buildings, lanes, driveways, and surrounding lots.	-	59	74	82	86

Table 2-1: Typical Curve Numbers for Rural Areas

Source: NRCS TR-55: Urban Hydrology for Small Watersheds

Table 2-2 shows the weighted CNs that were assigned to each subbasin in this analysis.

Subbasin	CN
1	85.84
2	80.0
3a	91.81
3b	79.56
4	79
5	78.94
6	80
7	83.94
8	76.74
9	81.58
10	82.86

Table 2-2: Existing Conditions Curve Numbers

A detailed breakdown of the CNs can be found in Appendix A: Curve Numbers Analysis.

2.4 Transform Method – SCS Unit Hydrograph

In HEC-HMS, each subbasin element represents a combination of infiltration, surface runoff, and subsurface processes interacting together; however, the actual runoff calculations are performed by what is called a transform method within each subbasin. There are several transform methods in HEC-HMS. For this study, the SCS Unit Hydrograph Method was used. In the SCS Method, the time of concentration (Tc) is used to define the shape of the hydrograph. It is defined as the travel time for a flow path in a subbasin from the most hydraulically remote point within the subbasin. The SCS unit hydrograph method is based on lag time, which is the travel time from the centroid of precipitation mass to the peak flow of the resulting hydrograph. Lag time is roughly equivalent to 60 percent of the Tc. This relationship was used to calculate a lag time for each subbasin in this analysis.

Tc is calculated as the summation of travel times within a basin. Travel reaches were selected where there are significant changes in either slope or flow. Flow paths in predominantly undeveloped subbasins will typically include the following components:

- overland flow fields, maximum 300 feet
- small gullies
- channels

There can be more than one small gully reach and more than one channel reach if there are significant changes in either slope or flow. Flow paths in developed areas will typically include the following components:

- overland flow lawns (backyard to front curb or ditch) or parking lots (actual distance of parking lot swale)
- gutters (distance to nearest inlet or ditch) or roadside ditches
- storm drains
- channels

Table 2-3 shows a summary of the times of concentration and lag times calculated for each subbasin. Detailed calculations can be found in Appendix B: Times of Concentration and Lag Times.

Subbasin	Time of Concentration (hours)	Lag Time (minutes)
1	4.208	151.502
2	4.412	158.827
3a	10.371	373.37
3b	1.338	48.16
4	2.192	78.914
5	4.218	151.855
6	1.411	50.809
7	1.525	54.894
8	0.58	20.898
9	2.209	79.537
10	12.616	454.172
10	12.010	434.172

Table 2-3 Existing Conditions Times of Concentration and Lag Times

Once these parameters had been determined and calculated, the subbasin model schematics were put together. The subbasin network was laid out in a fashion representative of real-world flow conditions.

2.5 Muskingum-Cunge Routing

Routing reaches are used to move subbasin runoff hydrographs downstream. Upstream subbasins typically discharge into a drainage ditch or bayou at the upper end of the next downstream subbasin. The flow then combines with the flow from this downstream subbasin at its discharge location at the lower end. It takes time for the upstream hydrograph to move through the downstream subbasin. In addition, there will be some attenuation (flattening out of the hydrograph) as it moves downstream. This is all accomplished by an element in HEC-HMS known as the routing reach. There are several methods for flow routing available in HMS. The selected routing method for this analysis is Muskingum-Cunge flow routing. This method is a widely accepted physically-based method that uses an approximation of channel characteristics and dimensions to provide an efficient approach to flow routing.

HEC-HMS input parameters for the Muskingum-Cunge routing method include the following:

- Cross sectional shape One of five different options must be selected to describe the cross sectional shape of the reach. These include circle, eight point, rectangle, trapezoid and triangle. For our analysis, an eight point cross section was measured for each reach. Each eight-point cross section measured represents an average cross section for the reach, which includes the main channel and the overbank areas on both sides.
- Reach Length, represents the total length of the reach.
- Slope, represents the average slope for the entire reach. Slope values were measured from LiDAR data.
- Manning's n roughness coefficient a value that represents an average for the entire reach was used.
- Invert invert elevation of the channel. This value is used to compute the water stages. This value was derived from topographic survey data or proposed elevations.

Figure 2-1 shows the schematic of the existing conditions watershed area from HEC-HMS. This schematic shows the network of subbasins and routing reaches as it is shown in the model. More information on parameters used in each routing reach can be found in Appendix C: Muskingum-Cunge Routing Parameters.

Figure 2-1: Existing Conditions HEC-HMS Schematic

2.6 Rainfall Data

The next step in creating a HEC-HMS model is defining the rainfall data, which is known in HEC-HMS as the meteorological model. There are several methods for defining rainfall, but for this analysis, the SCS storm was used. The SCS storm was developed by the Soil Conservation Service, which is currently known as the Natural Resources Conservation Service. This method used the same data for all subbasins in the model. Each storm has a single distribution type, depending on its location: Type 1, Type 1A, Type 2 or Type 3. Figure 2-2 shows a map of the different types throughout the United States.

Figure 2-2: SCS Storm Types Map

Source: Hydraulics and Hydrology for Stormwater Management: Gribbin, John R. 1996

As shown, all of Louisiana has a Type III rainfall distribution. Each storm in the SCS storm method has a duration of 24 hours. The following table shows the data input into the HEC-HMS model of the project area for the 10-year and100-year rainfall events.

Rainfall Event	Rainfall Depth (inches)	
10-year	7.68	
100-year	12.60	

Note: Rainfall depth comes from the NOAA Atlas 14 Volume 9 Version 2PDS Estimates for Garyville LA, Table 3.4-2 Louisiana Rainfall Depths (inches for 100 Year Return Period Duration (Hour) 24.

2.7 Design Storm Peak Flows

Table 2-5 shows a summary of the 10-year and 100-year results of the HEC-HMS output for each element in the model. These values represent the peak flows used in the hydraulic model of Maurepas Swamp to analyze the 10-year and 100-year peak water surface elevations, as described in Section 3 of this report.

Floment	10-year Peak Runoff	100-year Peak Runoff
Element	(cfs)	(cfs)
Subbasin-10	252.6	475.5
Subbasin-2	6.6	12.7
Subbasin-1	166.9	303.2
West Junction-1	166.9	303.2
West Junction-2	6.6	12.7
Subbasin-7	138.9	254
Subbasin-8	76.6	148.9
Subbasin-6	5.5	10.5
East Junction-1	5.5	10.5
East Junction-2	251.6	469.5
Subbasin-5	78.7	152.4
East Junction-3	372	706.3
Subbasin-4	68.2	131
Subbasin-9	39.5	74.1
East Junction-4	441.7	844.4
Subbasin-3	153.4	272.5
Subbasin-3a	109	190.8
Pond1	108.7	190.4
Pond2	108.7	190.4
Reach Marathon-Airline	108.6	190.3
Subbasin-3b	83.1	158.4
Junction-Airline HWY	113.5	199.1

Table 2-5: Existing Conditions HEC-HMS Peak Flows

3 Section **3** – Existing Conditions Hydraulic Analysis

3.1 Methodology

To ensure that the proposed development will not cause any increase in water surface elevations to the local drainage network, a hydraulic model of Maurepas Swamp was created using the U.S. Army Corps of Engineer's River Analysis System (HEC-RAS) version 5.0.7. HEC-RAS is a widely accepted modeling software designed to perform hydraulic modeling of open channels under a variety of conditions.

The following subsections further describe the components and steps included in this analysis.

3.2 Geometry

The geometry file is where the channel system being modeled is described to the software. It contains the physical characteristics of the channel system, including its streamlines, cross sections, roughness coefficients, bridges, culverts, blocked obstructions, and ineffective flow areas.

Using a combination of LiDAR data and aerial photography, the local drainage for the existing conditions into Hope Canal was established and imported into the HEC-RAS model. Survey collected by C. H. Fenstermaker, LLC was used to update the geometry to obtain inverts and channel profiles where the LiDAR could not penetrate the standing water. It was also used to capture those areas that have newer construction development than the published data.

The USACE model was provided for the WSLP Interior Drainage Hydraulic Design Analysis. The model included separate 2D meshes for the polder interior and exterior, developed using HEC-RAS 5.0.6. The exterior portion of the mesh includes all of Lake Maurepas, Pass Manchac and the western end of Lake Pontchartrain. The interior portion is bounded by the Mississippi River levees to the south and the WSLP project alignment to the north. The interior and exterior are separate 2D areas connected with a storage area connection. The weir profile of the storage area connection for existing conditions is set to the existing terrain. In RAS2D, "terrain" includes the topography and bathymetry. For the with-project conditions, the weir profile elevations of the storage area connection were set to non-overtopping conditions. This ensured that the mesh was exactly the same for both the with and with-out project conditions (aside from elevations of the storage area connection weir profile). This set-up allowed a better comparison between the with and without-project conditions.

Breaklines were drawn along all raised features in the model domain. The breaklines ensured that the raised features such as roadways were captured in the hydraulic calculations.

The 2011 National Land Cover Database was used for the USACE modeling effort. More information on this dataset is provided at http://www.mrlc.gov/. Manning's n values were assigned to the various land coverage types in a manner consistent with other MVN H&H analyses.

The USACE model was opened and confirmed to have referenced geometry and flow files. The model from the pre-project conditions was appropriated and truncated to the subject project area. The terrain was updated with additional breaklines and features to reflect any changes since the USACE model was developed, including the work done on the Marathon property.

Figure 3-1 shows a map of the mesh, existing culverts, and boundary lines used in HEC-RAS. Additional detail can be found in the work maps for this project in Appendix E.

Figure 3-1 Existing Conditions HEC-RAS Geometry

3.4 Flow Files

The final element of the HEC-RAS models is the flow files. With unsteady state 2D models, flows are entered into their applicable boundary condition locations. The flow values used were generated from the HEC-HMS models and the original USACE modeling provided. They were entered at locations throughout the study reach of Maurepas Swamp to accurately simulate real-world design storm conditions along the reach. The USACE provided a tailwater of elevation 1.5-ft NAVD88 and the normal depth, which were used as the downstream boundary conditions in the flow files.

3.5 HEC-RAS Results

Figure 3-1 shows a map of the cross-section and 2D feature locations within the HEC-RAS model. Table 3-1 shows the 10-year peak water surface elevations at the outfall of the Marathon Ditch into the Swamp downstream of Airline Highway.

	10-year Peak
Time Step at Cross	Water
Section	Surface
	Elevation
01Sep2008 0000	1.5000
01Sep2008 0020	1.1093
01Sep2008 0040	1.1060
01Sep2008 0100	1.1040
01Sep2008 0120	1.1028
01Sep2008 0140	1.1029
01Sep2008 0200	1.1045
01Sep2008 0220	1.1102
01Sep2008 0240	1.1233
01Sep2008 0300	1.1910
01Sep2008 0320	1.2378
01Sep2008 0340	1.2843
01Sep2008 0400	1.3104
01Sep2008 0420	1.3294
01Sep2008 0440	1.3468
01Sep2008 0500	1.3574
01Sep2008 0520	1.3679
01Sep2008 0540	1.3782
01Sep2008 0600	1.3880
01Sep2008 0620	1.3954

Table 3-1: Summary of Existing Conditions HEC-RAS Results

	10-year Peak
Time Step at Cross	Water
Section	Surface
	Elevation
01Sep2008 0640	1.4031
01Sep2008 0700	1.4110
01Sep2008 0720	1.4188
01Sep2008 0740	1.4264
01Sep2008 0800	1.4342
01Sep2008 0820	1.4475
01Sep2008 0840	1.4600
01Sep2008 0900	1.4704
01Sep2008 0920	1.4790
01Sep2008 0940	1.4871
01Sep2008 1000	1.4946
01Sep2008 1020	1.5016
01Sep2008 1040	1.5081
01Sep2008 1100	1.5142
01Sep2008 1120	1.5198
01Sep2008 1140	1.5249
01Sep2008 1200	1.5295
01Sep2008 1220	1.5322
01Sep2008 1240	1.5341
01Sep2008 1300	1.5357
01Sep2008 1320	1.5371
01Sep2008 1340	1.5382
01Sep2008 1400	1.5392
01Sep2008 1420	1.5399
01Sep2008 1440	1.5404
01Sep2008 1500	1.5408
01Sep2008 1520	1.5409
01Sep2008 1540	1.5408
01Sep2008 1600	1.5406
01Sep2008 1620	1.5402
01Sep2008 1640	1.5396
01Sep2008 1700	1.5389
01Sep2008 1720	1.5381
01Sep2008 1740	1.5372
01Sep2008 1800	1.5361
01Sep2008 1820	1.5349
01Sep2008 1840	1.5336

	10-year Peak
Time Step at Cross	Water
Section	Surface
	Elevation
01Sep2008 1900	1.5322
01Sep2008 1920	1.5307
01Sep2008 1940	1.5291
01Sep2008 2000	1.5274
01Sep2008 2020	1.5256
01Sep2008 2040	1.5238
01Sep2008 2100	1.5218
01Sep2008 2120	1.5198
01Sep2008 2140	1.5177
01Sep2008 2200	1.5155
01Sep2008 2220	1.5132
01Sep2008 2240	1.5109
01Sep2008 2300	1.5084
01Sep2008 2320	1.5059
01Sep2008 2340	1.5034
02Sep2008 0000	1.5008

Notes:

1. Locations refer to stationing shown on Figure 3-1: Existing Conditions HEC-RAS Locations Map

2. Water Surface Elevations are referenced to the North American Datum of 1983 (NAD 83), Louisiana South Zone (1702), US Survey Feet; and The North American Vertical Datum of 1988 (NAVD 88), Epoch 2012.0293, Feet, as per O.P.U.S. solution at the MSI Network Base Station.

4 Section 4 – Proposed Conditions Hydrologic Analysis

4.1 Introduction

Hydrologic and hydraulic analyses were performed to ensure that the Proposed Conditions would not cause adverse drainage impacts to surrounding properties or areas.

For the subject site the Proposed Conditions include the completed Maurepas Diversion, the finished construction of the WSLP flood protection features, along with new drainage ditches along either side to convey local flow.

4.2 Proposed Conditions Drainage Areas

The existing conditions drainage areas were modified based on the Proposed site plan. The Proposed Conditions Drainage Area Map can be found in Figure 2 in Appendix E. These drainage areas were established with special care exercised to keep all existing flow patterns as consistent as possible. East and West Ditches were added on either side of the diversion to allow for local drainage to continue to the north where impacted by the Project features.

4.3 Loss Method – SCS Curve Number

Analogous to the existing conditions analysis, a weighted SCS CN was assigned to each subbasin based on the area's hydrologic soil group, land cover, and land use type.

Subbasin	CN
1	85.8
2	80.0
3a	91.8
3b	79.5
4	79.0
5	78.9
6	80.0
7	83.9
8	76.7
9	81.5
10	82.8

4.4 Transform Method – SCS Unit Hydrograph

Table 4-2 shows a summary of the times of concentration and lag times calculated for each subbasin. These values were calculated based on the methodology described in Section 2. Detailed calculations can be found in Appendix B: Times of Concentration and Lag Times.

Subbasin	Time of Concentration (hours)	Lag Time (minutes)
1	4.2	152
2	4.4	159
3a	10.4	373
3b	1.3	48
4	2.2	79
5	4.2	152
6	1.4	51
7	1.5	55
8	0.60	21
9	2.2	80
10	12.6	454.

Table 4-2: Proposed Conditions Times of Concentration and Lag Times

4.5 Muskingum-Cunge Routing

Muskingum-Cunge Routing was also used in the Proposed conditions HEC-HMS model. Detailed information on the physical characteristics from which this method is based can be found in Section 2.5.

Figure 4-1 shows the schematic of the Proposed Conditions watershed area from HEC-HMS. This schematic shows the network of subbasins and routing reaches as it is shown in the model.

Figure 4-1: Proposed Conditions HEC-HMS Schematic

4.6 Rainfall Data

The rainfall data used in the developed conditions HEC-HMS model is consistent with the values used and described in Section 2.6.

Based on the hydrologic analysis of the Proposed Conditions, it can be concluded that the Proposed Conditions will not cause an increase to the 10-year or 100-year peak runoff. Table 4-4 shows a comparison of these values to the existing 10-year and 100-year peak runoff values at the pertinent locations.

Location	Existing Conditions 10-year Peak Runoff (cfs)	Existing Conditions 100-year Peak Runoff (cfs)	Proposed Conditions 10-year Peak Runoff (cfs)	Proposed Conditions 100-year Peak Runoff (cfs)
West Junction 1	166.9	303.2	166.9	303.2
West Junction 2	6.6	12.7	173.4 This is an increase	315.9 This is an increase
East Junction 1	5.5	10.5	5.5	10.5
East Junction 2	251.6	469.5	177.4	331.1
East Junction 3	372	706.3	263.5	494.7
East Junction 4	441.7	844.4	266.4	499.8

Table 4-3: Existing Conditions versus Proposed Conditions Peak Runoff Comparisons

4.7 Design Storm Peak Flows

Table 4-5 shows a summary of the 10-year and 100-year results of the HEC-HMS model. These values represent the peak flows that were used in the hydraulic model of the local drainage ditches to analyze the 10-year and 100-year peak water surface elevations, as described in Section 3 of this report.

Element	10-year Peak Runoff	100-year Peak Runoff
Subbasin-10	252.6	4/5.5
Subbasin-6	5.5	10.5
East Junction-1	5.5	10.5
Subbasin-7	138.9	254
Subbasin-8	76.6	148.9
East Junction-2	177.4	331.1
East Junction-3	263.5	494.7
Subbasin-9	39.5	74.1
East Junction-4	266.4	499.8
Subbasin-1	166.9	303.2

Table 4-4: Proposed Conditions HEC-HMS Peak Flows

Element	10-year Peak Runoff (cfs)	100-year Peak Runoff (cfs)
West Junction-1	166.9	303.2
Subbasin-2	6.6	12.7
West Junction-2	173.4	315.9
Subbasin-5	78.7	152.4
West Junction-3	246	458.4
Subbasin-4	68.2	131
West Junction-4	274.8	515.6
Subbasin-3	153.4	272.5
Subbasin-3a	109	190.8
Reach Marathon-Airline	42.5	190.7
Subbasin-3b	83.1	158.4
Junction-Airline HWY	123.5	199.9

5 Section 5 – Proposed Conditions Hydraulic Analysis

5.1 Methodology

The hydraulic analysis of the Proposed conditions was performed using HEC-RAS 5.0.7 to model the Maurepas Diversion\WSLP Project and the proposed local drainage ditches. The following subsections further describe the components and steps included in this analysis.

5.2 Geometry

The geometry of the existing Project Site was modified to account for the proposed geometry of the Maurepas Diversion\WSLP Project and the proposed local drainage ditches. The cross sections of the proposed diversion were taken from the original drainage study and updated per the current 15% design drawings. The diversion consists of a combination of earthen channel and sized so that the 10-year design storm will be contained within its banks.

Table 5-1 shows a breakdown of the channel geometry for the entire Project reach.

Location	Top Width (ft)	Bottom Width (ft)	Side Slopes	Average Depth (ft)
West Ditch 1	29	5	3	4
West Ditch 2	29	5	3	4
West Ditch 3	34	10	3	4
West Ditch 4	37	10	3	4.5
East Ditch 1	14	5	3	1.5
East Ditch 2	29	5	3	4
East Ditch 3	37	10	3	4.5
East Ditch 4	37	10	3	4.5

 Table 5-1: Maurepas Diversion, East and West Ditch Geometry

The existing condition was updated with the 15% Proposed Maurepas Diversion\WSLP Project and the new local drainage ditches. The ditches are designed to move the flow that currently flows eastward in the ditches along the CN RR, which would be blocked by the floodwall of the WSLP Project, northward for ultimate discharge into the swamp.

See Figure 5-1 for the centerline of the Maurepas Diversion. East and West Ditches, this figure can also be found in Appendix E.

Figure 5-1: Proposed Diversion and Ditch Alignment

The HEC-RAS model of the Maurepas Diversion and local Ditches also includes the proposed roadway, railroad, and bridge crossings (including culverts underneath the features, as applicable) (as shown in Figure 5-1). See Table 5-2 for a summary of the crossings.

	0
Crossing ID	Crossing Type
West Ditch 1 at Railroad	5x5 Concrete Box
West Ditch 3 at Railroad	10x5 Concrete Box
West Ditch 4 at Airline	10x5 Concrete Box
East Ditch 1 at Railroad	5x5 Concrete Box
East Ditch 3 at Railroad	10x5 Concrete Box
East Ditch 4 at Airline	10x5 Concrete Box
Note:	

5.3 Flow Files

New flow files were created using the results of the proposed conditions HEC-HMS model. These flow values account for the proposed site plan and the flow paths of the proposed site.

5.4 HEC-RAS Results

Figure 5-2 shows a map of the HEC-RAS 2d locations. Table 5-3 shows the 10-year peak water surface elevations at the outfall of the Marathon Ditch into the Swamp downstream of Airline Road.

Time Ston	10-year Peak			
Time Step	Water			
	Surface			
Cross Section	Elevation			
01Sep2008 0000	1.5000			
01Sep2008 0020	1.1285			
01Sep2008 0040	1.1289			
01Sep2008 0100	1.1290			
01Sep2008 0120	1.1295			
01Sep2008 0140	1.1315			
01Sep2008 0200	1.1356			
01Sep2008 0220	1.1444			
01Sep2008 0240	1.1610			
01Sep2008 0300	1.2299			
01Sep2008 0320	1.3151			
01Sep2008 0340	1.3924			
01Sep2008 0400	1.4355			
01Sep2008 0420	1.4685			
01Sep2008 0440	1.4954			
01Sep2008 0500	1.5175			
01Sep2008 0520	1.5375			
01Sep2008 0540	1.5742			
01Sep2008 0600	1.6099			
01Sep2008 0620	1.6400			
01Sep2008 0640	1.6680			
01Sep2008 0700	1.6938			
01Sep2008 0720	1.7173			
01Sep2008 0740	1.7381			
01Sep2008 0800	1.7566			
01Sep2008 0820	1.7725			
01Sep2008 0840	1.7858			
01Sep2008 0900	1.7967			
01Sep2008 0920	1.8047			
01Sep2008 0940	1.8104			

Table 5-3: Proposed Conditions HEC-RAS Results

	10-vear Peak
Time Step	Water
at	Surface
Cross Section	Elevation
01Sep2008_1000	1 8143
01Sep2008 1020	1.8166
01Sep2008 1020	1.8176
01Sep2008 1100	1 8174
01Sep2008 1120	1 8161
01Sep2008 1140	1.8140
01Sep2008 1200	1.8111
01Sep2008 1220	1.8061
01Sep2008 1240	1,7998
01Sep2008 1300	1,7931
01Sep2008 1320	1,7859
01Sep2008 1340	1 7780
01Sep2008 1400	1.7694
01Sep2008 1420	1.7604
01Sep2008 1440	1.7510
01Sep2008 1500	1.7415
01Sep2008 1520	1.7320
01Sep2008 1540	1.7227
01Sep2008 1600	1.7134
01Sep2008 1620	1.7042
01Sep2008 1640	1.6951
01Sep2008 1700	1.6864
01Sep2008 1720	1.6777
01Sep2008 1740	1.6693
01Sep2008 1800	1.6612
01Sep2008 1820	1.6532
01Sep2008 1840	1.6453
01Sep2008 1900	1.6379
01Sep2008 1920	1.6307
01Sep2008 1940	1.6237
01Sep2008 2000	1.6168
01Sep2008 2020	1.6103
01Sep2008 2040	1.6039
01Sep2008 2100	1.5978
01Sep2008 2120	1.5915
01Sep2008 2140	1.5853
01Sep2008 2200	1.5798

Time Step at Cross Section	10-year Peak Water Surface Elevation
01Sep2008 2220	1.5738
01Sep2008 2240	1.5686
01Sep2008 2300	1.5636
01Sep2008 2320	1.5585
01Sep2008 2340	1.5531
02Sep2008 0000	1.5482

Note: Water Surface Elevations are referenced to the North American Datum of 1983 (NAD 83), Louisiana South Zone (1702), US Survey Feet; and The North American Vertical Datum of 1988 (NAVD 88), Epoch 2012.0293, Feet, as per O.P.U.S. solution at the MSI Network Base Station.

Figure 5-2: Proposed Conditions HEC-RAS Geometry

5.5 Scour Protection

Significant bends in channels can produce large amounts of scour and erosion. To eliminate this potential, the Maurepas Diversion was riprap lined upstream and downstream of each crossing. An analysis was performed on the diversion channel geometry to determine these extents. This analysis was based on peak velocities through the channel.

6 Section 6 – Analysis of Results

6.1 Results

The following tables show a summary of the 10-year and 100-year peak runoff values and peak water surface elevations at pertinent locations entering and leaving the project site.

Location	Existing	Proposed	Difference in	
	Conditions	Conditions	Proposed and	
	10-year	10-year	Existing	
Peak Water Surface Elevation Leaving Project at Maurepas Swamp at 9:00 Time Step (ft)	1.47	1.80	0.33	

Table 6-1: Existing Conditions versus Proposed Conditions Results Comparisons

Notes: 1. Water Surface Elevations are referenced to the North American Datum of 1983 (NAD 83), Louisiana South Zone (1702), US Survey Feet; and The North American Vertical Datum of 1988 (NAVD 88), Epoch 2012.0293, Feet, as per O.P.U.S. solution at the MSI Network Base Station.

Figure 3:Unsteady Comparison of Peak Water Surface Elevation at Marathon Ditch confluence with Swamp

6.2 Conclusion

Based on the analysis contained within this report, the proposed development of the Maurepas Diversion\WSLP Project, including the proposed additional local drainage through the East and West Ditches, will not cause any adverse drainage impacts to surrounding properties or areas. All design storm peak water surface elevations and peak discharges will be at minimally impact the existing conditions analysis. Further refinement of the model with additional survey, breaklines, and design components will be completed as the project progresses.

6.3 35% Design Considerations

As part of the 35% Design, the 2D modeling for the Maurepas Diversion would be updated to include the latest available survey data, optimize proposed culverts, and optimize the dispersion feature. In addition, the need to model existing culverts as silted would be considered, and any recommendations for maintenance to improve local drainage made in the report.

The historical 1D model of the diversion would be updated. The current version of the model would be opened and run in the original HEC-RAS version from 2007, HEC-RAS 3.1.1. This would ensure that it opens and to locate the latest version of all files, fix any errors or issues. The modeling would be saved as and run in latest HEC-RAS 5.0.7. The runs would be compared to see if any adjustments are needed to ensure the assumptions from 2007 are applied as intended in 5.0.7. Then boundary conditions reviewed and ensured steady state and still applicable. Cross sections would be reviewed and updates with any changes per the 35% design. Any structures like culverts would be updated and optimized in the model as needed and applicable.

The modeling would then be rerun with updates and compared to 3.1.1 version and corrected proposed 5.0.7, to see what changes have been made and impacts. It would be verified that the flow, plan, and geometry are reviewed and are in alignment with 35% plans. A sensitivity analysis done with respect to manning's values would be completed since calibration is not an option. Manning's currently used would be adjusted to a 0.05 higher and 0.05 lower and the associated WSEL reviewed to determine the model's sensitivity to the change in manning's. In addition, a normal depth boundary condition run to determine the sensitivity and further document the boundary condition of known WSEL being appropriate. Throughout the modeling the methodology would be compared the USACE report as necessary. All updated then documented in the report.

Appendix A: Curve Numbers

CPRA Maurepas

**CN values were estimated using a combination of existing conditions calcs. and land use drawging provided by Marathon.

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
1	Industrial	Rail Yard/Industrial	D	93	0.063961	5.95
	Open	Open Space	D	80	0.016268	1.30
	Open	Open Space	D	80	0.043874	3.51
	Open	Open Space	D	80	0.022904	1.83
	Woods	Wooded	D	79	0.016885	1.33
	Woods-Grass	Woods and Grass	D	82	0.034281	2.81
	Industrial	Rail Yard/Industrial	D	93	0.038213	3.55
otals					0.236386	20.29

Т

Composite CN Impervious area not included in CN 85.84

0

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
	2 Open	Open Space	D	80	0.005614	0.45
	Open	Open Space	D	80	0.005254	0.42
Totals			-		0.010868	0.87
Composite CN						80.00
Impervious area not included in CN				0		

Ir **Includes Off3 and Of4

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
3	Woods Grass	Wooded with Grass	D	82	0.011293	0.93
	Woods	Woods	D	79	0.050094	3.96
	Industrial	Industrial	D	93	0.246031	22.88
	Open	Open Space	С	79	0.004774	0.38
	Open	Open Space	D	80	0.020218	1.62
Totals					0.33241	29.76
Composite CN						89.52
Impervious area n	not included in CN				0	

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
4	Woods	Woods	D	79	0.054148	4.28
	Woods	Woods	D	79	0.016137	1.27
Totals					0.070285	5.55
Composite CN						79.00
Impervious area not included in CN					0	

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
5	Woods	Woods	D	79	0.00047	0.04
	Woods	Woods	D	79	0.071904	5.68
	Open	Open Pasture	С	74	0.006209	0.46
	Woods	Woods	С	73	0.000439	0.03
	Open	Open Pasture	D	80	0.006502	0.52
	Open	Open Pasture	D	80	0.018952	1.52
	Woods	Woods	D	79	0.022938	1.81
Totals					0.127414	10.06
Composite CN						78.94

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.	
6	Open	Open Sace	D	80	0.003219	0.26	
	Open	Open Sace	D	80	0.000945	0.08	
						0.00	
						0.00	
Totals					0.004164	0.33	
Composite CN						80.00	
Impervious area no	t included in CN				0		

Impervious area not included in CN

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
7	Residential	Residential 1/4 acre	D	87	0.066701	5.80
	Woods	Woods	С	73	0.004024	0.29
	Woods	Woods	D	79	0.022491	1.78
	Woods	Woods	D	79	0.009058	0.72
	Woods	Woods	D	79	0.000782	0.06
Totals					0.103056	8.65
Composite CN						83.94
Impervious area not included in CN				0		

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
8	Woods	Woods	D	79	0.015357	1.21
	Woods	Woods	D	79	0.00889	0.70
	Woods	Woods	D	79	0.000339	0.03
	Woods	Woods	С	73	0.01486	1.08
Totals			-		0.039446	3.03
Composite CN						76.74
Impervious area not included in CN				0		

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
9	Open	Open Space	D	80	0.012588	1.01
	Open	Open Space	D	80	0.000372	0.03
	Woods	Woods	D	79	0.017945	1.42
	Woods	Woods	D	79	0.001706	0.13
	Industrial	Impervious Industrial	D	93	0.006239	0.58
Totals					0.03885	3.17
Composite CN						81.58
Impervious area not included in CN					0	

Subbasin	Cover Type	Cover Description	HSG	CN	Area	Prod.
10	Woods	Woods	D	79	0.104402	8.25
	Woods	Woods	С	73	0.000356	0.03
	Woods	Woods	С	73	0.027347	2.00
	Open	Open Space	С	74	0.02038	1.51
	Residential	Residential 1/4 acre	С	83	0.021938	1.82
	Woods	Woods and Grass	D	82	0.070476	5.78
	Industrial	Impervious Industrial	D	93	0.157175	14.62
	Woods	Woods and Grass	D	82	0.112814	9.25
	Woods	Woods	D	79	0.126724	10.01
	Residential	Residential 1/4 acre	D	87	0.081419	7.08
	Open	Open Space	С	74	0.023327	1.73
	Industrial	Impervious Industrial	С	91	0.006696	0.61
	Woods	Woods and Grass	С	76	0.003458	0.26
	Woods	Woods and Grass	С	76	0.027987	2.13
	Woods	Woods	С	73	0.007368	0.54
	Woods	Woods	С	73	0.017232	1.26
	Residential	Residential 1/4 acre	D	87	0.04402	3.83
otals					0.853119	70.69

Totals

Composite CN

Impervious area not included in CN

0

82.86

Appendix B: Times of Concentration and Lag Times

	Maurepas														
				Develo	ped Tin	ne of C	oncentr	ation	- Septer	mber 20	20				
		Lo	L	u/s Elev	d/s Elev	S	n	n	Paved	V (fps)	depth/dia	w	SS	v	Tt
Subbasin	Element	(max 300 ft)	(ft)	(ft)	(ft)	(ft/ft)	Tbl 3.1		(Y or N)	Fig 3.1	(ft)	(ft)	(hor/vir)	(fps)	(hr)
1	Overland flow	300	5040	-	-	0.0125	0.400		NI	0.54			+ +		0.793
	Gully		5819	-	-	0.0010		0.012	N	0.51				2.00	3.168
	Channel		1127	-	-	0.0030		0.012						3.00	0.143
	Totals		8786			0.0030								5.00	4 208
Tc(hr) =	4.208		0100			Area	0.23639								4.200
$T_{log}(hr) =$	2.525	151.502119					0.20000								
• Lag (••• /		1011002110													
		Lo	L	u/s Elev	d/s Elev	S	n	n	Paved	V (fps)	depth/dia	W	SS	V	Tt
Subbasin	Element	(max 300 ft)	(ft)	(ft)	(ft)	(ft/ft)	Tbl 3.1		(Y or N)	Fig 3.1	(ft)	(ft)	(hor/vir)	(fps)	(hr)
2	Overland flow	300		-	-	0.0125	0.400								0.793
	Gully		/5/8	-	-	0.0013		0.010	N	0.58				0.00	3.618
	Pipe		0	-	-	0.0000		0.012						3.00	0.000
To (br) -	100015		1818			Aroo	0.01007								4.412
$TC(\Pi r) =$	4.412	150 007660				Area	0.01067								
$I_{Lag}(\Pi) =$	2.047	100.027002													
**Includes C	off3 and Of4														
					d/c Elov	e	n	n	Davad	\/ (fpc)	donth/dia	\A/		v	т.
Subbasin	Elomont	LU (max 300 ft)	L (ft)	U/S EIEV (f+)	U/S EIEV (f+)	3 /f+/f+\	11 Thi 2 1	п	(V or N)	V (105) Fig 2.1	(f+)	VV (f+)	55 (bor/vir)	v (fnc)	(br)
Subbasili	Liement	(1112X 300 11)	(11)	(11)	(14)	(iuit)	1013.1		(1011)	Fig 5.1	(11)	(11)	(101/411)	(ips)	(111)
3	Overland flow	300		-	-	0.0125	0.400								0.793
•	Gully		9299	-	-	0.0005			N	0.35			1		7.464
	Pipe		0	-	-	0.0000		0.012						3.00	0.000
	Totals		9599												8.258
Tc (hr) =	8.258					Area	0.33241								
$T_{Lag}(hr) =$	4.955	297.283893													
		-				-									
		Lo	L	u/s Elev	d/s Elev	S	n	n	Paved	V (fps)	depth/dia	W	SS	V	Tt
Subbasin	Element	(max 300 ft)	(ft)	(ft)	(ft)	(ft/ft)	Tbl 3.1		(Y or N)	Fig 3.1	(ft)	(ft)	(hor/vir)	(fps)	(hr)
٨	Overland flow	300		-		0.0125	0.400								0 702
4	Gully	300	1408		-	0.0125	0.400		N	0.30					1 300
	Pipe		0	-	-	0.0000		0.012	14	0.00				3.00	0.000
	Totals		1798	1		0.0000		5.012						0.00	2.192
Tc (hr) =	2.192					Area	0.07029								
` '							-								

$T_{Lag}(hr) =$	1.315	78.9147748		Develo	peu m		oncentr	ation	- Septer		20				
Subbasin	Element	Lo (max 300 ft)	L (ft)	u/s Elev (ft)	d/s Elev (ft)	S (ft/ft)	n Tbl 3.1	n	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps)	Tt (hr)
5	Overland flow	300		-	-	0.0125	0.400								0.793
	Gully		5731	-	-	0.0008			N	0.46					3.425
	Pipe		0	-	-	0.0000		0.012						3.00	0.000
	Totals		6031												4.218
Tc (hr) =	4.218					Area	0.12741								
$T_{Lag}(hr) =$	2.531	151.855032													
Subbasin	Element	Lo (max 300 ft)	L (ft)	u/s Elev (ft)	d/s Elev (ft)	S (ft/ft)	n Tbl 3.1	n	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps)	Tt (hr)
6	Overland flow	300		-	-	0.0125	0.400								0.793
	Gully		996	-	-	0.0008			N	0.45					0.618
	Pipe		0	-	-	0.0000		0.012						3.00	0.000
Tc (hr) = $T_{Lag}(hr) =$	Totals 1.411 0.847	50.8090957	1296			Area	0.00416								1.411
Subbasin	Element	Lo (max 300 ft)	L (ft)	u/s Elev (ft)	d/s Elev (ft)	S (ft/ft)	n Tbl 3.1	n	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps)	Tt (hr)
Subbasin 7	Element Overland flow	Lo (max 300 ft) 300	L (ft)	u/s Elev (ft)	d/s Elev (ft)	S (ft/ft) 0.0125	n Tbl 3.1 0.400	n	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps)	Tt (hr) 0.793
Subbasin 7	Element Overland flow Gully	Lo (max 300 ft) 300	L (ft) 1035	u/s Elev (ft) -	d/s Elev (ft) -	S (ft/ft) 0.0125 0.0012	n Tbl 3.1 0.400	n	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps)	Tt (hr) 0.793 0.514
Subbasin 7	Element Overland flow Gully Pipe	Lo (max 300 ft) 300	L (ft) 1035 2344	u/s Elev (ft) - - -	d/s Elev (ft) - - -	S (ft/ft) 0.0125 0.0012 0.0030	n Tbl 3.1 0.400	n 0.012	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps) 3.00	Tt (hr) 0.793 0.514 0.217
Subbasin 7	Element Overland flow Gully Pipe Totals	Lo (max 300 ft) 300	L (ft) 1035 2344 3679	u/s Elev (ft) - - -	d/s Elev (ft) - - -	S (ft/ft) 0.0125 0.0012 0.0030	n Tbl 3.1 0.400	n 0.012	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps) 3.00	Tt (hr) 0.793 0.514 0.217 1.525
Subbasin 7 Tc (hr) = T_{Lag} (hr) =	Element Overland flow Gully Pipe Totals 1.525 0.915	Lo (max 300 ft) 300 54.8941002	L (ft) 1035 2344 3679	u/s Elev (ft) - -	d/s Elev (ft) - -	S (ft/ft) 0.0125 0.0012 0.0030 Area	n Tbl 3.1 0.400 0.10306	n 0.012	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	SS (hor/vir)	V (fps) 3.00	Tt (hr) 0.793 0.514 0.217 1.525
Subbasin 7 Tc (hr) = $T_{Lag}(hr) =$	Element Overland flow Gully Pipe Totals 1.525 0.915	Lo (max 300 ft) 300 54.8941002	L (ft) 1035 2344 3679	u/s Elev (ft) - -	d/s Elev (ft) - - -	S (ft/ft) 0.0125 0.0012 0.0030 Area	n Tbl 3.1 0.400 0.10306	n 0.012	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps) 3.00	Tt (hr) 0.793 0.514 0.217 1.525
Subbasin 7 Tc (hr) = $T_{Lag}(hr) =$ Subbasin	Element Overland flow Gully Pipe Totals 1.525 0.915 Element	Lo (max 300 ft) 300 54.8941002 Lo (max 300 ft)	L (ft) 1035 2344 3679 L (ft)	u/s Elev (ft) - - - - u/s Elev (ft)	d/s Elev (ft) - - - d/s Elev (ft)	S (ft/ft) 0.0125 0.0012 0.0030 Area S (ft/ft)	n Tbl 3.1 0.400 0.10306 n Tbl 3.1	n 0.012 n	Paved (Y or N)	V (fps) Fig 3.1 0.56 V (fps) Fig 3.1	depth/dia (ft) depth/dia (ft)	W (ft) W (ft)	ss (hor/vir)	V (fps) 3.00 V (fps)	Tt (hr) 0.793 0.514 0.217 1.525 Tt (hr)
Subbasin 7 Tc (hr) = $T_{Lag}(hr) =$ Subbasin 8	Element Overland flow Gully Pipe Totals 1.525 0.915 Element	Lo (max 300 ft) 300 54.8941002 Lo (max 300 ft) 203	L (ft) 1035 2344 3679 L (ft)	u/s Elev (ft) - - - - - u/s Elev (ft)	d/s Elev (ft) - - - - - d/s Elev (ft)	S (ft/ft) 0.0125 0.0012 0.0030 Area S (ft/ft) 0.0125	n Tbl 3.1 0.400 0.10306 n Tbl 3.1	n 0.012 n	Paved (Y or N)	V (fps) Fig 3.1 0.56 V (fps) Fig 3.1	depth/dia (ft) depth/dia (ft)	W (ft) W (ft)	ss (hor/vir)	V (fps) 3.00 V (fps)	Tt (hr) 0.793 0.514 0.217 1.525 Tt (hr) 0.580
Subbasin 7 Tc (hr) = $T_{Lag}(hr) =$ Subbasin 8	Element Overland flow Gully Pipe Totals 1.525 0.915 Element Overland flow Gully	Lo (max 300 ft) 300 54.8941002 Lo (max 300 ft) 203	L (ft) 1035 2344 3679 L (ft) 0	u/s Elev (ft) - - - - - u/s Elev (ft) - -	d/s Elev (ft) - - - - - d/s Elev (ft) - -	S (ft/ft) 0.0125 0.0012 0.0030 Area S (ft/ft) 0.0125 0.0012	n Tbl 3.1 0.400 0.10306 n Tbl 3.1 0.400	n 0.012 n	Paved (Y or N)	V (fps) Fig 3.1 0.56 V (fps) Fig 3.1	depth/dia (ft) depth/dia (ft)	W (ft) W (ft)	ss (hor/vir)	V (fps) 3.00 V (fps)	Tt (hr) 0.793 0.514 0.217 1.525 Tt (hr) 0.580 0.000
Subbasin 7 Tc (hr) = $T_{Lag}(hr) =$ Subbasin 8	Element Overland flow Gully Pipe Totals 1.525 0.915 Element Overland flow Gully Pipe	Lo (max 300 ft) 300 54.8941002 Lo (max 300 ft) 203	L (ft) 1035 2344 3679 L (ft) 0 0	u/s Elev (ft) - - - - - - (ft) - - - -	d/s Elev (ft) - - - - - d/s Elev (ft) - - -	S (ft/ft) 0.0125 0.0012 0.0030 Area S (ft/ft) 0.0125 0.0125 0.0125 0.0125 0.00125 0.0012	n Tbl 3.1 0.400 0.10306 n Tbl 3.1 0.400	n 0.012 n	Paved (Y or N) N Paved (Y or N)	V (fps) Fig 3.1 0.56 V (fps) Fig 3.1 0.56	depth/dia (ft) depth/dia (ft)	W (ft) W (ft)	ss (hor/vir)	V (fps) 3.00 V (fps) 3.00	Tt (hr) 0.793 0.514 0.217 1.525 Tt (hr) 0.580 0.000 0.000
Subbasin 7 Tc (hr) = T_{Lag} (hr) = Subbasin 8	Element Overland flow Gully Pipe Totals 1.525 0.915 Element Overland flow Gully Pipe Totals	Lo (max 300 ft) 300 54.8941002 Co (max 300 ft) 203	L (ft) 1035 2344 3679 L (ft) 0 0 0 203	u/s Elev (ft) - - - - - u/s Elev (ft) - - -	d/s Elev (ft) - - - - d/s Elev (ft) - - -	S (ft/ft) 0.0125 0.0012 0.0030 Area S (ft/ft) 0.0125 0.0012 0.0030	n Tbl 3.1 0.400 0.10306 n Tbl 3.1 0.400	n 0.012 n 0.012	Paved (Y or N)	V (fps) Fig 3.1 0.56 V (fps) Fig 3.1 0.56	depth/dia (ft) depth/dia (ft)	W (ft) W (ft)	SS (hor/vir)	V (fps) 3.00 V (fps) 3.00	Tt (hr) 0.793 0.514 0.217 1.525 Tt (hr) 0.580 0.000 0.000 0.580

Maurepas Developed Time of Concentration - September 2020

$T_{Lag}(hr) =$	0.348	20.8977733			•				•						
Subbasin	Element	Lo (max 300 ft)	L (ft)	u/s Elev (ft)	d/s Elev (ft)	S (ft/ft)	n Tbl 3.1	n	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps)	Tt (hr)
9	Overland flow	300		-	-	0.0125	0.400								0.793
	Gully		1783	-	-	0.0005			N	0.35					1.416
	Pipe		0	-	-	0.0030		0.012						3.00	0.000
Tc (hr) = T _{Lag} (hr) =	Totals 2.209 1.326	79.5365485	2083			Area	0.03885								2.209
Subbasin	Element	Lo (max 300 ft)	L (ft)	u/s Elev (ft)	d/s Elev (ft)	S (ft/ft)	n Tbl 3.1	n	Paved (Y or N)	V (fps) Fig 3.1	depth/dia (ft)	W (ft)	ss (hor/vir)	V (fps)	Tt (hr)
10	Overland flow	300		-	-	0.0125	0.400								0.793
	Gully		15119	-	-	0.0005			N	0.36					11.641
	Pipe		1963	-	-	0.0030		0.012						3.00	0.182
	Pipe Totals		1963 17382	-	-	0.0030		0.012						3.00	0.182 12.616
Tc (hr) =	Pipe Totals 12.616		1963 17382	-	-	0.0030 Area	0.85312	0.012						3.00	0.182 12.616

Maurepas
Developed Time of Concentration - September 2020

Appendix C: Muskingum-Cunge Routing Reaches

Proposed Conditions

Reach	Length (feet)	Slope (ft./ft.)	Manning's n (Channel)	Manning's n (Overbank)
East Ditch 1	3413	0.001	0.035	0.1
East Ditch 2	4831	0.001	0.035	0.1
East Ditch 3	379	0.001	0.035	0.1
East Ditch 4	1648	0.001	0.035	0.1
West Ditch 1	109	0.001	0.035	0.1
West Ditch 2	6324	0.001	0.035	0.1
West Ditch 3	80	0.001	0.035	0.1
West Ditch 4	1598	0.001	0.035	0.1

Appendix D: Maurepas MS River Diversion Water Surface Profiles

		CATCHMENT: DS_BCL	CATCHMENT: DS_BCL	CATCHMENT: DS_BL
Ordinate	Date / Time	STAGE	STAGE	STAGE
		PR_10YR_0CFS	PR_10YR_2000CFS	EX_10YR
Units		FEET	FEET	FEET
Туре		INST-VAL	INST-VAL	INST-VAL
1	31 Aug 08, 24:00 01 Sop 08, 00:20	1.5000	1 1 2 0 5	1.5000
3	01 Sep 08, 00:20	1.1284	1.1283	1.1060
4	01 Sep 08, 01:00	1.1290	1.1290	1.1040
5	01 Sep 08, 01:20	1.1297	1.1295	1.1028
6	01 Sep 08, 01:40	1.1318	1.1315	1.1029
7	01 Sep 08, 02:00	1.1359	1.1356	1.1045
8	01 Sep 08, 02:20	1.1442	1.1444	1.1102
9	01 Sep 08, 02:40	1.1610	1.1610	1.1233
11	01 Sep 08, 03:00	1.3227	1.3151	1.2378
12	01 Sep 08, 03:40	1.3996	1.3924	1.2843
13	01 Sep 08, 04:00	1.4417	1.4355	1.3104
14	01 Sep 08, 04:20	1.4740	1.4685	1.3294
15	01 Sep 08, 04:40	1.5002	1.4954	1.3468
16	01 Sep 08, 05:00	1.5217	1.5175	1.3574
10	01 Sep 08, 05:20 01 Sep 08, 05:40	1.5440	1.53/5	1.36/9
10	01 Sep 08, 05:40	1.3011	1.5742	1.3782
20	01 Sep 08, 06:20	1.6458	1.6400	1.3954
21	01 Sep 08, 06:40	1.6733	1.6680	1.4031
22	01 Sep 08, 07:00	1.6987	1.6938	1.4110
23	01 Sep 08, 07:20	1.7217	1.7173	1.4188
24	01 Sep 08, 07:40	1.7423	1.7381	1.4264
25	01 Sep 08, 08:00	1.7604	1.7566	1.4342
20	01 Sep 08, 08:20 01 Sep 08, 08:40	1.7759	1.7723	1.4473
28	01 Sep 08, 09:00	1.7997	1.7967	1.4704
29	01 Sep 08, 09:20	1.8075	1.8047	1.4790
30	01 Sep 08, 09:40	1.8130	1.8104	1.4871
31	01 Sep 08, 10:00	1.8167	1.8143	1.4946
32	01 Sep 08, 10:20	1.8189	1.8166	1.5016
33	01 Sep 08, 10:40	1.8198	1.8176	1.5081
34	01 Sep 08, 11:00 01 Sep 08, 11:20	1.8195	1.81/4	1.5142
35	01 Sep 08, 11:20	1.8159	1.8140	1.5249
37	01 Sep 08, 12:00	1.8129	1.8111	1.5295
38	01 Sep 08, 12:20	1.8078	1.8061	1.5322
39	01 Sep 08, 12:40	1.8015	1.7998	1.5341
40	01 Sep 08, 13:00	1.7947	1.7931	1.5357
41	01 Sep 08, 13:20 01 Sep 08, 13:40	1.78/5	1.7859	1.53/1
42	01 Sep 08, 13:40	1.7710	1.7694	1.5362
44	01 Sep 08, 14:20	1.7619	1.7604	1.5399
45	01 Sep 08, 14:40	1.7525	1.7510	1.5404
46	01 Sep 08, 15:00	1.7429	1.7415	1.5408
47	01 Sep 08, 15:20	1.7333	1.7320	1.5409
48	01 Sep 08, 15:40	1.7239	1.7227	1.5408
49	01 Sep 08, 16:00 01 Sep 09, 16:20	1.7145	1.7134	1.5406
50	01 Sep 08, 16:20 01 Sep 08, 16:40	1.6962	1.7042	1.5402
52	01 Sep 08, 17:00	1.6873	1.6864	1.5389
53	01 Sep 08, 17:20	1.6786	1.6777	1.5381
54	01 Sep 08, 17:40	1.6701	1.6693	1.5372
55	01 Sep 08, 18:00	1.6618	1.6612	1.5361
56	01 Sep 08, 18:20	1.6539	1.6532	1.5349
57	01 Sep 08, 18:40 01 Sep 08, 19:00	1.6462	1.6453	1.5330
59	01 Sep 08, 19:00	1.6307	1.6307	1.5307
60	01 Sep 08, 19:40	1.6244	1.6237	1.5291
61	01 Sep 08, 20:00	1.6174	1.6168	1.5274
62	01 Sep 08, 20:20	1.6108	1.6103	1.5256
63	01 Sep 08, 20:40	1.6044	1.6039	1.5238
64	01 Sep 08, 21:00	1.5982	1.5978	1.5218
C0	01 Sep 08, 21:20 01 Sep 08, 21:40	1.5920	1.5915	1.5198
67	01 Sep 08, 21.40 01 Sep 08, 22.00	1.5800	1.5655	1.5177
68	01 Sep 08, 22:20	1.5744	1.5738	1.5132
69	01 Sep 08, 22:40	1.5693	1.5686	1.5109
70	01 Sep 08, 23:00	1.5640	1.5636	1.5084
71	01 Sep 08, 23:20	1.5584	1.5585	1.5059
72	01 Sep 08, 23:40	1.5537	1.5531	1.5034

/BCLINE/CATCHMENTDS_BCL/STAGE/01AUG2008/20MIN/PR_10YR_0CFS/

Appendix E: Additional Figures

Figure 1: Existing Conditions Drainage Area Map Figure 2: Proposed Conditions Drainage Area Map Figure 3: Proposed Conditions Culverts Figure 4: Proposed Conditions Ditch Locations

Figure 1: Existing Conditions Drainage Area Map

West Ditch 4 Q10=275.2 cfs Before Airline EarthenTrapezoidal 3:1 SS 4.5' Depth,10' Bottom, 37' Top Width, After Airline EarthenTrapezoidal 4:1 SS 4.5' Depth,15' Bottom, 51' Top Width,

0

East Ditch 4 Q10=266.2 cfs□ Before Airline: EarthenTrapezoidal 3:1 SS□ 4.5' Depth, 10' Bottom, 37' Top Width After Airline: EarthenTrapezoidal 4:1 SS 4.5' Depth,15' Bottom, 51' Top Width,

1,500 Feet

East Ditch 4

Figure 3: Proposed Conditions Ditch Locations

Appendix F: Hydraulic Design Criteria

Hydraulic Design Criteria

Hydrology:

- LADOTD, Hydraulics Manual, 2011;
- Natural Resources Conservation Service TR-55 methodology Urban Hydrology for Small Watersheds, USDA, NRCS, Technical Release 55, June 1986
- SCS Unit Hydrograph Method
- USACE HEC TP-135 Muskingum-Cunge Channel Flow Routing Method for Drainage Networks, 1991
- Rainfall Distribution SCS Type III
- Rainfall depth comes from the NOAA Atlas 14 Volume 9 Version 2PDS Estimates for Garyville LA, Table 3.4-2 Louisiana Rainfall Depths (inches for 100 Year Return Period Duration (Hour) 24.,
- LiDAR data 2017,
- USGS Quad Maps and Aerial Photography,
- National Hydrographic Dataset,
- Historical SWMM modeling

Hydraulics:

- LADOTD, Hydraulics Manual, 2011;
- USACE Report "West Shore Lake Pontchartrain Hydraulic Design of Pump Stations and Drainage Structures Draft Report April 2019"
- USACE Report "West Shore Lake Pontchartrain Hydraulic Design of Pump Stations and Drainage Structures Addendum to Main H&H Report September 2019"
- LiDAR data 2017,
- Fenstermaker Survey and LiDAR along project site

Computer programs:

HEC-HMS 4.6.1 – for determining the peak values of existing and proposed conditions for the sub basins flowing into Hope Canal and Marathon Ditch

Hydraulic Toolbox- for checking ditch sizing using peak values from HEC-HMS

HEC-RAS 1D converted to version 5.0.7- the original 2007 Diversion modeling was done in 1D.

HEC-RAS 2D version 5.0.7- The USACE model was adjusted and limited to the proposed site from the Mississippi River to Airline Highway for the purposes of developing the existing and proposed conditions. The existing conditions are for Fall 2020, compared to the proposed conditions of a diversion channel and West Shore Lake Pontchartrain (WSLP) flood protection system. Also included in the proposed conditions are the proposed east and west ditches to convey water that would have otherwise have flown past the diversion or into Angelina canal.

ESRI ArcMap 10.8. GIS software was used to process LiDAR raster files, develop exhibits, process channel and existing survey shapefiles, and view land coverage raster files.

Limitations and Constraints

- Maintain increase in Water Surface Elevation (WSE) in CN RR ditch < 0.1-ft,
- Maintain increase in WSE in Marathon detention pond < 0.1-ft,
- Minimize required acquisition of land to the east of the project (by keeping width of west ditch as small as possible)
- Minimize impacts to or improve existing flow paths

Other Reference Documents

- USACE EM 1110-2-1601 Hydraulic Design of Flood Control Channels, Rev. 1994
- USACE Hydraulic Design Criteria, Sheet 703-1, Riprap Protection Trapezoidal Channel, Rev. 2014
- USACE Hydraulic Design Criteria Vol 1, Rev. 1977
- USACE Hydraulic Design Criteria Vol 2, Rev. 5-59

WATER QUALITY MODELING OF PROPOSED RIVER REINTRODUCTION INTO MAUREPAS SWAMP (PO-0029)

OCTOBER 3, 2019

WATER QUALITY MODELING OF PROPOSED RIVER REINTRODUCTION INTO MAUREPAS SWAMP (PO-0029)

Prepared for

Louisiana Coastal Protection and Restoration Authority 150 Terrace Avenue Baton Rouge, LA 70802

Prepared by

FTN Associates, Ltd. 7648 Picardy Avenue, Suite 100 Baton Rouge, LA 70808

FTN No. R05540-1567-001

October 3, 2019

TABLE OF CONTENTS

1.0	INTR	ODUCTION1-1
2.0	APPR	OACH FOR SIMULATING NUTRIENTS
	2.1	Overview of Approach
	2.2	Nutrient Loss Rates
	2.3	Background Concentrations2-5
	2.4	Boundary Concentrations and Flows
3.0	MOD	EL APPLICATION AND RESULTS
	3.1	Model Scenarios
	3.2	Predicted Water Surface Elevation and Velocity
	3.3	Predicted Percent Mississippi River Water
	3.4	Predicted Total Nitrogen Transport
	3.5	Predicted Total Phosphorus Transport
	3.6	Salinity Flushing Results
	3.7	Comparison with Previous Modeling Studies
	3.8	Comparison with Nutrient Concentrations in Lake Pontchartrain
4.0	SUM	MARY AND CONCLUSIONS
5.0	REFE	RENCES

LIST OF APPENDICES

APPENDIX A:	Hydrodynamic Modeling
APPENDIX B:	Information from Published Literature Used to Develop Loss Rates

LIST OF TABLES

Table 2.1	Summary statistics for TN and TP data in Maurepas swamp and in Lake Maurepas	2-6
Table 2.2	Input values for flows and stages at model boundaries	.2-11
Table 2.3	Monthly statistics for TN and TP in the Mississippi River	.2-12
Table 2.4	Input values for nutrient concentrations at model boundaries	. 2-13
Table 2.5	Input values for salinity at model boundaries	.2-14
Table 2.6	Input values for initial conditions for water quality	. 2-14

LIST OF FIGURES

Figure 2.1	Locations of LDEQ and Rob Lane water quality monitoring stations	2-7
Figure 2.2	Locations where boundary conditions were specified in the model	2-9
Figure 3.1	Predicted water surface elevation contours at the end of 7, 20, 31 and 41 days	3-3
Figure 3.2	Predicted velocity contours at the end of 7, 20, 31 and 41 days	3-4
Figure 3.3	Predicted water surface elevation and velocity profiles over the model simulation period at selected locations S-7, S-9, S-16, S-23 and S-25	3-5
Figure 3.4	Predicted percent Mississippi River water contours at the end of 7, 20, 31 and 41 days	3-7
Figure 3.5	Predicted TN concentrations for summer at the end of days 7, 20, 31 and 41 days	3-9
Figure 3.6	Predicted TN concentrations for winter at the end of 7, 20, 31 and 41 days	-10
Figure 3.7	Predicted TP concentrations for summer at the end of 7, 20, 31 and 41 days	-12
Figure 3.8	Predicted TP concentrations for winter at the end of 7, 20, 31 and 41 days	-13
Figure 3.9	Predicted salinity concentrations at the end of 7 days	-15

1.0 INTRODUCTION

The proposed River Reintroduction into Maurepas Swamp (PO-0029) project (the Project) located near Garyville, Louisiana, will divert flow from the Mississippi River to the Maurepas Swamp wetlands (Figure A.1). In 2014, URS provided 95% level design of the proposed PO-0029 project to the Coastal Protection and Restoration Authority (CPRA) of Louisiana (URS 2014). The project consists of a gated intake structure at the river capable of diverting 2000 cfs river water, a large sand settling basin, and a long, banked conveyance channel. Approximately halfway along the route, just north of US Highway 61, the channel follows the existing Hope Canal alignment to distribute the diverted water into the wetlands on the north side of Interstate 10. The proposed diversion channel from the Mississippi River to its end approximately 1000 ft north of its crossing with I-10 highway. The channel has a variable cross-section along its way. The longest segment between the Highway 61 and I-10 has a 60 ft wide bottom and 1V:5H side slope. The invert is -7 ft- and -8 ft, NAVD88 at Highway 61 and I-10, respectively. Additionally, the culvert crossings under I-10 between LA 641 and Mississippi Bayou are proposed to be closed to prohibit backflow from the diversion into the swamp between I-10 and Highway 61. The design also proposes gaps in the railroad embankment along the west bank of Hope Canal. For details, the reader is referred to the 95% Level Design Report (URS 2014).

To support the hydraulic design of the proposed diversion and to evaluate its effect on swamp hydrology, URS developed a two-dimensional (2D) ADvanced CIRCulation (ADCIRC) Model. URS also developed a one-dimensional (1D) Storm Water Management Model (SWMM) of the Garyville-Reserve drainage system to evaluate effects of the water levels in the swamp on the drainage.

The hydrodynamic modeling performed for the 95% level design did not include modeling the transport of nutrients introduced from the Mississippi River diversion water throughout the swamp. The purpose of the modeling efforts outlined in this document is to develop a water quality model (two-dimensional Delft3D) for the study to simulate transport of nutrients carried by the diverted water. The approach for simulating nutrients in the Maurepas Swamp was initially presented in a memorandum from FTN Associates, Ltd. (FTN) to the CPRA dated August 7, 2018. The information from that memorandum is included in Section 2 of this report with only minor revisions from the memorandum. The nutrient simulations are driven by calibrated hydrodynamic model described in Appendix A.

The model results are presented in Section 3 of this report. The simulation is of a steady flow of 2,000 cfs of Mississippi River water introduced into the swamp via Hope Canal for a duration of 31 days followed by 10 days of simulations without the diversion flow. The results include predictions for water surface elevation, velocity, and nutrients during summer and winter. The results from a "salinity flushing" scenario is also included to demonstrate effects of diversion flow on an initial saline conditions in the swamp.

2.0 APPROACH FOR SIMULATING NUTRIENTS

2.1 Overview of Approach

The objectives for simulating nutrients for this project are to: a) evaluate the fate and transport of nutrients throughout the swamp, and b) evaluate effects of the diversion on nutrient concentrations in Lake Maurepas.

To begin with, a hydrodynamic model of the study area was developed and calibrated. The details regarding the basis for model selection, development of the model geometry, calibration and validation are described in Appendix A. The simulated hydrodynamics (water surface elevations and velocities throughout the study area) are then used to drive the nutrient transport described in the following sections.

As discussed in Appendix A, the Delft3D model was selected to simulate hydraulics. Nutrients and salinity are being simulated with DELWAQ, which is the water quality model in the Delft3D suite of models. Nutrients are being simulated as total nitrogen (TN) and total phosphorus (TP) rather than individual species of nutrients (e.g., ammonia nitrogen, nitrate nitrogen, etc.). Although nutrients in organic and particulate forms are not immediately available for uptake by algae or vegetation, they can be transformed later into inorganic, dissolved forms that have the potential to cause eutrophication. Therefore, predictions for TN and TP are considered appropriate for addressing the modeling objectives.

TN and TP are simulated using a "black box" approach that characterizes the overall loss of nutrients from the water column as the water moves through the swamp. With this approach, the model does not simulate individual processes (mineralization, nitrification, denitrification, sorption of phosphorus, uptake by algae and plants, etc.), but the rates of nutrient loss from the water column are based on published measurements that account for the combined overall effect of all processes. This "black box" approach is being used instead of a more detailed approach of simulating individual processes due to a lack of site-specific data for calibrating numerous coefficients for the processes. The importance of calibration data in applications of complex models is noted in the following statement: "Highly detailed representations of system structures may not be useful to simulate TP dynamics in treatment wetlands if comprehensive data sets are not available to constrain each pathway" (Paudel and Jawitz 2012). Other studies have successfully modeled losses of nutrients from water moving through wetlands without detailed simulations of individual processes (Day et al. 2004; Kadlec et al. 2011; CH2M Hill 2012; CH2M Hill 2013; Kadlec 2016; Merriman et al. 2017).

TN and TP are being simulated with generic user-defined constituents in the model. The nutrient state variables are designated to represent actual concentrations minus background concentrations (i.e., a concentration of zero in the model represents an actual concentration equal to background). With this configuration, the model simulates conditions that represent actual concentrations asymptotically approaching background concentrations without dropping below background concentrations. The assumption that actual concentrations cannot drop below background concentrations has been successfully used in various other studies that estimate losses of nutrients from water moving through wetlands (Kadlec et al. 2011; CH2M Hill 2012; CH2M Hill 2013; Kadlec 2016; Merriman et al. 2017).

The DELWAQ model has been set up to simulate losses of TN and TP from the water column with first order decay rates. For the generic user-defined constituents, the DELWAQ model does not provide any kinetics that are more complex than first order decay. First order decay is not a perfect representation of nutrient loss kinetics in wetlands (Kadlec 2000), but it forms the basis of equations that have been used in recent studies to calculate nutrient loss in wetlands receiving diverted river water and in wetlands receiving municipal wastewater. One of these equations is the "relaxed tanks-in-series" model, also known as the PkC* model (Kadlec and Wallace 2009):

$$\frac{(C_{OUT} - C^*)}{(C_{IN} - C^*)} = \left[1 + \frac{k}{Pq}\right]^{-P}$$

where: $C_{OUT} = Concentration at outlet of wetland (mg/L)$ $C_{IN} = Concentration at inlet of wetland (mg/L)$ $C^* = Background concentration (mg/L)$ k = First order areal rate constant (m/yr) q = Hydraulic loading rate per unit area (m/yr)P = Apparent number of tanks in series (dimensionless) The parameter "P" in the equation above accounts for: 1) hydraulic inefficiencies of flow through the wetland (i.e., it represents flow through multiple well-mixed tanks in series as opposed to uniform plug flow), and 2) "weathering", which is a term that describes the effect of different loss rates for different fractions of the component (e.g., loss rates for nitrate and ammonia are individually different than an overall loss rate for TN).

For small areas with short residence times, the value of "P" in the equation above approaches 1.0 and the results become similar to a first order decay equation (with a background concentration incorporated):

$$\frac{(C_{OUT} - C^*)}{(C_{IN} - C^*)} = \exp(-k/h \times t)$$

where: h = depth of water (m) t = residence time (yr)

For example, for k = 0.05 m/day (18.25 m/yr) and h = 0.5 m, the results from the two equations above differ by only 0.5% for a residence time of 1 day.

The DELWAQ model allows the user to vary the first order decay rates spatially or temporally, but not both. For this project, the decay rates are being varied spatially based on predicted depths. The model cells that represent shallow water moving through the swamp have been assigned higher decay rates and model cells that represent deeper, channelized flow have been assigned lower decay rates. Nutrient loss (from the water column) is expected to be greater in shallow vegetated areas due to vegetative uptake, settling and burial of particulates, and transformations by biological organisms that are either on the bottom or attached to vegetation and/or debris.

2.2 Nutrient Loss Rates

Tables B.1 and B.2 (located in Appendix B) summarize information from published literature that was considered for selection of nutrient loss rates for the Delft3D model. These tables include values for first order decay rates that were calculated based on hydraulic residence time and percent reduction of TN or TP (except where noted). These tables also include "k" values for the PkC* model that were either reported by the author or calculated as the first order decay rate multiplied times the depth of water.

These studies represent a range of situations with different source water (river water or treated municipal wastewater), different types of wetlands (forested swamp, estuarine marsh, and constructed wetlands), and different climates (southern Louisiana as well as several other states). The studies based on municipal wastewater are presented for comparison but were not directly used for estimating nutrient loss rates for this project.

The lowest values of first order decay rate and "k" value occurred for the systems with the longest residence times (77 – 512 days for Mandeville, Thibodaux, Luling, and Breaux Bridge). These first order decay rates and "k" values for these systems were not considered useful for developing inputs to the Delft3D model because the residence times for those systems are much longer than the residence time for individual cells in the Delft3D model. Also, the TN and TP concentrations entering those four wetlands are much higher than the concentrations in the Mississippi River water that will be diverted into the Maurepas swamp.

In addition to the studies with field data summarized in Tables B.1 and B.2, a modeling study was conducted by CH2M Hill (2013) in which nutrient retention was simulated in various wetlands (including Maurepas swamp) with existing or proposed diversions of water from the Mississippi River. The CH2M Hill study used the PkC* model with the following "k" values:

- 27.8 m/yr for nitrate in vegetated habitat,
- 8.2 m/yr for nitrate in shallow lake habitat,
- 14.2 m/yr for ammonium,
- 17.3 m/yr for organic nitrogen, and
- 10.0 m/yr for TP.

The published literature that was reviewed for this project demonstrates variability in first order decay rates and "k" values not only among different sites, but also among different seasons. Much of the loss of nutrients from the water column is due to biological processes whose rates vary based on temperature. Therefore, nutrient loss rates are expected to be generally higher during summer and lower during winter. To address both the uncertainty of nutrient loss rates for the Maurepas swamp as well as seasonal variability of nutrient loss rates, simulations have been run for summer (with higher loss rates) and for winter (with lower loss rates). Based on the CH2M Hill (2013) study, as well as the information in Tables B.1 and B.2, the following "k" values were selected for use in the Delft3D model:

- Winter (low) rates for TN: 15 m/yr in swamp, 5 m/yr in Lake Maurepas;
- Summer (high) rates for TN: 30 m/yr in swamp, 10 m/yr in Lake Maurepas;
- Winter (low) rate for TP: 5 m/yr; and
- Summer (high) rate for TP 15 m/yr.

A script file was used to divide these "k" values by the predicted water depth in each cell in the model (after previously running the model for hydraulics) to obtain the first order decay rate that the Delft3D model needs for each cell in the model.

2.3 Background Concentrations

For this project, the background concentrations are based on existing concentrations in the Maurepas swamp and in Lake Maurepas. Table 2.1 provides summaries of TN and TP data measured in the Maurepas swamp (Hope Canal, Mississippi Bayou, and Dutch Bayou) and in Lake Maurepas. Table 2.1 includes data collected by Rob Lane during 2002-2003 and routine monitoring data collected by the Louisiana Department of Environmental Quality (LDEQ). Locations of the sampling sites are shown on Figure 2.1.

Table 2.1. Summary statistics for TN and TP data in Maurepas swamp and in Lake Maurepas.

			TN dat	a		TP dat	a
	Period of record for	No. of	Median	Range	No. of	Median	Range
Sampling location ^A	nutrient data	values	(mg/L)	(mg/L)	values	(mg/L)	(mg/L)
Sites within the Maurepas swamp simulation	on area:						
Site 1 (Hope Canal)	4/04/02 - 5/13/03	11	0.79	0.51 - 1.32	11	0.75	0.04 - 1.21
Site 2 (Hope Canal)	4/04/02 - 5/13/03	11	0.78	0.61 - 1.52	11	0.15	0.07 - 0.66
Site 3 (Hope Canal)	4/04/02 - 5/13/03	11	0.82	0.57 - 1.75	11	0.13	0.05 - 1.00
Site 4 (Dutch Bayou)	4/04/02 - 5/13/03	- 11	0.65	0.49 - 1.58	11	0.11	0.05 - 0.20
Site 5 (Mississippi Bayou)	4/04/02 - 5/13/03	11	0.76	0.45 - 3.89	11	0.11	0.04 - 0.85
Site 0155 (Mississippi Bayou)	5/20/86-4/14/98	45	1.00	0.56 - 3.01	45	0.20	0.06 - 0.51
Site 4870 (Dutch Bayou)	10/03/17 - 4/03/18	7	0.94	0.37 - 4.15	7	0.15	0.09 - 0.19
Sites in Lake Maurepas:							
Site 16 (Lake Maurepas – SW)	4/04/02 - 5/13/03	12	0.64	0.44 - 2.42	12	0.11	0.01 - 0.20
Site 17 (Lake Maurepas – S)	4/04/02 - 5/13/03	12	0.59	0.39 - 0.99	12	0.12	0.08 - 0.17
Site 18 (Lake Maurepas – E)	4/04/02 - 5/13/03	П	0.58	0.43 - 0.91	11	0.10	0.03 - 0.16
Site 19 (Lake Maurepas – NE)	4/04/02 - 5/13/03	12	0.53	0.40 - 0.90	12	0.11	0.06 - 0.35
Site 1105 (Lake Maurepas – N)	1/09/01 - 9/25/07	24	0.67	0.30 - 1.82	24	0.09	0.05 - 0.19
Site 4471 (Lake Maurepas – SW)	10/01/13 - 4/03/18	19	0.85	0.35 - 1.39	19	0.15	0.05 - 0.29
Sites representing inflow entering the simu	ulation area:						
Site 11 (Blind River)	4/04/02 - 5/13/03	12	0.60	0.46 - 0.82	12	0.10	0.05 - 0.69
Site 0036 (Pass Manchac)	3/06/78 - 9/08/16	290	0.90	0.09 - 5.54	291	0.10	< 0.05 - 0.51
Site 0228 (Amite River)	1/16/01 - 4/10/18	54	0.86	0.34 - 2.83	26	0.12	0.05 - 0.38
Site 0243 (Blind River)	1/16/01 - 4/03/18	62	0.82	0.24 - 1.42	64	0.15	0.05 - 0.44
Site 0268 (Amite R. Diversion Canal)	1/16/01 - 4/03/18	55	0.86	0.39 - 1.74	28	0.13	0.05 - 0.30
Site 1102 (Blind River near mouth)	1/16/01 - 4/03/18	62	0.80	0.20 - 4.40	64	0.15	0.05 - 0.29
Site 1106 (Tickfaw River)	1/09/01 - 9/03/15	48	0.98	0.21 - 2.57	56	0.13	0.05 - 0.39
Notes:							

NITIN SILCS. 20 site numbers Y.

October 3, 2019

Figure 2.1. Locations of LDEQ and Rob Lane water quality monitoring stations.

In general, the nutrient concentrations in the swamp were slightly higher than in Lake Maurepas. Median TN values in the swamp were mostly between 0.65 and 0.94 mg/L, while median TN values in Lake Maurepas were between 0.53 and 0.85 mg/L. For TP, median values were mostly between 0.11 and 0.15 mg/L in the swamp, while median values in Lake Maurepas were mostly between 0.09 and 0.11 mg/L. Although measured background concentrations of nutrients vary by location, the background concentrations used in the model need to be spatially constant in order to preserve the calculated mass of nutrients being transported in the model. The following values were selected for use as background concentrations for the DELWAQ model:

- Background TN = 0.60 mg/L, and
- Background TP = 0.10 mg/L.

These two proposed background concentrations are more representative of Lake Maurepas than the Maurepas swamp, but it is better to select values towards the low end of the range because the model is able to simulate concentrations above these values, but it cannot simulate concentrations below these values (i.e., the model is not allowed to simulate negative concentrations).

2.4 Boundary Concentrations and Flows

Concentrations of TN, TP, and salinity must be specified in the model for each boundary where water can flow into the simulated area. The locations of these boundaries are shown on Figure 2.2. Pass Manchac is simulated as a tidal water level boundary (water can flow in or out of the simulated area based on head differences); all of the other boundaries are simulated as flow boundaries (the flow into the simulated area is specified by the user).

Figure 2.2. Locations where boundary conditions were specified in the model.

For each flow boundary (except the diversion of Mississippi River water), the flow was set to a constant value to represent median (i.e., typical) flow conditions (see Table 2.2). The diversion of Mississippi River water into Hope Canal was set to a constant value of 2,000 cfs. A flow of 280 cfs was taken out of the Hope Canal and introduced (140 cfs on either side) into the wetlands (known as Central Swamp) between the Interstate-10 and the Airline Highway. This flow was released only for the first 7 days during the diversion operation. The release reflects the proposed lateral release valves feature of the project. Thus, for the first 7 days, only 1,720 cfs diversion flow reached the swamps north of Interstate-10.

The stage boundary at Pass Manchac was specified with hourly values to represent typical tidal fluctuations about the historical median water level (See Appendix A).

TN and TP data for the Mississippi River are summarized in Table 2.3 for US Geological Survey (USGS) monitoring stations at Baton Rouge and Belle Chasse. Although these two stations are located 86 miles upstream and 68 miles downstream, respectively, of the proposed diversion location near Garyville, the TN and TP concentrations are similar between the two stations, which suggests that these data are representative of concentrations at Garyville.

Concentrations of TN, TP, and salinity that are being used in the model at each boundary location are summarized in Tables 2.4 and 2.5. Initial conditions for TN, TP and salinity are specified in Table 2.6.

Location of boundary	Model input value	Comment
Hope Canal (diversion from Mississippi River)	2,000 cfs	Assumed operational flow rate
Hope Canal outflow to Central Swamp (between I-10 and Airline Highway)	2 x 140 cfs	Assumed flow released from Hope Canal each to the east and to the west adjoining marsh between the I-10 and Airline Highway for first 7 days. This is a proposed project feature using lateral release valves.
Tickfaw River	412 cfs	Sum of median flows for Oct. 1989 – Sep. 2017 for Tickfaw River at Holden (158 cfs) and Natalbany River at Baptist (27 cfs) multiplied times ratio of published drainage area at the mouth (727 mi ² ; USGS 1971) to combined drainage area at the two gages (247 mi ² + 79.5 mi ²).
Amite River (old channel)	173 cfs	Median flow for Amite River at Port Vincent (USGS 07380120) for entire period of record (Oct 1987 – Sep 2015) is 1,090 cfs. Assumed flow
Amite River Diversion Canal	917 cfs	Diversion Canal based on 5/09/2007 flow measurements published by Amite River Basin Drainage and Water Conservation District (2007).
Blind River	40 cfs	Approximate median flow per unit area of 0.6 cfs/mi ² (based on USGS gages on Amite,
Mississippi Bayou	5 cfs	Tickfaw, and Natalbany rivers) multiplied times estimated drainage areas (outside the model grid)
Reserve Relief Canal	5 cfs	of about 60-70 mi ² for Blind River and < 10 mi ² for Mississippi Bayou and Reserve Relief Canal
Pass Manchac	0.71 – 1.21 ft NAVD88	Synthetic stage hydrograph based on tidal cycle of 24.7 hours, typical tidal fluctuation of 0.5 ft, and median water level of 0.96 ft over entire period of record (Feb. 2002 – Aug. 2018) at Corps station 85420 (Pass Manchac near Ponchatoula)

Table 2.2. Input values for flows and stages at model boundaries.

	Range (mg/L)		0.13 - 0.34	0.15 - 0.33	0.15 - 0.51	0.14 - 0.33	0.14 - 0.37	0.14 - 0.68	0.10 - 0.32	0.13 - 0.35	0.18 - 0.25	0.16 - 0.33	0.14 - 0.29	0.12 - 0.36	0.10 - 0.68		0.17 - 0.39	0.17 - 0.51	0.17 - 0.62	0.18 - 0.39	0.16 - 0.39	0.14 - 0.35	0.14 - 0.43	0.11 - 0.40	0.17 - 0.17	0.09 - 0.38	0.16 - 0.29	0.14 - 0.37	0.09 - 0.62
TP Data	Median (mg/L)		0.23	0.27	0.24	0.22	0.21	0.25	0.24	0.23	0.22	0.19	0.24	0.22	0.22		0.28	0.25	0.29	0.25	0.24	0.24	0.27	0.26	0.17	0.22	0.20	0.23	0.25
	Number of values		13	12	20	26	23	26	10	14	3	10	6	10	173		11	10	21	22	25	24	6	12	2	6	4	6	158
	Range (mg/L)	- 2/13/17):	1.49 - 2.77	1.63 - 3.00	1.56 - 3.48	1.41 - 3.23	1.43 - 3.75	1.62 - 3.38	1.86 - 3.68	1.10 - 2.38	1.21 - 1.57	0.94 - 2.52	1.15 - 2.69	1.30 - 2.41	0.94 - 3.75	5/08/18):	1.50 - 2.79	1.69 - 2.80	1.51 - 3.34	1.50 - 3.80	1.33 - 3.78	1.61 - 3.51	1.99 - 3.86	1.00 - 2.37	1.15 - 1.21	0.81 - 2.54	1.03 - 2.57	1.19 - 2.65	0.81 - 3.86
TN Data	Median (mg/L)	ton Rouge (5/18/04 -	1.88	2.11	2.07	2.15	2.15	2.54	2.63	1.67	1.30	1.39	1.69	1.79	2.06	lle Chase (5/11/06 –	1.95	1.97	2.02	2.15	1.99	2.48	2.59	1.83	1.18	1.37	1.48	1.74	2.00
	Number of values	ssissippi River at Ba	14	13	21	26	23	25	10	14	3	11	9	11	177	ssissippi River at Be	12	11	23	24	26	24	6	12	2	10	4	10	167
	Month	USGS 07374000 Mis	January	February	March	April	May	June	July	August	September	October	November	December	All Months	USGS 07374525 Mis	January	February	March	April	May	June	July	August	September	October	November	December	All Months

Table 2.3. Monthly statistics for TN and TP in the Mississippi River.

	Actual	Model input	
Location of boundary	concentrations	concentrations*	Comment
Hope Canal (diversion from Mississippi River)			Developed using USGS data
	Summer:	Summer:	for Mississippi River at Baton
	2.6 mg/L TN	2.0 mg/L TN	Rouge (07374000) and
	0.26 mg/L TP	0.16 mg/L TP	Mississippi River at Belle
			Chasse (07374525) for
	Winter:	Winter:	2004 – 2018. Summer values
	2.0 mg/L TN	1.4 mg/L TN	are based on medians for July
	0.25 mg/L TP	0.15 mg/L TP	and winter values are based
			on medians for JanFeb.
Tickfow Pivor			Median values for LDEQ
	0.98 mg/L TN	0.38 mg/L TN	station 1106 (Tickfaw River
	0.13 mg/L TP	0.03 mg/L TP	near Lake Maurepas) for
			2001 - 2015
Amite River (old channel)			Median values for LDEQ
	0.86 mg/L TN	0.26 mg/L TN	station 0228 (Amite River at
	0.12 mg/L TP	0.02 mg/L TP	mile 6.5, at Clio) for
			2001 - 2018
			Median values for LDEQ
Amite River Diversion	0.86 mg/L TN	0.26 mg/L TN	station 0268 (Amite River
Canal	0.13 mg/L TP	0.03 mg/L TP	Diversion Canal north of
			Gramercy) for 2001 – 2018
Blind River	1.33 mg/L TN 0.24 mg/L TP	0.73 mg/L TN 0.14 mg/L TP	Median values for LDEQ
			station 0117 (Blind River near
			Gramercy) for 1978 – 1998
Mississippi Bayou	0.76 mg/L TN 0.11 mg/L TP	0.16 mg/L TN 0.01 mg/L TP	Median values for Station 5
			(Mississippi Bayou) from
			Rob Lane's 2002 – 2003 data
Reserve Relief Canal			Median values for Stations 1
	0.79 mg/L TN	0.19 mg/L TN	and 2 (Hope Canal) and
	0.13 mg/L TP	0.03 mg/L TP	station 5 (Miss. Bayou) from
			Rob Lane's 2002 – 2003 data
Pass Manchac	0.90 mg/L TN 0.10 mg/L TP	0.30 mg/L TN 0 mg/L TP	Median values for LDEQ
			station 0036 (Pass Manchac at
		5 <u>8</u> = 11	Manchac) for 1978 – 2016

Table 2.4. Input values for nutrient concentrations at model boundaries.

* Model input concentrations are actual concentrations minus background concentrations.

Location of boundary	Model input values	Comment	
Hope Canal (diversion from Mississippi River)	0.20 ppt	Median value for LDEQ stations 0047 (Mississippi River at Luling) and 0048 (Mississippi River near Luling) for 1978 – 1989	
Tickfaw River	0.11 ppt	Median values for LDEQ station 1106 (Tickfaw River near Lake Maurepas) for 2001 – 2015	
Amite River (old channel)	0.05 ppt	Median value for LDEQ station 0228 (Amite River at mile 6.5, at Clio) for 2001 – 2018	
Amite River Diversion Canal	0.05 ppt	Median value for LDEQ station 0268 (Amite River Diversion Canal north of Gramercy) for 2001 – 2018	
Blind River	0.30 ppt	Median value for LDEQ station 0117 (Blind River near Gramercy) for 1978 – 1998	
Mississippi Bayou	0.25 ppt	Median value for station 5 (Mississippi Bayou) from Rob Lane's 2002 – 2003 data	
Reserve Relief Canal	0.30 ppt	Median values for stations 1 and 2 (Hope Canal) and station 5 (Miss. Bayou) from Rob Lane's 2002 – 2003 data	
Pass Manchac	5.0 ppt	Assumed to be the same as the initial concentration (see Table 2.6 below). Because the source of the initial salinity in Lake Maurepas and the Maurepas swamp is exchange with Lake Pontchartrain (via Pass Manchac), then the salinity in Pass Manchac should be similar to the initial value for Lake Maurepas and the Maurepas swamp.	

Table 2.5. Input values for salinity at model boundaries.

Table 2.6. Input values for initial conditions for water quality.

Constituent	Model input value	Comment	
Total nitrogen (TN)	0 mg/L	Zero in the model represents background concentrations for TN and TP. Nutrient concentrations throughout the modeled area are assumed to be at background levels at the beginning of each simulation.	
Total phosphorus (TP)	0 mg/L		
Salinity	5.0 ppt	Assumed value for conditions following a tropical storm surge or possibly an extreme drought	

3.0 MODEL APPLICATION AND RESULTS

3.1 Model Scenarios

A modeling scenario of 41-day duration was simulated. The diversion was operated at a constant, continuous flow of 2,000 cfs for 31 days followed by 10 days of closure. Additionally, during the first 7 days, a flow of 280 cfs was released to the Central Swamp (wetlands between the Interstate-10 and the Airline Highway) from Hope Canal. Therefore, for the first 7 days, only 1,720 cfs reached to the swamp north of Interstate-10. A synthetic diurnal tidal water level boundary was specified at Lake Maurepas with a mean water level of 1.0 ft, NAVD88 and tidal range of 0.5 ft. See Table 2.2 for flows specified at other existing locations. The nutrients (TN and TP) were simulated under summer and winter conditions as reflected in the specified boundary input concentrations.

A separate "salinity flushing" scenario was simulated to evaluate benefits of diversion for salinity reduction after a high salinity event in the swamp. For this scenario, all boundary conditions (flows and tidal water levels) were specified as in the above scenario. The initial water level was set to 1.0 ft, NAVD88 and the initial salinity was set to 5.0 ppt throughout the study area. The salinities at all flow input boundaries, including the diversion, were set to 0 ppt and a constant salinity of 1.5 ppt was specified at the tidal boundary at Pass Manchac.

The model topography represents features proposed in the 95% E&D report. The details are outlined in Appendix A, Section 7.

3.2 Predicted Water Surface Elevation and Velocity

Figures 3.1 and 3.2 show snapshots of contours of water surface elevation and velocity, respectively, at the end of 7, 20, 31 and 41 days. The variation of water surface elevation and velocity (time-series charts) at selected locations over the simulation period is shown in Figure 3.3. These locations are selected to coincide with some of the gages shown in Figure A.6. The maximum water surface elevation in the swamp is predicted to be about 3 ft, NAVD88 and it occurs where the diversion enters the swamp (i.e. in the Hope Canal immediately north of Interstate-10). The velocities peak up to 2.4 ft/s at this location. However, in the adjoining
swamp, the high velocities are around 0.1 to 0.2 ft/s just outside the Hope Canal and lesser in the swamp away from the canal. Under the continuous diversion inflow of 2,000 cfs, the water surface elevation in the swamp reaches a steady state in about 10 days, setting a constant water surface gradient across the swamp from high at Hope Canal to low near Lake Maurepas. Note that the oscillation seen at locations S-9 and S-16 are due to the influence of tides specified at Pass Manchac.

It is seen that the diversion water spreads throughout the most of the system within a week. A steady water surface elevation and gradient is established in the system within about 2 weeks. During the last 10 days of the simulation when the diversion is closed, the water surface elevation recedes rapidly in the swamp closer to the diversion canal (location S-9) and slowly in the areas farther from the diversion canal (e.g. location S-23). The rate of water level drop is about 0.75 ft/10-day, becoming slower as time goes by.

Model results show that the diversion water spreading east is intercepted by the Reserve Relief Canal hindering distribution to the wetlands east of this canal in spite of the artificial gapping implemented in the model. This suggests that limited gapping on the east bank of the Reserve Relief Canal may not distribute commensurate quantities of diversion water to the east side. No gapping on the west bank of this canal was tested.

As a result of the 7-day controlled release of the diversion water, the water levels in the wetlands between the I-10 and the Airline Highway reach a water level of about 1.4 ft, NAVD88. Subsequent to closing of this release the water levels drop to about 1.2 ft. In reality, the water level will continue to lower in the absence of any other inflows due to evapotranspiration which is not included in this scenario.

Figure 3.1. Predicted water surface elevation contours at the end of 7, 20, 31 and 41 days.

Figure 3.2. Predicted velocity contours at the end of 7, 20, 31 and 41 days.

Figure 3.3. Predicted water surface elevation (upper panel) and velocity (lower panel) profiles over the model simulation period at selected locations S-7 (Hope Canal north of I-10), S-9 (Dutch Bayou), S-16 (Blind River), S-23 (North Swamp) and S-25 (Central Swamp).

3.3 Predicted Percent Mississippi River Water

One of the Delft3D model parameters allows accounting of the percentage of water in each model grid cell that originated from the Mississippi River diversion. The purpose of simulating this variable (percent Mississippi River water) was to show where the Mississippi River water travels once introduced into the swamp. The boundary "concentrations" for this variable were set to 100 for the inflow from the Mississippi River (via Hope Canal) and zero for all other boundaries. The initial concentration was set to zero for the entire model grid.

Figures 3.4 shows the predicted values of percent Mississippi River water at the end of 7, 20, 31, and 41 days. The model predicts that the Mississippi River water replaces the majority of the water that existed in the swamp before start of the diversion; no significant amount of water enters Blind River; and that the southern areas of Lake Maurepas are about 40% Mississippi River water after 31 days.

Figure 3.4. Predicted percent Mississippi River water contours at the end of 7, 20, 31 and 41 days.

3.4 Predicted Total Nitrogen Transport

The TN results are shown in Figures 3.5 and 3.6 for summer and winter, respectively. Note that the TN concentration for the Mississippi River inflow was higher for summer (2.6 mg/L) than for winter (2.0 mg/L).

As expected, the highest predicted concentrations of TN are in Hope Canal and its immediately surrounding areas north of Interstate-10. As the Mississippi River water spreads into the swamp and even along channels (e.g., Hope Canal to Tent Bayou to Dutch Bayou), the TN concentrations decrease due to losses from the water column that are simulated with the first order decay rates.

Based on the spatial patterns of predicted TN concentrations in Lake Maurepas, it appears that Dutch Bayou and Reserve Relief Canal are contributing similar loadings of TN to Lake Maurepas. In both the summer and winter simulations, the predicted TN concentrations in the southwest corner of Lake Maurepas (excluding the small areas right at the mouth of Dutch Bayou and the mouth of Reserve Relief Canal) were between 0.8 and 1.0 mg/L at the end of day 20. This represents a small increase over the assumed background concentration of 0.6 mg/L.

The TN in the Mississippi River water consists of approximately 71% nitrate, 2% ammonium, and 27% organic nitrogen (based on long term averages of USGS data at Baton Rouge and Belle Chasse). Among these three forms of nitrogen, nitrate is the form that is expected to undergo the greatest losses from the water column because it can be removed from the water column through denitrification (which is one of the most significant removal mechanisms in wetlands) or uptake by algae or plants. By the time the Mississippi River water reaches Lake Maurepas, the remaining TN is expected to consist mostly of organic nitrogen, which is not available for algal uptake unless it is first converted back to inorganic nitrogen through the process of mineralization, which is a relatively slow process.

After the diversion inflow stops on day 31, the predicted TN values throughout the swamp and in Lake Maurepas return to near background levels by day 41.

Figure 3.5 Predicted TN concentrations for summer at the end of days 7, 20, 31 and 41 days.

Figure 3.6. Predicted TN concentrations for winter at the end of 7, 20, 31 and 41 days.

3.5 Predicted Total Phosphorus Transport

The TP results are shown in Figure 3.7 and 3.8 for summer and winter, respectively. The TP concentration for the Mississippi River inflow was similar between summer (0.26 mg/L) and winter (0.25 mg/L).

As with TN, the highest predicted concentrations of TP are in Hope Canal and the immediately surrounding areas north of Interstate 10.

For TP, the results are different between summer and winter due to the seasonal difference in decay rates. As the water moves into the swamp and along channels, the decrease in TP concentrations is greater for summer than for winter. This trend continues into Lake Maurepas; the predicted TP concentrations in the southwest corner of Lake Maurepas are slightly higher for winter than for summer.

Dutch Bayou and Reserve Relief Canal appear to be contributing similar loadings of TP to Lake Maurepas.

After the diversion inflow stops on day 31, the predicted TP values decrease in the swamp and in Lake Maurepas. By day 41, predicted TP values return to near background levels in Lake Maurepas but are still higher than background in the swamp.

Figure 3.7. Predicted TP concentrations for summer at the end of 7, 20, 31 and 41 days.

Figure 3.8. Predicted TP concentrations for winter at the end of 7, 20, 31 and 41 days.

3.6 Salinity Flushing Results

The purpose of this simulation is to demonstrate the freshening effect of the diversion on a swamp that has experienced high salinity event due to a tropical storm. Figure 3.9 shows contours of salinity after 7 days of diversion inflow. The initial water surface elevation and the salinity is set to 1.0 ft, NAVD88 and 5 ppt, respectively, throughout the entire study area (model domain). In reality, the Central Swamp (south of Interstate-10) is very unlikely to have a storm surge overtopping Interstate-10 resulting in a high salinity. However, due to the model limitations, it is not possible to specify spatially varying values of initial salinity so the entire domain is set to 5 ppt. Additionally, the constant salinity value of 1.5 ppt specified at Pass Manchac (Lake Maurepas) boundary may not be realistic. However, this does not affect results in our primary area of interest which is the swamp north of Interstate-10. Therefore, the focus of presented results is this region. Also, note that the initial water specified for this simulation is 1.0 ft, NAVD88, higher than -3.0 ft, NAVD88, that was specified for the 41-day diversion simulation. Therefore, the marginal inundation areas may not match for these two simulations.

Figure 3.9 shows that salinity is rapidly flushed out of the swamp by diversion flow. As expected, the flushing process is slower in the areas where little diversion flow reaches. The 7-day duration results demonstrate the freshening effects of the diversion flow. The results are generally expected to be similar to those shown by the Percent Mississippi River Water parameter in Figure 3.4; therefore, a longer simulation was not performed.

Figure 3.9. Predicted salinity concentrations at the end of 7 days.

3.7 Comparison with Previous Modeling Studies

The TN predictions discussed in Section 3.2 can be compared with two previous modeling studies for the Maurepas swamp. Comparisons must be done with caution because each study used different modeling approaches based on project objectives and available data.

Day et al. (2004) used output from a two-dimensional hydraulic model to calculate nitrate transport and loss in the Maurepas swamp. The model simulated water being diverted from the Mississippi River into Hope Canal and then moving through the swamp towards the Blind River, Reserve Relief Canal, or Lake Maurepas. The swamp was divided into cells and the equation used to estimate nitrate loss in each cell was:

Percent removal = -14.13 * LN(X) + 25where X = nitrate loading entering that cell (g/m²/day)

The predicted losses of nitrate for water reaching Lake Maurepas were 87% and 81% for diversion flow rates of 1,500 cfs and 2,500 cfs, respectively (Table 4.4 in Day et al. [2004]). It

should be noted that this modeling study did not utilize a background concentration for nitrate because existing concentrations of nitrate in the Maurepas swamp are low.

CH2M Hill (2013) conducted modeling to estimate total nutrient removal for multiple planned and existing diversions along the Mississippi River. Based on objectives of this project and the large area that it encompassed, this modeling was developed at spatial and temporal resolutions that were much coarser than the DELWAQ modeling presented in this report. The CH2M Hill modeling used the pKC* model (described in Section 2.1) with background concentrations of zero for nitrate and ammonium, 0.6 mg/L for organic nitrogen, and 0.042 mg/L for total phosphorus. The model predicted a 57% loss of TN and 46% loss of TP in the Maurepas swamp for "average operations" (Table 14 of CH2M Hill [2013]).

In order to compare the DELWAQ results with these two studies, percentage losses of TN and TP were calculated. For the summer simulations, Mississippi River water was introduced into the swamp with concentrations of 2.6 mg/L TN and 0.26 mg/L TP. Water entering Lake Maurepas at the mouth of Dutch Bayou at the end of day 20 had concentrations of approximately 1.2 mg/L of TN and 0.17 mg/L TP, resulting in percentage losses of 54% for TN and 35% for TP. These percentage losses are similar to the results from CH2M Hill (2013). The percentage loss for TN is lower than the nitrate losses calculated by Day et al. (2004), but nitrate losses are expected to be greater than TN losses because nitrate can be removed from the water column through denitrification and uptake by algae or plants, whereas organic nitrogen (the other primary component of TN in Mississippi River water) can be removed from the water column only by settling of the particulate fraction.

3.8 Comparison with Nutrient Concentrations in Lake Pontchartrain

The predictions of TN in the southern end of Lake Maurepas can be compared with TN concentrations that were observed in Lake Pontchartrain after the Bonnet Carré Spillway was opened in 2008 and in 2011. When the Bonnet Carré Spillway is opened, large volumes of Mississippi River water are diverted into Lake Pontchartrain during a short time. This water reaches Lake Pontchartrain quickly with minimal nutrient loss. In both 2008 and 2011, increased

algae concentrations were observed in the lake (including cyanobacteria that and were presumably caused by the nutrient loading from the diverted Mississippi River water.

In 2008, the spillway was open for about a month, with a total volume of diverted water that exceeded the volume of Lake Pontchartrain (Bargu et al. 2011). The average concentration of nitrate nitrogen that was measured within the plume during the spillway opening was 1.3 mg/L (Bargu et al. 2011). The modeling for Lake Maurepas does not specify what portions of the TN are nitrate, ammonium, and organic nitrogen, but the TN in the water that reaches Lake Maurepas is expected to be mostly organic nitrogen (see Section 3.2). If the predicted TN in the southern end of Lake Maurepas is assumed to include about 0.5 mg/L of organic nitrogen (most of the background concentration of TN is expected to consist of organic nitrogen), then the predicted TN values of 0.8 to 1.0 mg/L in the southern end of Lake Maurepas would correspond to nitrate concentrations of about 0.3 to 0.5 mg/L. These are much lower than the average nitrate concentration measured within the plume in Lake Pontchartrain during the spillway opening (1.3 mg/L).

In 2011, the spillway was open from May 9 to June 20, with a total volume of diverted water that was approximately 330% of the combined volume of Lake Pontchartrain and the downstream estuary (Smith 2014). The average concentration of nitrate nitrogen that was measured along a transect extending from the Bonnet Carré Spillway to the approximate center of the lake was 0.6 mg/L (individual values ranged from below the reporting limit up to 1.4 mg/L; Smith 2014). It is apparent that some dilution or other nutrient loss mechanisms affected some of these values because the nitrate concentrations measured by the USGS in the Mississippi River during the spillway opening ranged from 1.1 to 1.4 mg/L (3 samples at Baton and 6 samples at Belle Chasse). Nitrate concentrations in Lake Pontchartrain near the spillway were probably more similar to the Mississippi River values than the average concentrations reported by Smith (2014) for an entire transect. As discussed above, the TN values predicted for the southern end of Lake Maurepas correspond to estimated nitrate concentrations in Lake Pontchartrain near the spillway.

4.0 SUMMARY AND CONCLUSIONS

A two-dimensional Delft3D hydrodynamic and water quality model was developed and calibrated for the study area. The model was applied to simulate water surface elevations, velocity, TN, and TP under a diversion operation scenario. Under this 41-day scenario, the diversion introduced a constant 2000 cfs of Mississippi River water into the swamp continuously for 31 days followed by 10 days of closure. These simulations showed that after the Mississippi River water reaches the north side of Interstate 10, its flow rate greatly exceeds the capacity of Hope Canal, causing the water to flow into the swamp and spread west as far as Blind River, east as far as Reserve Relief Canal (and slightly beyond), and northward into swamps along Dutch Bayou.

The shallow and relatively slow flow through the swamp allows for nutrients to be removed from the water column before the water reaches Lake Maurepas via Dutch Bayou and Reserve Relief Canal. By the time the Mississippi River water reaches Lake Maurepas, it has lost about 54% of its TN and 35% of its TP. Predicted concentrations of TN in the southern end of Lake Maurepas correspond to nitrate concentrations that are much lower than observed concentrations in Lake Pontchartrain that led to increased algae concentrations in 2008 and 2011 after opening the Bonnet Carré Spillway.

Based on these projection simulations, the proposed diversion of Mississippi River water into the Maurepas swamp is expected to provide beneficial freshening and nutrients to a large area of swamp without causing large increases in nutrient concentrations in Lake Maurepas.

5.0 REFERENCES

- Bargu, S., J.R. White, C. Li, J. Czubakowski, and R. Fulweiler. 2011. *Effects of freshwater input* on nutrient loading, phytoplankton biomass, and cyanotoxin production in an oligohaline estuarine lake. Hydrobiologia 661:377–389.
- Brantley, C.G., J.W. Day, Jr., R.R. Lane, E. Hyfield, J.N. Day, and J.-Y.Ko. 2008. *Primary* production, nutrient dynamics, and accretion of a coastal freshwater forested wetland assimilation system in Louisiana. Ecological Engineering 34:7-22.
- CH2M Hill. 2012. Approaches to Water Quality Treatment by Wetlands in the Upper Klamath Basin. Prepared for PacifiCorp Energy, Portland, OR. August 2012.
- CH2M Hill. 2013. Nitrogen and Phosphorus Removal Estimates for Existing and Planned Mississippi River Diversions. Technical Memorandum prepared for Louisiana Coastal Protection and Restoration Authority. November 2013.
- Day, J.W., Jr., G.P. Kemp, H.S. Mashriqui, R.R. Lane, D. Dartez, and R. Cunningham. 2004. Development Plan for a Diversion into the Maurepas Swamp - Water Quality and Hydrologic Modeling Components. Final report prepared for U.S. Environmental Protection Agency Region 6. September 2004.
- Hunter, R., R. Lane, John Day, J. Lindsey, Jason Day, M. Hunter. 2009. Nutrient Removal and Loading Rate Analysis of Louisiana Forested Wetlands Assimilating Treated Municipal Effluent. Environmental Management 44:865-873.
- Hunter, R.G., J.W. Day, R. R. Lane, G.P. Shaffer, J.N. Day, W.H. Conner, J.M. Rybczyk, J.A. Mitsch, and J.-Y. Ko. 2018. Using Natural Wetlands for Municipal Effluent Assimilation: A Half-Century of Experience for the Mississippi River Delta and Surrounding Environs. Chapter 2 in Multifunctional Wetlands, edited by N. Nagabhatla and C.D. Metcalfe. Springer Publishing.
- Kadlec, R.H. 2000. *The inadequacy of first order treatment wetland models*. Ecological Engineering 15:105-120.
- Kadlec, R.H., J.S. Bays, L.E. Mokry, D. Andrews, and M.R. Ernst. 2011. *Performance analysis of the Richland-Chambers treatment wetlands*. Ecological Engineering 37:176-190.
- Kadlec, R.H., and S.D. Wallace. 2009. Treatment Wetlands, 2nd edition. CRC Press.
- Kadlec, R.H. 2016. *Large Constructed Wetlands for Phosphorus Control: A Review*. Journal of Water volume 8, article 243. 36. pp.
- Lane, R.R., J.W. Day, D. Justic, E. Reyes, B. Marx, J.N. Day, and E. Hyfield. 2004. *Changes in stoichiometric Si, N and P ratios of Mississippi River water diverted through coastal wetlands to the Gulf of Mexico*. Estuarine, Coastal and Shelf Science 60:1-10.

- Merriman, L.S., J.M. Hathaway, M.R. Burchell, and W.F. Hunt. 2017. *Adapting the Relaxed Tanks-in-Series Model for Stormwater Wetland Water Quality Performance*. Journal of Water volume 9, article 691. 18 pp.
- Mitsch, W.J., L. Zhang, E. Waletzko, and B. Bernal. 2014. Validation of the ecosystem services of created wetlands: Two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecological Engineering 72:11-24.
- Paudel, R., and J.W. Jawitz. *Does increased model complexity improve description of phosphorus dynamics in a large treatment wetland?* Ecological Engineering 42:283-294.
- Perez, B.C., J.W. Day, Jr., D. Justic, R.R. Lane, and R.R. Twilley. 2011. Nutrient stoichiometry, freshwater residence time, and nutrient retention in a river-dominated estuary in the Mississippi Delta. Hydrobiologia 658:41-54.
- Phipps, R.G., and W.G. Crumpton. 1994. Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads. Ecological Engineering 3:399-408.
- Smith, E.A. 2014. *Cyanobacteria harmful algal blooms in South Louisiana estuaries: a synthesis of field research, management implications, and outreach*. PhD dissertation, Department of Oceanography and Coastal Sciences, Louisiana State University. May 2014.
- URS. 2014. Mississippi River Diversion into Maurepas Swamp (PO-29, Contract No. 2503-11-63), 95% Design Report, Prepared for the Coastal Protection and Restoration Agency, Louisiana. May 2014.
- Zhang, X., S.E. Feagley, J.W. Day, W.H. Conner, I.D. Hesse, J.M. Rybczyk, and W.H. Hudnall. 2000. A Water Chemistry Assessment of Wastewater Remediation in a Natural Swamp. Journal of Environmental Quality 29:1960-1968.

Hydrodynamic Modeling

1.0 INTRODUCTION

The proposed River Reintroduction into Maurepas Swamp (PO-0029) project (the Project) located near Garyville, Louisiana, will divert flow from the Mississippi River to the Maurepas Swamp wetlands (Figure A.1; figures are located at the end of this appendix). In 2014, URS provided 95% level design of the proposed PO-29 project to CPRA (URS 2014). The project consists of a gated intake structure at the river capable of diverting 2,000 cfs river water, a large sand settling basin, and a long, banked conveyance channel. Approximately halfway along the route, just north of US 61, the channel follows the existing Hope Canal alignment to distribute the diverted water into the wetlands on the north side of Interstate 10.

To support the hydraulic design of the proposed diversion and to evaluate its effect on swamp hydrology, URS developed a two-dimensional (2D) ADvanced CIRCulation (ADCIRC) Model. URS also developed a one-dimensional (1D) Storm Water Management Model (SWMM) of the Garyville-Reserve drainage system to evaluate effects of the water levels in the swamp on the drainage.

The hydrodynamic modeling performed for the 95% level design, did not include modeling the transport of nutrients introduced from the Mississippi River diversion water throughout the swamp. The purpose of the modeling efforts outlined in this document is to develop a hydraulic model of the study area which will be used to simulate transport of nutrients carried by the diverted water. For the purpose of this analysis, it is not necessary to represent the Mississippi River and the gated structure in the model.

2.0 STUDY OBJECTIVES

The objective of the modeling study is to develop and apply a hydraulic model to simulate water surface elevations and velocities throughout the receiving swamp when the diversion flow is introduced in the system. This hydraulics will then be used as an input to a water quality simulation to evaluate fate and transport of nutrients. The hydraulics will also be used to evaluate freshening of the swamp after a high salinity event.

3.0 MODELING PROGRAM SELECTION AND DESCRIPTION

The study area is an extensive swamp forest surrounding Lake Maurepas in the upper reaches of Pontchartrain estuary. The area is tidally influenced by diurnal micro-tidal regime introduced from Pass Manchac connecting Lake Maurepas with Lake Pontchartrain. The study area includes several natural and man-made channels that carry flow in and out of the swamp while distributing it in the swamp wherever low banks are present. For the purpose of the study, it is appropriate to assume the dominant velocities being in the longitudinal and transverse direction (two dimensions). Due to the relatively shallow water depths, the velocities and accelerations in the vertical direction (the third dimension) are negligible and the flow can be assumed vertically well-mixed. This assumption allows us to apply a two-dimensional (2D) model instead of a three-dimensional (3D) model. A 3D model for the study area will be extremely computationally intensive resulting in prohibitive simulation times without adding to the accuracy of the results. On the other hand, an over-simplified one-dimensional (1D) model will be less applicable for the study purpose. Therefore, two-dimensional depth-averaged (2D) model is an appropriate type of model for this study.

Various public domain and commercial/proprietary computer software is available for 2D, vertically averaged hydrodynamic transport modeling. These models solve the hydrodynamic and constituent transport equations using either a structured or an unstructured computational mesh.

The structured-grid models consist of rectangular or square elements and are simpler in parallel programming implementation as they employ finite-difference schemes to solve governing equations and different portions of the grid can be distributed to multiple processors for optimal load balancing. Additionally, finite difference schemes do not suffer from mass conservation problems often inherent in the finite element schemes of unstructured grids. However, the accuracy in the complex edge-of-the-water geometry in structured grids may not be as good as the unstructured-grid models. The unstructured models (finite element or finite volume-based), on the other hand, allow elements of various shapes (line, triangle, or quadrilateral), which enables fitting elements more closely to the topographic features. Further, the unstructured mesh allows variation of element size in a single mesh enabling creation of a

denser mesh where more details are necessary. However, implementation of finite-element models is not as straightforward as finite-difference models. This is mainly due to approximation of the fields within each element with a simple linear, quadratic or polynomial function with finite number of degrees of freedom.

The following are some of the modeling programs commonly used to model 2D, vertically averaged hydrodynamics:

- 1. RMA-2 model (unstructured mesh) by Resource Modelling Associates, Inc;
- 2. ADCIRC from the University of North Carolina at Chapel Hill (unstructured mesh);
- 3. MIKE-21 from the Danish Hydraulic Institute (unstructured mesh); and
- 4. Delft3D from Deltares (structured mesh).

Although the first two options can better represent present area with broken swamp, lake, channels and bayous, the Delft3D option was considered for this study because it has been widely applied in south Louisiana and for the Louisiana Coastal Master Plan. Delft3D is highly scalable on High Performance Computing (HPC) infrastructures. Equally important is the fact that Delft3D with its DELWAQ module can model a wide range of water quality parameters including secondary processes. DELWAQ can model 18 independent principal substances with over 20 different sub-substances. It has been applied in studies involving eutrophication, Dissolved Oxygen depletion, contaminated sediment, and outfall temperatures. A particularly useful feature of DELWAQ is its ability to specify user-defined spatially variable, depth dependent decay rate constants for the constituents of interest.

3.1 Overview of Approach

FTN developed and applied Delft3D model version 4.02.03 (Deltares 2018) to predict the tidal circulation and the transport of suspended nutrients. Delft3D FLOW module simulates water levels and velocity driven by boundary conditions of tides and currents. The output from DELFT3D FLOW is used in DELWAQ to simulate the advection and dispersion of nutrients.

The Delft3D FLOW module utilizes a robust numerical finite-difference scheme where model results are computed on a horizontal staggered grid. The water level points are designated in the center of a continuity cell and the velocity components are perpendicular to the grid cell faces. Delft3D can be operated in a 2D (vertically averaged) or a 3D mode. In the present application, Delft3D is used in 2D mode only.

4.0 DATA COLLECTION TO SUPPORT MODELING

The following topographic survey data and hydraulic monitoring data were used in this modeling study.

4.1 Topographic Data

The topographic field data are used to develop the model geometry which is a digital representation of the terrain. Specifically, the topographic data were required for Lake Maurepas, the streams and the swamp.

The Lake Maurepas bathymetry was obtained from USGS and is also from the 2002 surveys. Existing channel cross-section data were available at 29 locations on streams in the main swamp north of I-10 (URS 2005). To evaluate whether the cross-sections have changed significantly over the years, new topographic surveys were collected in April 2018 at 6 selected cross-sections (MPH 2018). The original 29 and new 6 survey locations are shown in Figure A.2. Figures A.3 through A.5 compare the old and the new cross-sections. The comparison shows that the previously collected cross-sections have not changed significantly in the cross-sectional area and can be used for the purpose of this study.

To represent the swamp, it would have been prohibitively expensive to collect topographic field survey data in the forested swamp. Therefore, the LIDAR data from 2012 were used. The data contained excessively higher elevations in the main swamp north of Interstate-10 not generally found in this region, therefore upon the recommendation of the Technical Advisory

A-4

Group¹ the marsh floor elevation was capped at 1.0 ft, NAVD88. The revised topographic contours are show in Figure A.6.

4.2 Hydraulic Monitoring Data

Hydraulic monitoring data needed for modeling typically consists of time series of water surface elevations, velocity or discharge. These data are used to specify boundary conditions and for calibration/validation of the model. Since the major channels were found to have no major changes, the previously collected monitoring data (URS 2006) were judged to be appropriate for use in this study. The monitoring gage locations are shown in Figure A.7. Water surface elevations were collected at all locations and velocity was collected at location S-9.

5.0 MODEL GEOMETRY DEVELOPMENT

The model geometry is a mathematical representation of the study area topography. The model domain size was selected such that the boundary conditions are specified far away from the area of interest. The domain is represented by a two-dimensional computational grid composed of 1.3 million points. The grid is most refined (cell size 12 m) at Hope Canal, Mississippi Bayou, Relief Canal, Dutch Bayou, and the interior channels connecting them, where detailed hydrodynamic and nutrient dynamics are expected, and becomes coarser (cell size 200 m) towards the boundary at Lake Maurepas. The interior swamps enjoy 12 to 50 m of resolution depending upon location and priority in nutrient dispersal. Figure A.8 shows the model grid for existing conditions.

The bathymetry of the primary channels was assigned using previously collected channel cross-sections. The bathymetry of the swamp areas was assigned using the LIDAR data. Figure A.9 shows the model bathymetry. It should be noted that bathymetry does not capture numerous rivulets and small open water areas that are widespread in the swamp, rather, it represents the overall relief in the terrain. This is the limitation of LIDAR data that were used for the bathymetry.

¹ Prof. Gary Shaffer, Southeastern Louisiana University; Prof. Richard Keim and Prof. Jim Chambers, Louisiana State University; and Dr. Ken Krauss, USGS.

6.0 MODEL CALIBRATION AND VALIDATION

Model calibration is an iterative process where model coefficients are systematically varied or "tuned" through a series of simulations to improve model's reproduction of observed data. The range of values used when varying model coefficients should be limited to that which reasonably reflects the physical conditions and processes during the simulation periods. If unreasonable values are required to calibrate a model, it should serve as a warning that there is a process or feature not being represented in the model.

Model validation involves simulating one or more independent sets of conditions, using model coefficients determined in the calibration process, to assess how well the calibrated model can reproduce observed data for those independent conditions. The hydrologic conditions represented by the calibration and validation periods should be similar. For example, a model calibrated for average conditions should not be validated with hurricane conditions. The primary purpose of model calibration and validation is to provide greater confidence in the model when it is used to predict the system response to differing scenarios.

For the present study, two independent observed data periods were available for calibration and validation at monitoring stations shown in A.8. The first period was from December 26, 2003, through January 1, 2004, and represents normal hydrologic conditions. The second period was from October 4, 2004, through October 18, 2004, and represents tropical storm conditions (Tropical Storm Matthew). The two periods represent two distinct hydrologic conditions. Therefore, instead of using them as a calibration and a validation period, they were used as two calibration periods. The water movement in a forested swamp at high water levels can be quite different than the water movement at normal conditions due to the additional frictional drag presented by the tree trunks.

The model parameters involved in calibration are typically coefficients related to the simulation of physical processes in the model (e.g., friction coefficients in fluid flow simulation). However, model calibration may also involve variation of other parameters that have uncertainty associated with them, for example, model geometry or boundary conditions (driving forces).

The model was calibrated and validated for water surface elevation and velocity thorough a series of Delft3D FLOW simulations. The calibration is accomplished mainly through

improvement in geometry of the channels and tuning the roughness coefficient to improve the accuracy of the model predictions.

The calibration simulations were performed by applying known tidal water surface elevations at the Pass Manchac boundary. For the normal and tropical storm conditions, Pass Manchac is the most important boundary condition that drives the water movement in the study area. The inflows at the other major boundaries such as Blind River, Amite River, Hope Canal, and Reserve Relief Canal were not measured during the data collection period. However, they have much smaller influence on the swamp water levels under the available conditions. Therefore, these inflows were not specified as the boundary conditions during calibration. These inflows affect local water levels where they enter the study area. Figure A.10 shows the locations of the gages and nodal coordinates where observed and predicted water surface elevations are compared.

The calibration for the normal conditions is shown in Figures A.11 through A.14. The tidal elevations at Pass Manchac are shown in the figures for reference as they are the most important boundary conditions driving water movement in the system. After a series of trial runs, a uniform Manning's roughness of $0.035 \text{ s/(m}^{1/3})$ is applied for the whole domain. In the case of normal conditions, the statistical measures shown on the figures indicate a good model performance. The model performance is better at the gages in the middle of the swamp. At the gages near I-10 and south, the water surface elevations are more affected by the local runoff from the adjacent areas which are outside the model domain. Rainfall contribution was not modeled in this simulation as it was not the driving force for hydraulics in the mid-swamp region. In the primary area of interest – the mid-swamp region – where the nutrient assimilation is expected, the model performance is excellent.

The calibration for the tropical storm hydrologic conditions is shown in Figures A.15 through A.19. The final selected values of roughness (Manning's n) were 0.02, 0.035 and $0.2 \text{ s/(m^{1/3})}$ for Lake Maurepas, the channels, and the swamp, respectively. The swamp region is assigned a high roughness due to additional vegetation drag. The open water body lake is assigned a low roughness. The channels are assigned a typical roughness value used for natural streams. The statistical measures of correlation coefficient and root-mean-square error provided for each gage indicate the satisfactory performance of the model predictions. In general, the

rising limb and peak of the storm hydrograph is matched well by the model. During the falling limb of the hydrograph, the model underpredicts the water levels indicating faster outgoing flow than observed.

7.0 MODEL APPLICATION – GEOMETRY MODIFICATION

The calibrated model was used to simulate a diversion scenario. First, the model geometry was modified to represent the diversion channel and outfall management features proposed in the 95% design report (URS 2014). The following model geometry modifications were performed:

- Added the proposed diversion channel from the Mississippi River to its end approximately 1000 ft north of its crossing with I-10 highway. The channel has a variable cross-section along its way. The longest segment between the Highway 61 and I-10 has a 60 ft wide bottom and 1V:5H side slope. The invert is -7 ft- and -8 ft, NAVD88 at Highway 61 and I-10, respectively.
- Closed culvert crossings under I-10 between LA 641 and Mississippi Bayou to prohibit backflow from the diversion into the swamp between I-10 and Highway 61.
- Added gaps in the railroad embankment along the west bank of Hope Canal.

The Mississippi River, the details of diversion complex or the sediment settling basin were not represented in the model as they were not necessary to simulate the hydraulics in the swamp which is the purpose of this modeling effort. The model geometry representing proposed diversion is shown in Figure A.19.

The results of the model application are discussed in Section 3.0 of the main report.

8.0 **REFERENCES**

- Deltares. 2018. Delft3D FLOW, User Manual: Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. Delft, The Netherlands.
- MPH. 2018. Topographic Survey in the outfall management area of the Mississippi River Reintroduction into the Maurepas Swamp (PO-29), Prepared by Morris P. Hebert, Inc for the Coastal Protection and Restoration Authority, Louisiana. July 18, 2018.
- URS. 2005. *Mississippi River Diversion into Maurepas Swamp Project PO-29, Volume III of VII, Topographic and Bathymetric Survey, Prepared for the Coastal Protection and Restoration Authority, Louisiana*. October, 2005.
- URS. 2006. *Mississippi River Diversion into Maurepas Swamp Project PO-29, Volume IV of VII, Hydrologic Data, Prepared for the Coastal Protection and Restoration Authority, Louisiana.* June 29, 2006.
- URS. 2014. Mississippi River Diversion into Maurepas Swamp (PO-29, Contract No. 2503-11-63), 95% Design Report, Prepared for the Coastal Protection and Restoration Authority, Louisiana. May, 2014.

Figure A.1. Maurepas swamp hydraulic modeling study area.

Figure A.2. Locations of existing (2004) and new (2018) channel cross-section field surveys.

FigureA.3. Comparison of old (2004) and new (2018) channel cross-sections at N-19 and N-18.

Figure A.4. Comparison of old (2004) and new (2018) channel cross-sections at N-16 and N-13.

Figure A.5. Comparison of old (2004) and new (2018) channel cross-sections at N-8 and N-25.

Figure A.6. Delft3D model bathymetry using topographic contours from 2012 LIDAR data. Swamp floor elevation capped at 1.0 ft in the region shown by the inset.

Figure A.7. Locations of hydraulic monitoring gages.

Figure A.8. Maurepas swamp Delft3D model grid resolution.

Figure A.9. Maurepas swamp Delft3D model bathymetry.

Figure A.11. Observed and predicted water surface elevations at gages S-4, S-9 and S-3 under normal conditions.

Figure A.12. Observed and predicted water surface elevations at gages S-23, S-7 and S-11 under normal conditions.

Figure A.13. Observed and predicted water surface elevations at gages S-25, S-5 and S-24 under normal conditions.

Figure A.14. Observed and predicted water surface elevations at gages S-10, S-16 and velocity at S-9 under normal conditions.

Figure A.15. Observed and predicted water surface elevations at gages S-4, S-9 and S-3 under tropical storm conditions.

Figure A.16. Observed and predicted water surface elevations at gages S-23, S-7 and S-11 under tropical storm conditions.

Figure A.17. Observed and predicted water surface elevations at gages S-25, S-5 and S-24 under tropical storm conditions.

Figure A.18. Observed and predicted water surface elevations at gages S-10, S-16 and velocity at S-9 under tropical storm conditions.

Figure A.19. Maurepas swamp Delft3D model grid with the proposed diversion channel.

APPENDIX B

Information from Published Literature Used to Develop Loss Rates

Description or name of wetlands	TN conc. entering wetland (mg/L)	TN conc. leaving wetland (mg/L)	TN percent reduction (%)	Hydraulic residence time (days)	First order decay rate for TN (1/day)	Average depth (m)	"k" value for PkC* model (m/yr)	Comments
Wetlands below Caernarvon Diversion [1]	1.94	0.51 – 0.89 ^A	38% ^B	"about two weeks"	0.034	not reported		Data were collected during a March 2001 pulse; reductions measured over a distance of about 33 – 39 km. Receives water from Mississippi River.
Fourleague Bay [2]	1.2 – 1.6	0.4 – 0.6	Feb: 42% ^C Mar: 38% ^C Apr: 37% ^C	Feb: 5.3 Mar: 5.0 Apr: 18.7	Feb: 0.103 Mar: 0.096 Apr: 0.025	~ 1	Feb: 37.6 Mar: 34.9 Apr: 9.0	Data collected during Feb. – April 1994. This is an open waterbody. Primary source of nutrients is Atchafalaya River.
City of Mandeville – Bayou Chinchuba wetland [3]	7.5		65%	77 ^D	0.014	approx. 0.3	1.5	Data collected during Sep. 1998 – Oct. 2000. This is a forested wetland receiving treated municipal wastewater.
City of Thibodaux treatment wetland [4]	12.6	1.08	91%	120	0.021	0.33	2.4	Data were collected during Mar. 1992 – Mar. 1994. This is forested wetland receiving treated municipal wastewater.
City of Luling treatment wetland [5]	7.06	1.18	83%	512 ^D	0.003	not reported		Data were collected during 2006 – 2013. This is forested wetland receiving treated municipal wastewater.
City of Breaux Bridge treatment wetland [5]	8.44	1.38	84%	410 ^D	0.004	not reported		Data were collected during 2001 – 2013. This is forested wetland receiving treated municipal wastewater.
Richland- Chambers treatment wetlands in Texas [6] ^E	PS1: 4.95 PS2: 4.43 PS3: 4.43 FSS: 3.53	PS1: 1.32 PS2: 1.14 PS3: 1.36 FSS: 1.44	PS1: 73% PS2: 74% PS3: 69% FSS: 59%	PS1: 9.2 PS2: 7.8 PS3: 11.2 FSS: 8.2	PS1: 0.144 PS2: 0.174 PS3: 0.105 FSS: 0.110	PS1: 0.29 PS2: 0.25 PS3: 0.28 FSS: 0.40	PS1: 33.0 PS2: 55.4 PS3: 29.0 FSS: 32.8	Data were collected during Nov. 1993 – Jul. 2000 for pilot systems and Jun. 2003 – May 2008 for field scale system. Inflow is from Trinity River.

Table B.1. Information from published literature used to develop loss rates for TN.

Description or name of wetlands	TN conc. entering wetland (mg/L)	TN conc. leaving wetland (mg/L)	TN percent reduction (%)	Hydraulic residence time (days)	First order decay rate for TN (1/day)	Average depth (m)	"k" value for PkC* model (m/yr)	Comments
Stormwater treatment wetlands in North Carolina [7]	0.74 – 2.69	0.56 - 2.06	not calculated	0.1 – 3.0	0.056 – 1.26 ^F	0.1 - 0.3	5.1 – 63.1 (median = 46.1)	Ranges are for 10 constructed wetlands receiving stormwater in different regions of North Carolina.
Olentangy River Wetland Research Park [8]	2.90 ^G	1.97 ^G	31.9%	3.7 ^G	0.104	approx. 0.4 ^G	16.1	Data were collected during 2004 – 2010. Inflow is from Olentangy River. Located in Ohio.
Des Plaines River Experimental Wetlands [9] ^H	< 0.5 to $\sim 7.5^{\mathrm{I}}$	0.5 to 1.5 ¹	EW3: 54% EW4: 75% EW5: 59%	EW3: 12 EW4: 95 EW5: 13	EW3: 0.065 EW4: 0.015 EW5: 0.069	$0.6 - 0.7^{\mathrm{G}}$	EW3: 14.6 EW4: 3.6 EW5: 16.7	Data were collected during Apr. – Nov. 1991. Inflow is from Des Plaines River. Located in Illinois.

Notes:

A. Concentrations leaving the wetland are affected by dilution as well as other (e.g., biological and chemical) processes.

B. The effects of dilution were excluded in the calculations for this reduction percentage.

C. Percent reduction was calculated as 100% minus the percent exported from the bay into the Gulf of Mexico.

D. Estimated value obtained from Table 1 in Hunter et. al. (2009).

E. PS1 = Pilot system #1, PS2 = Pilot system #2, PS3 = Pilot system #3, FSS = Fields scale system.

F. Calculated as "k" value for PkC* model divided by average depth. "k" values were calculated by the author.

G. Calculated using other information in the article.

H. EW3 = Experimental wetland #3, EW4 = Experimental wetland #4, EW5 = Experimental wetland #5.

I. Estimated from Figure 4 (time series plot) in article.

References:

- [1] Lane et. al. (2004)
- [2] Perez et. al. (2011)
- [3] Brantley et. al. (2008)
- [4] Zhang et. al. (2000)
- [5] Hunter et. al. (2018)
- [6] Kadlec et. al. (2011)
- [7] Merriman et. al. (2017)
- [8] Mitsch et. al. (2014)
- [9] Phipps and Crumpton (1994)

Description or name of wetlands	TP conc. entering wetland (mg/L)	TP conc. leaving wetland (mg/L)	TP percent reduction (%)	Hydraulic residence time (days)	First order decay rate for TP (1/day)	Average depth (m)	"k" value for PkC* model (m/yr)	Comments
Wetlands below Caernarvon Diversion [1]	0.16	0.059 – 0.065 ^A	35% ^B	"about two weeks"	0.031	not reported		Data were collected during a March 2001 pulse; reductions measured over a distance of about 33 – 39 km. Receives water from Mississippi River.
Fourleague Bay [2]	0.11-0.15	0.06 – 0. 10	Feb: 0% ^C Mar: 12% ^C Apr: 58% ^C	Feb: 5.3 Mar: 5.0 Apr: 18.7	Feb: 0 Mar: 0.025 Apr: 0.046	~ 1	Feb: 0 Mar: 9.1 Apr: 16.9	Data collected during Feb. – April 1994. This is an open waterbody. Primary source of nutrients is Atchafalaya River.
City of Mandeville – Bayou Chinchuba wetland [3]	2.0		50%	77 ^D	0.009	approx. 0.3	1.0	Data collected during Sep. 1998 – Oct. 2000. This is a forested wetland receiving treated municipal wastewater.
City of Thibodaux treatment wetland [4]	2.46	0.85	65%	120	0.009	0.33	1.1	Data were collected during Mar. 1992 – Mar. 1994. This is forested wetland receiving treated municipal wastewater.
City of Luling treatment wetland [5]	2.34	0.51	78%	512 ^D	0.003	not reported		Data were collected during 2006 – 2013. This is forested wetland receiving treated municipal wastewater.
City of Breaux Bridge treatment wetland [5]	2.42	0.47	81%	410 ^D	0.004	not reported		Data were collected during 2001 – 2013. This is forested wetland receiving treated municipal wastewater.
Richland- Chambers treatment wetlands in Texas [6] ^E	PS1: 0.727 PS2: 0.719 PS3: 0.724 FSS: 0.888	PS1: 0.457 PS2: 0.342 PS3: 0.347 FSS: 0.539	PS1: 37% PS2: 52% PS3: 52% FSS: 39%	PS1: 9.2 PS2: 7.8 PS3: 11.2 FSS: 8.2	PS1: 0.050 PS2: 0.095 PS3: 0.066 FSS: 0.061	PS1: 0.29 PS2: 0.25 PS3: 0.28 FSS: 0.40	PS1: 6.2 PS2: 10.9 PS3: 5.7 FSS: 10.7	Data were collected during Nov. 1993 – Jul. 2000 for pilot systems and Jun. 2003 – May 2008 for field scale system. Inflow is from Trinity River.

Table B.2. Information from published literature used to develop loss rates for TP.

Description or name of wetlands	TP conc. entering wetland (mg/L)	TP conc. leaving wetland (mg/L)	TP percent reduction (%)	Hydraulic residence time (days)	First order decay rate for TP (1/day)	Average depth (m)	"k" value for PkC* model (m/yr)	Comments
Stormwater treatment wetlands in North Carolina [7]	0.17 - 0.38	0.05 - 0.48	not calculated	0.1 - 3.0	0.048 – 1.01 ^F	0.1 - 0.3	4.4 - 84.2 (median = 37.0)	Ranges are for 10 constructed wetlands receiving stormwater in different regions of North Carolina.
Olentangy River Wetland Research Park [8]	0.148 ^G	0.085 ^G	42.7%	4.1 ^G	0.136	approx. 0.4 ^G	21.2	Data were collected during 1994 – 2001 and 2003 – 2010. Inflow is from Olentangy River. Located in Ohio.
37 large constructed wetlands [9]	median = 0.114	median = 0.038	variable	variable		variable	median = 12.5	This is literature review of wetlands with measured data; the PkC* model was calibrated for each system.

Notes:

A. Concentrations leaving the wetland are affected by dilution as well as other (e.g., biological and chemical) processes.

B. The effects of dilution were excluded in the calculations for this reduction percentage.

C. Percent reduction was calculated as 100% minus the percent exported from the bay into the Gulf of Mexico.

D. Estimated value obtained from Table 1 in Hunter et. al. (2009).

E. PS1 = Pilot system #1, PS2 = Pilot system #2, PS3 = Pilot system #3, FSS = Fields scale system.

F. Calculated as "k" value for PkC* model divided by average depth. "k" values were calculated by the author.

G. Calculated using other information in the article.

References:

- [1] Lane et. al. (2004)
- [2] Perez et. al. (2011)
- [3] Brantley et. al. (2008)
- [4] Zhang et. al. (2000)
- [5] Hunter et. al. (2018)
- [6] Kadlec et. al. (2011)
- [7] Merriman et. al. (2017)
- [8] Mitsch et. al. (2014)
- [9] Kadlec (2016)

STATE OF LOUISIANA COASTAL PROTECTION AND RESTORATION AUTHORITY RIVER REINTRODUCTION INTO MAUREPAS SWAMP AND WEST SHORE LAKE PONTCHARTRAIN FLOOD RISK REDUCTION PROJECT PO-0029 STATE PROJECT No. PO-0062 LaGOV NO. 4400019214

> BASIS OF DESIGN REPORT 15% DESIGN

APPENDIX E

TASK ORDER 1 STRUCTURAL CALCULATIONS Maurepas Swamp WSLP

CONCRETE FOUNDATIONS

AECOM Project: 60632162

SECTION 1

AECOM

Date: Dec-20

Job	Maurepas Swamp	Project No. 60589133	
	WSLP		
Description	CONCRETE FOUNDATIONS	Computed by	Date Dec-20
	AECOM Project: 60632162		
	Table of Contents	Checked by	Date Dec-20
			References

TABLE OF CONTENTS

- 1- RR-01 Roller Gate
- 2- RR-02 (Storage for RR-01)
- 3- CN-02 (Represents CN-01; Storage for CN-03 and CN-04)
- 4- CN-03 Roller Gate (Represents CN-04)
- 5- CN-05 (Omitted for this submittal)
- 6- KCS-01
- 7- KCS-02 (Represents KCS-04)
- 8- KCS-03 Swing Gate
- 9- KCS-05
- 10- Airline Culvert

Reference: 95% Maurepas Geotech Information and Pile Capacity Curves

Maurepaus Swamp

Gate Monolith

River Road Gate Monolith

AECOM Project : 60632162

Foundation, Wall & Slab

Computed by:	JMH	Checked by:	AML
Date:	Dec-20	Date:	Dec-20

Job	Maurepaus Swamp	Project No. 60632162
Description	Gate Monolith	Computed by JMH Date Dec-20
	River Road Gate Monolith	
	Wall Geometry	Checked by AML Date Dec-20
		References
WALL GEOMET	<u>TRY:</u>	FLOOD SIDE
Top of Pilaster EL	. 16.13 NAVD88	TOW EL XXX
Top of Wall EL	. 16.13 NAVD88	
100 Yr. Water El	NAVD88	
10 Yr. Water El	NAVD88	
Top of Slab EL	. 10.49 NAVD88	
H	= 8.64 ft.	
h1=	= 5.64 ft.	
h2=	= 3.00 ft. (Base Slab Height)	
h3=	= 0.00 ft. (P.S. Soil Height)	GRADE
h4=	= 0.00 ft.	
h5=	= 0.00 ft. (F.S. Soil Height)	
B=	= 10.00 ft. (Base Slab Width)	2
b1=	= <u>1.50</u> ft. (Wall Stem Width, top)	
b2=	= <u>6.25</u> ft. (F.S. Slab Width)	
b3=	= <u>1.50</u> ft. (Wall Stem Width, bottom)	
b4=	= 2.25 ft. (P.S. Slab Width)	
b5=	= 2.00 ft. (F.S. Pile Row Edge Space)	
b6=	5.00 ft. (Sheet Pile Edge Space)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
BAT	= 0.00 (Wall Batter, N/A)	
PS Grade =	= 10.49 NAVD88 (Average of PS soil for all)	1-WALL CROSS-SECTION
		<u>Notes:</u> 1) positive 'Y' axis is into page
Monolith Length =	= 66.0 ft	2) pile batters vary from those shown
		in diagram
Bottom Of Slab =	= 7.49 NAVD88	

Note: In this report, white boxes are for input data and colored boxes are calculated values.

Description	Gate Monolith
	River Road Gate Monolith
	Applied Loads in SAP Model

Pile and Pilaster Layout:

FS

Job	Maurepaus Swamp		Project No	. 60632162		
Description	Gate Monolith		Computed by	/JMH	Date	Dec-20
	River Road Gate Monolith					
	Assumptions		Checked by	/ AML	Date	Dec-20
					F	References
Uni	t Weight of Storm Water =	0.0624	kcf			
	Wet Unit Weight of Soil =	0.1200	kcf			
	Sat Unit Weight of Soil =	0.0576	kcf			
	Unit Weight of Concrete =	0.1500	kcf			
	Impact Load =	0.0000	k/f†			
I	FS Wind force above SWL=	0.0500	ksf			
Constru	uction Surcharge Pressure =	0.2500	ksf			
Unbalanced	Load for Stability Analysis:					
	F _{cap} (k/f†) =	0.00	(10y SWL Case; Force ac	ts at bottom of s	lab)	
	F _{cap} (k/f†) =	0.00	(100y SWL Case; Force a	cts at bottom of	slab)	
	F _{cap} (k/ft) =	0.00	(Water to TOW Case; Fo	rce acts at botto	m of slab)	
	K ₀ , Granular fill =	0.95	(for lateral soil forces)			
Assumed N	Wall Reinforcement Cover =	0.25	ft			
	Assumed Wall d _{bar =}	0.06	ft			
	Gate Length =	42.00	ft			
	Gate Opening =	40.00	ft *Tributary L	.ength = 20'		
	Gate Weight =	13.86	kip *Taken from	n similar roller ga	te from Hoboke	en project.

14.7/13.86 = 1.06 so that the gate weight is a 6% difference in weight; by inspection, gate weight will not drastically affect the design and the new gate weight passes with the pile capacities along with the shear and moment capacities on the slab. The gate weight will be updated and analyzed for the next submittal.

AECOM

Job <u>Ma</u>	aurepaus Swamp	Project No. 600	632162	
Descripti	on Gate Monolith	Computed by	JMH Date	Dec-20
Ri	ver Road Gate Monolith			
Lo	ad Cases	Checked by	AML Date	Dec-20
				References

No. of Load Cases 3 Update

No.	DCD LC No.	Description	FS Water El.	PS Water El.	Pile Design Over Stresses
1	1	Construction Surcharge	7.49	7.49	1.17
2	2a	Water to TOW (impervious cutoff)	16.13	7.49	1.33
3	2b	Water to TOW (pervious cutoff)	16.13	7.49	1.33

* Impact load is not applicable for this section, so it is excluded from the load combinations

* Forces induced by 10y water elevation are not applicable for this section, so they are excluded from the load combinations

*Earthquake and Wave Loads are to be determined and are excluded from these calculations

Job	Maurepaus Swamp	Project No.	60632162		
Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Monolith	-		—	
	Applied Loads in SAP Model	Checked by	AML	Date _	Dec-20

References

*The following diagrams represent the loads applied in the SAP Model; base reactions were taken from SAP to plug into CPGA to get the pile reactions of the structure.

AECOM

Job	Maurep	oaus Swamp	Project No.	60589133		
Descr	iption	Gate Monolith	Computed by	ЈМН	Date	Dec-20
		River Road Gate Monolith			_	
	Summa	ary of Foundation Loads	Checked by	AML	Date	Dec-20
					R	eferences

UNFACTORED LOADS FOR CPGA								
Load Fx Fy Fz Mx My N								
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)		
LC1	0.00	0.00	505.82	-371.93	87.64	0.00		
LC2	-153.38	0.00	339.10	-288.77	745.31	0.00		
LC3	-153.38	0.00	339.10	-288.77	596.81	0.00		

This table represents the base reactions taken from SAP. The moments were taken from the centroid of the structure with positive-x facing the flood side and positive-z facing downwards.

*NOTE: Loads exported from SAP 2000 are within 5% on the conservative side of the actual loads on the monolith; OK for this submittal.

FACTORED LOADS FOR CPGA								
Load Fx Fy Fz Mx My M								
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)		
LC1	0.00	0.00	809.31	-595.08	140.22	0.00		
LC2	-245.40	0.00	542.56	-462.02	1192.50	0.00		
LC3	-245.40	0.00	542.56	-462.02	954.90	0.00		

Project No. 60632162

AML

Checked by

Date Dec-20

Description Gate Monolith
River Road Gate Monolith
Soil & Pile Information Required for CPGA

Computed by JMH Date

Date Dec-20 References

Pile Layout: 14 HP Piles

Row	<u>1</u>	<u>Row</u> 2			
pile no.	×	у	pile no.	×	у
1	3.00	-30.00	8	-3.00	-30.00
2	3.00	-20.00	9	-3.00	-20.00
3	3.00	-10.00	10	-3.00	-10.00
4	3.00	0.00	11	-3.00	0.00
5	3.00	10.00	12	-3.00	10.00
6	3.00	20.00	13	-3.00	20.00
7	3.00	30.00	14	-3.00	30.00

FS

PS

 Tip Elevation:
 (For CPGA, need Tip Elevation as a function of CPGA Axis at B.O. Slab, +Z points downward)

 B.O.S. Elevation =
 7.49

 NAVD88
 Pile Tip El. =

 -35
 NAVD89

 "TIP" in CPGA =
 42.49 ft

<u>Pile Properties & Attributes</u>

29000000.00	psi
21.40	in ² HP14X73
729.00	in ⁴
261.00	in ⁴
1.70	(factor for method of axial load transfer from pile to soil; = 1 full tip bearing, = 2 full skin friction)
107.00	in ³
35.80	in ³
50.00	ksi
	2900000.00 21.40 729.00 261.00 1.70 107.00 35.80 50.00

*Note: All soil properties and pile capacities are taken from 95% submittal for Maurepas intake structure.

Allowable Compression (AC) =	50.00	kips
Allowable Tension (AT) =	30.00	kips
ACC =	492.66	kips
ATT =	535.00	kips
AM1 =	2972.22	kip-in
AM2 =	994.44	kip-in

Descrir	tion	Gate Monolith	Computed by IMH Date Dec-20
Descrip		River Road Gat	e Monolith
	Soil & Pile Inf	ormation Requi	ed for CPGA Checked by AML Date Dec-20
		-	References
<u>Es Val</u>	ue for CPGA	Run: Monc	lith width = 66 ft $E_s = 540.40$ psi = 0.5404 ksi
	GROUP	FACTORS	
	Pile Spacing in Direction of Loading	From EM1110-2- 2906	Group reduction is based on distance between piles in direction of loading. This includes distance due to battering and is taken over the distance 10 x d _{pile} (point of fixety).
		D	
	3B	0.33	Assume a batter of 6.00
	4B	0.38	B = d _{pile} = 13.6 in = 1.133 ft
	5B	0.45	
	6B	0.56	Distance between piles at B.O. Slab = 6.00 ft
	7B	0.71	Average distance between piles over 10*dpile = 7.89 ft
	8B	1	
			Average distance between piles in terms of pile width B = 6.96 B
			Group Reduction "D" value for this distance = 0.70
			Therefore, Es including group reduction = 0.38 ksi

Project No. 60632162

Date Dec-20

Description Gate Monolith River Road Gate Monolith Soil & Pile Information Required for CPGA Computed by JMH

Checked by AML Date Dec-20

References

Maurepaus Swamp

Project No. 60632162

Description	Gate Monolith		Computed by	JMH	Date	Dec-20
	River Road Gate Monolith	1	-			
	CPGA Input & Output File	s (Pile Analysis)	Checked by	AML	Date	Dec-20
Input fil	le:					
1	00 MONOLITH, TOW EL. 16.13,	TOS EL.10.49;	HP 14X73 PI	LES		
2	00 PROP 29000 729 261 21.4	1.7 0 ALL				
3	00 SOIL ES 0.3805 TIP 42.49	0 ALL				
4	00 PIN ALL					
5	00 ALLOW H 50 30 492.7 535	2972.2 994.4 A	LL			
6	00 FOVSTR 1.17 1.17 1					
7	00 FOVSTR 1.33 1.33 2 3					
8	00 BATTER 6 All					
1	200 ANGLE 180 8 TO 14					
1	300 PILE 1 3 -30 0					
1	400 PILE 2 3 -20 0					
1	500 PILE 3 3 -10 0					
1	600 PILE 4 3 0 0					
1	700 PILE 5 3 10 0					
1	800 PILE 6 3 20 0					
1	900 PILE 7 3 30 0					
2	000 PILE 8 -3 -30 0					
2	100 PILE 9 -3 -20 0					
2	200 PILE 10 -3 -10 0					
2	300 PILE 11 -3 0 0					
2	400 PILE 12 -3 10 0					
2	500 PILE 13 -3 20 0					
2	600 PILE 14 -3 30 0					
4	500 LOAD 1 0 0 505.8 -371.9	9 87.6 0				
4	600 LOAD 2 -153.4 0 339.1 -	-288.8 745.3 0				
4	700 LOAD 3 -153.4 0 339.1 -	-288.8 596.8 0				
9	000 FOUT 1 2 3 4 5 6 7 RR01	P.DOC				
9	100 PFO ALL					
9	200 PLB ALL					

Project No. 60632162

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Monolith	-		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20

CPGA RESULTS without Load Factors (pinned connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 06-DEC-20 RUN TIME: 19:01:34

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.49; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 14 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

				Х		Y		Z
WITH	DIAGONAL	COORDINATES	= (-3.00	,	-30.00	,	0.00)
			(3.00	,	30.00	,	0.00)

PILE PROPERTIES AS INPUT

 E
 I1
 I2
 A
 C33
 B66

 KSI
 IN**4
 IN**2
 0.21400E+02
 0.17000E+01
 0.00000E+02

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

Maurepaus Swamp Project No. 60632162 Job Description Gate Monolith Computed by JMH Date Dec-20 **River Road Gate Monolith** CPGA Input & Output Files (Pile Analysis) Checked by AML Date Dec-20 ESOIL LENGTH LU ES т. K/IN**2 FΤ \mathbf{FT} 0.38050E+00 0.42490E+02 0.00000E+00 Т ESOIL (ORIGINAL) RGROUP RCYCLIC K/IN**2 0.38050E+00 0.1000E+01 0.1000E+01 THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -ALL PILE STIFFNESSES AS CALCULATED FROM PROPERTIES 0.17968E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.23229E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.20410E+04 0.00000E+00 THIS MATRIX APPLIES TO THE FOLLOWING PILES -1 ******

Descriptio	n	Gate Monolith				Comput	ed by	ЈМН	Date	Dec-20
		River Road	d Gate Monolith						-	
		CPGA Inpu	It & Output Files	s (Pile Aı	nalysis)	Check	ed by	AML	Date	Dec-20
	PILE G	EOMETRY AS	INPUT AND/OR	GENERAT	ED					
NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FΤ	FT	FΤ			FΤ				
1	3.00	-30.00	0.00	6.00	0.00	43.08	P			
2	3.00	-20.00	0.00	6.00	0.00	43.08	P			
3	3.00	-10.00	0.00	6.00	0.00	43.08	P			
4	3.00	0.00	0.00	6.00	0.00	43.08	P			
5	3.00	10.00	0.00	6.00	0.00	43.08	P			
6	3.00	20.00	0.00	6.00	0.00	43.08	P			
7	3.00	30.00	0.00	6.00	0.00	43.08	P			
8	-3.00	-30.00	0.00	6.00	180.00	43.08	P			
9	-3.00	-20.00	0.00	6.00	180.00	43.08	P			
10	-3.00	-10.00	0.00	6.00	180.00	43.08	P			
11	-3.00	0.00	0.00	6.00	180.00	43.08	P			
12	-3.00	10.00	0.00	6.00	180.00	43.08	P			
13	-3.00	20.00	0.00	6.00	180.00	43.08	P			
14	-3.00	30.00	0.00	6.00	180.00	43.08	Р			

603.07

APPLIED LOADS

LOAD	PX	PY	ΡZ	MX	МҮ	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0.0	0.0	505.8	-371.9	87.6	0.0 1.17 1.17
2	-153.4	0.0	339.1	-288.8	745.3	0.0 1.33 1.33
3	-153.4	0.0	339.1	-288.8	596.8	0.0 1.33 1.33

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Monolith	_		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.10170E+04	-0.84181E-05	0.11369E-11	-0.14552E-10	-0.16534E+06	0.30305E-03
-0.84181E-05	0.32521E+03	0.55885E-04	0.00000E+00	0.20119E-02	-0.62528E-11
0.11369E-11	0.55885E-04	0.27809E+05	0.11642E-09	0.29104E-10	-0.20119E-02
0.43656E-10	0.43368E-18	-0.11642E-09	0.16018E+10	-0.37253E-08	-0.44703E-07
-0.16534E+06	0.20119E-02	0.29104E-10	-0.37253E-08	0.36040E+08	-0.72427E-01
0.30305E-03	-0.62528E-11	-0.20119E-02	-0.59605E-07	-0.72427E-01	0.59002E+08

14 PILES 3 LOAD CASES

LOAD (CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD (CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD (CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.

PILE CAP DISPLACEMENTS

LOAD						
CASE	DX	DY	DZ	RX	RY	RZ
	IN	IN	IN	RAD	RAD	RAD

1	0.1866E-01 -0.3353E-08	0.1819E-01	-0.2786E-05	0.1148E-03	0.6652E-12
2	-0.4347E+00 -0.2545E-08	0.1219E-01	-0.2164E-05	-0.1746E-02	0.5051E-12
3	-0.4664E+00 -0.2161E-08	0.1219E-01	-0.2164E-05	-0.1941E-02	0.4287E-12

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Monolith	-		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES $% \left({{{\left({{{\left({{{}_{{\rm{T}}}} \right)}} \right)}}} \right)$

* INDICATES PILE FAILURE

- # INDICATES CBF BASED ON MOMENTS DUE TO (F3*EMIN) FOR CONCRETE PILES
- B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

PILE	F1	F2	F3	M1	M2	M3 ALF CBF
	K	K	K	IN-K	IN-K	IN-K
1	0.3	0.0	36.6	0.0	-8.7	0.0 0.63 0.07
2	0.3	0.0	35.9	0.0	-8.7	0.0 0.61 0.07
3	0.3	0.0	35.2	0.0	-8.8	0.0 0.60 0.07
4	0.3	0.0	34.6	0.0	-8.8	0.0 0.59 0.07
5	0.3	0.0	33.9	0.0	-8.8	0.0 0.58 0.07
6	0.3	0.0	33.2	0.0	-8.9	0.0 0.57 0.07
7	0.3	0.0	32.5	0.0	-8.9	0.0 0.56 0.06
8	-0.4	0.0	40.7	0.0	12.2	0.0 0.70 0.08
9	-0.4	0.0	40.0	0.0	12.1	0.0 0.68 0.08
10	-0.4	0.0	39.3	0.0	12.1	0.0 0.67 0.08
11	-0.4	0.0	38.7	0.0	12.1	0.0 0.66 0.08
12	-0.4	0.0	38.0	0.0	12.0	0.0 0.65 0.08
13	-0.4	0.0	37.3	0.0	12.0	0.0 0.64 0.08
14	-0.4	0.0	36.7	0.0	12.0	0.0 0.63 0.07

PILE	F1	F2	F3	M1	M2	M3 ALF CBF
	K	K	K	IN-K	IN-K	IN-K
1	-7.9	0.0	6.8	0.0	241.1	0.0 0.10 0.19
2	-7.9	0.0	6.3	0.0	241.1	0.0 0.09 0.19
3	-7.9	0.0	5.8	0.0	241.1	0.0 0.09 0.19
4	-7.9	0.0	5.2	0.0	241.1	0.0 0.08 0.19
5	-7.9	0.0	4.7	0.0	241.0	0.0 0.07 0.19
6	-7.9	0.0	4.2	0.0	241.0	0.0 0.06 0.19
7	-7.9	0.0	3.7	0.0	241.0	0.0 0.06 0.19
8	7.9	0.0	45.4	0.0	-238.8	0.0 0.68 0.25
9	7.9	0.0	44.9	0.0	-238.8	0.0 0.68 0.25
10	7.9	0.0	44.4	0.0	-238.9	0.0 0.67 0.25
11	7.9	0.0	43.9	0.0	-238.9	0.0 0.66 0.25
12	7.9	0.0	43.3	0.0	-238.9	0.0 0.65 0.25
13	7.9	0.0	42.8	0.0	-238.9	0.0 0.64 0.25
14	7.9	0.0	42.3	0.0	-238.9	0.0 0.64 0.25

		Cata	Manalith		-	~				Data	Doc-20
Descri	ption	Biver Boad Gate Monolith			-	Computed by			JIVIT	Date	Dec-20
		CPG	A Input & C	output Files (Pile Analysis)		Check	ed by _	AML	Date	Dec-20
LOAD	CASE -	3									
PILE	F1	F2	F3	Ml	М2	М3	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-8.5	0.0	10.3	0.0	258.8	0.0	0.15	0.21			
2	-8.5	0.0	9.8	0.0	258.8	0.0	0.15	0.21			
3	-8.5	0.0	9.3	0.0	258.8	0.0	0.14	0.21			
4	-8.5	0.0	8.7	0.0	258.7	0.0	0.13	0.21			
5	-8.5	0.0	8.2	0.0	258.7	0.0	0.12	0.21			
6	-8.5	0.0	7.7	0.0	258.7	0.0	0.12	0.21			
7	-8.5	0.0	7.2	0.0	258.7	0.0	0.11	0.21			
8	8.4	0.0	41.9	0.0	-256.5	0.0	0.63	0.26			
9	8.4	0.0	41.4	0.0	-256.5	0.0	0.62	0.26			
10	8.4	0.0	40.9	0.0	-256.5	0.0	0.61	0.26			
11	8.4	0.0	40.4	0.0	-256.6	0.0	0.61	0.26			
12	8.4	0.0	39.8	0.0	-256.6	0.0	0.60	0.25			
13	8.4	0.0	39.3	0.0	-256.6	0.0	0.59	0.25			
14	8.4	0.0	38.8	0.0	-256.6	0.0	0.58	0.25			

PILE FORCES IN GLOBAL GEOMETRY

PILE	PY	PY	P7	MX	MY	M7
1 1 1 1 1	1 71	11	12	1.177	111	112
	K	K	K	IN-K	IN-K	IN-K
1	6.3	0.0	36.0	0.0	0.0	0.0
2	6.2	0.0	35.4	0.0	0.0	0.0
3	6.1	0.0	34.7	0.0	0.0	0.0
4	6.0	0.0	34.0	0.0	0.0	0.0
5	5.9	0.0	33.4	0.0	0.0	0.0
6	5.7	0.0	32.7	0.0	0.0	0.0
7	5.6	0.0	32.1	0.0	0.0	0.0
8	-6.3	0.0	40.2	0.0	0.0	0.0
9	-6.2	0.0	39.5	0.0	0.0	0.0
10	-6.1	0.0	38.9	0.0	0.0	0.0
11	-6.0	0.0	38.2	0.0	0.0	0.0
12	-5.9	0.0	37.6	0.0	0.0	0.0
13	-5.7	0.0	36.9	0.0	0.0	0.0
14	-5.6	0.0	36.2	0.0	0.0	0.0

Description		Gate Monolith		-	c	Computed by	JMH	Date	Dec-20	
		River Road G	ate Monolith	-		_				
		CPGA Input	& Output Files	(Pile Analys	sis)	Checked by	AML	Date	Dec-20	
	Г. – П									
LOAD CAS	<u>11</u> – 2									
PILE	PX	PY	ΡZ	MX	MY	MZ				
	K	K	K	IN-K	IN-K	IN-K				
1	-6.7	0.0	8.0	0.0	0.0	0.0				
2	-6.8	0.0	7.5	0.0	0.0	0.0				
3	-6.9	0.0	7.0	0.0	0.0	0.0				
4	-7.0	0.0	6.5	0.0	0.0	0.0				
5	-7.0	0.0	6.0	0.0	0.0	0.0				
6	-7.1	0.0	5.4	0.0	0.0	0.0				
7	-7.2	0.0	4.9	0.0	0.0	0.0				
8	-15.2	0.0	43.5	0.0	0.0	0.0				
9	-15.1	0.0	43.0	0.0	0.0	0.0				
10	-15.0	0.0	42.5	0.0	0.0	0.0				
11	-15.0	0.0	42.0	0.0	0.0	0.0				
12	-14.9	0.0	41.5	0.0	0.0	0.0				
13	-14.8	0.0	40.9	0.0	0.0	0.0				
14	-14.7	0.0	40.4	0.0	0.0	0.0				

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-6.7	0.0	11.6	0.0	0.0	0.0
2	-6.8	0.0	11.0	0.0	0.0	0.0
3	-6.9	0.0	10.5	0.0	0.0	0.0
4	-7.0	0.0	10.0	0.0	0.0	0.0
5	-7.0	0.0	9.5	0.0	0.0	0.0
6	-7.1	0.0	9.0	0.0	0.0	0.0
7	-7.2	0.0	8.5	0.0	0.0	0.0
8	-15.2	0.0	40.0	0.0	0.0	0.0
9	-15.1	0.0	39.5	0.0	0.0	0.0
10	-15.0	0.0	38.9	0.0	0.0	0.0
11	-15.0	0.0	38.4	0.0	0.0	0.0
12	-14.9	0.0	37.9	0.0	0.0	0.0
13	-14.8	0.0	37.4	0.0	0.0	0.0
14	-14.7	0.0	36.9	0.0	0.0	0.0

Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Gate Monolith	-			
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20

CPGA RESULTS without Load Factors (fixed connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 06-DEC-20 RUN TIME: 19:04:12

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.49; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 14 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-30.00 ,	0.00)
(3.00 ,	30.00 ,	0.00)

PILE PROPERTIES AS INPUT

Project No. 60632162 Maurepaus Swamp Description Gate Monolith Computed by JMH Date Dec-20 **River Road Gate Monolith** CPGA Input & Output Files (Pile Analysis) Checked by AML Date Dec-20 т1 т2 C33 Е А B66 IN**4 IN**4 IN**2 KSI 0.29000E+05 0.72900E+03 0.26100E+03 0.21400E+02 0.17000E+01 0.00000E+00 THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -ALL SOIL DESCRIPTIONS AS INPUT ES ESOIL LENGTH L LU K/IN**2 FT FT 0.38050E+00 Т 0.42490E+02 0.00000E+00 ESOIL (ORIGINAL) RGROUP RCYCLIC K/IN**2 0.38050E+00 0.1000E+01 0.1000E+01 THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -AT.T. ***** PILE STIFFNESSES AS CALCULATED FROM PROPERTIES 0.35937E+02 0.00000E+00 0.00000E+00 0.16971E+04 0.00000E+00 0.00000E+00 0.46458E+02 0.00000E+00 -0.28362E+04 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.20410E+04 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 -0.28362E+04 0.00000E+00 0.34630E+06 0.00000E+00 0.00000E+00 0.16971E+04 0.00000E+00 0.00000E+00 0.16028E+06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 THIS MATRIX APPLIES TO THE FOLLOWING PILES -1 ******

PILE GEOMETRY AS INPUT AND/OR GENERATED

Descript	ion	Gate Monolith	ı			Comput	ed by	ЈМН	Date	Dec-20
		River Road G	ate Monolit	h		_				
		CPGA Input &	Output File	es (Pile Ar	nalysis)	Check	ed by	AML	Date	Dec-20
NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FT	FΤ	FΤ			FΤ				
1	3.00	-30.00	0.00	6.00	0.00	43.08	F			
2	3.00	-20.00	0.00	6.00	0.00	43.08	F			
3	3.00	-10.00	0.00	6.00	0.00	43.08	F			
4	3.00	0.00	0.00	6.00	0.00	43.08	F			
5	3.00	10.00	0.00	6.00	0.00	43.08	F			
6	3.00	20.00	0.00	6.00	0.00	43.08	F			
7	3.00	30.00	0.00	6.00	0.00	43.08	F			
8	-3.00	-30.00	0.00	6.00	180.00	43.08	F			
9	-3.00	-20.00	0.00	6.00	180.00	43.08	F			
10	-3.00	-10.00	0.00	6.00	180.00	43.08	F			
11	-3.00	0.00	0.00	6.00	180.00	43.08	F			
12	-3.00	10.00	0.00	6.00	180.00	43.08	F			
13	-3.00	20.00	0.00	6.00	180.00	43.08	F			
14	-3.00	30.00	0.00	6.00	180.00	43.08	F			

603.07

APPLIED LOADS

LOAD CASE	PX K	PY K	PZ K	MX FT-K	MY FT-K	MZ OVERSTRESS FT-K COM TEN
1	0.0	0.0	505.8	-371.9	87.6	0.0 1.17 1.17
2	-153.4	0.0	339.1	-288.8	745.3	0.0 1.33 1.33
3	-153.4	0.0	339.1	-288.8	596.8	0.0 1.33 1.33

Job Maurepaus Swamp						_	Project No	o. <u>60632162</u>	-	
Descriptio	n		Gate Mon	olith		_	Computed b	у ЈМН	Date	Dec-20
			River Roa	d Gat	e Monolith					
			CPGA Inp	ut & C	Output Files	s (Pile Analysis)	Checked b	y AML	Date	Dec-20
	ORIG	GINAL	PILE GR	OUP S	TIFFNESS	MATRIX				
0.12618	3E+04	-0.7	4392E-05	0.4	5475E-12	-0.19142E-03	-0.14044E+06 (0.18838E-03	3	
-0.74392	2E-05	0.6	5041E+03	0.5	5389E-04	-0.39167E+05	0.21854E-02 -0	0.68212E-11		
0.45475	бЕ - 12	0.5	5389E-04	0.2	7815E+05	0.47527E-04	0.00000E+00 -0	0.19940E-02		
-0.19142	2E-03	-0.3	9167E+05	0.4	7527E-04	0.16069E+10	-0.28383E-01 -0	0.44703E-07	1	
-0.14044	LE+06	0.2	1854E-02	0.0	0000E+00	-0.28383E-01	0.38574E+08 -(0.88241E-01		
0.18838	8E-03	-0.4	5475E-11	-0.1	9940E-02	-0.37253E-07	-0.88241E-01 (0.74123E+08	8	
			14 P	ILES	3 LOAD	CASES				
LOAD CAS	Ε	1.	NUMBER O	F FAI	LURES =	0. NUMBER O	F PILES IN TEN	SION = 0.		
LOAD CAS	BE	2.	NUMBER O	F FAI	LURES =	0. NUMBER O	F PILES IN TEN:	SION = 7.		
LOAD CAS	Ε	3.	NUMBER O	F FAI	LURES =	0. NUMBER O	F PILES IN TEN:	SION = 6.		
* * * * * * * *	* * * * *	* * * *	******	* * * * *	*****	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * *	: * *	
	PILE	CAP	DISPLAC	EMENI	S					
LOAD										
CASE	D۶	C	DY		DZ	RX	RY	RZ		
	IN	1	IN		IN	RAD	RAD	RAD		
1 (.5100)E-02	-0.1675	E-03	0.1818E-	-01 -0.2781E-0	5 0.4582E-04	0.5308E-12		
2 -0	.1610)E+00	-0.1301	E-03	0.1219E-	-01 -0.2160E-0	5 -0.3544E-03	0.3153E-12		
3 -0	.1697	/E+00	-0.1301	E-03	0.1219E-	-01 -0.2160E-0	5 -0.4320E-03	0.2448E-12	2	
* * * * * * * *	* * * * *	* * * *	* * * * * * * *	* * * * *	* * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * *	: * *	
		ELA	STIC CEN	TER I	NFORMATIO	N				

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Description (cription Gate Monolith		Computed by	JMH	Date	Dec-20
Ī	River Road Gate Monolith		-		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20

PILE FORCES IN LOCAL GEOMETRY

LOAD CASE - 1

PILE	F1	F2	F3	M1	M2	M3 ALF CBF	
	K	K	K	IN-K	IN-K	IN-K	
1	0.2	0.0	37.0	-0.5	11.0	0.0 0.63 0.07	
2	0.2	0.0	36.3	-0.5	11.1	0.0 0.62 0.07	
3	0.2	0.0	35.7	-0.5	11.2	0.0 0.61 0.07	
4	0.2	0.0	35.0	-0.5	11.3	0.0 0.60 0.07	
5	0.2	0.0	34.3	-0.5	11.4	0.0 0.59 0.07	
6	0.2	0.0	33.7	-0.5	11.5	0.0 0.58 0.07	
7	0.2	0.0	33.0	-0.5	11.5	0.0 0.56 0.07	
8	-0.4	0.0	40.2	0.5	-21.7	0.0 0.69 0.09	
9	-0.4	0.0	39.6	0.5	-21.6	0.0 0.68 0.09	
10	-0.4	0.0	38.9	0.5	-21.5	0.0 0.66 0.09	
11	-0.4	0.0	38.2	0.5	-21.4	0.0 0.65 0.08	
12	-0.4	0.0	37.5	0.5	-21.3	0.0 0.64 0.08	
13	-0.4	0.0	36.9	0.5	-21.2	0.0 0.63 0.08	
14	-0.4	0.0	36.2	0.5	-21.1	0.0 0.62 0.08	

PILE	F1	F2	F3	M1	М2	M3 ALF CBF	
	K	K	K	IN-K	IN-K	IN-K	
1	-6.5	0.0	-2.2	-0.4	-333.5	0.0 0.06 0.26	
2	-6.5	0.0	-2.8	-0.4	-333.4	0.0 0.07 0.26	
3	-6.5	0.0	-3.3	-0.4	-333.4	0.0 0.08 0.26	
4	-6.5	0.0	-3.8	-0.4	-333.3	0.0 0.10 0.26	
5	-6.5	0.0	-4.3	-0.4	-333.2	0.0 0.11 0.26	
6	-6.5	0.0	-4.8	-0.4	-333.1	0.0 0.12 0.26	
7	-6.5	0.0	-5.4	-0.4	-333.1	0.0 0.13 0.26	
8	6.3	0.0	54.5	0.4	326.3	0.0 0.82 0.33	
9	6.3	0.0	53.9	0.4	326.3	0.0 0.81 0.33	
10	6.3	0.0	53.4	0.4	326.4	0.0 0.80 0.33	
11	6.3	0.0	52.9	0.4	326.5	0.0 0.80 0.33	
12	6.3	0.0	52.4	0.4	326.6	0.0 0.79 0.33	
13	6.3	0.0	51.8	0.4	326.6	0.0 0.78 0.33	
14	6.3	0.0	51.3	0.4	326.7	0.0 0.77 0.33	

Description Cate Manalith			-								
Descri	otion	Gate	Monolith		-	С	omput	ed by	JMH	Date	Dec-20
		Rive	r Road Gat	e Monolith	_						
		CPG	A Input & (Output Files (Pile Analysis)		Check	ed by	AML	Date	Dec-20
LOAD	CASE -	3									
PILE	F1	F2	F3	M1	М2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-6.9	0.0	0.5	-0.4	-361.2	0.0	0.01	0.27			
2	-6.9	0.0	0.0	-0.4	-361.1	0.0	0.00	0.27			
3	-6.9	0.0	-0.5	-0.4	-361.1	0.0	0.01	0.27			
4	-6.9	0.0	-1.1	-0.4	-361.0	0.0	0.03	0.27			
5	-6.9	0.0	-1.6	-0.4	-360.9	0.0	0.04	0.28			
6	-6.9	0.0	-2.1	-0.4	-360.8	0.0	0.05	0.28			
7	-6.9	0.0	-2.6	-0.4	-360.8	0.0	0.07	0.28			
8	6.8	0.0	51.7	0.4	354.0	0.0	0.78	0.35			
9	6.8	0.0	51.2	0.4	354.0	0.0	0.77	0.35			
10	6.8	0.0	50.7	0.4	354.1	0.0	0.76	0.35			
11	6.8	0.0	50.2	0.4	354.2	0.0	0.75	0.34			
12	6.8	0.0	49.6	0.4	354.3	0.0	0.75	0.34			
13	6.8	0.0	49.1	0.4	354.3	0.0	0.74	0.34			
14	6.8	0.0	48.6	0.4	354.4	0.0	0.73	0.34			

PILE FORCES IN GLOBAL GEOMETRY

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	6.2	0.0	36.5	-0.5	11.0	0.1
2	6.1	0.0	35.8	-0.5	11.1	0.1
3	6.0	0.0	35.2	-0.5	11.2	0.1
4	5.9	0.0	34.5	-0.5	11.3	0.1
5	5.8	0.0	33.8	-0.5	11.4	0.1
6	5.7	0.0	33.2	-0.5	11.5	0.1
7	5.6	0.0	32.5	-0.5	11.5	0.1
8	-6.2	0.0	39.7	-0.5	21.7	-0.1
9	-6.1	0.0	39.1	-0.5	21.6	-0.1
10	-6.0	0.0	38.4	-0.5	21.5	-0.1
11	-5.9	0.0	37.8	-0.5	21.4	-0.1
12	-5.8	0.0	37.1	-0.5	21.3	-0.1
13	-5.7	0.0	36.4	-0.5	21.2	-0.1
14	-5.6	0.0	35.8	-0.5	21.1	-0.1

3

4

5

6 7

8

9

10 11

12

13

14

-6.9

-7.0

-7.1

-7.2

-7.2

-15.2

-15.1

-15.0

-14.9

-14.8

-14.8

-14.7

0.0 0.6

0.0 48.9

0.1

-1.0

-1.5

49.9

49.4

48.4

47.8

47.3

46.8

-0.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Project No. 60632162

				-				_	
Description		Gate Monolith	ו	-	C	Computed by	JMH	Date	Dec-20
		River Road G	ate Monolith	-					
		CPGA Input 8	Output Files	(Pile Anal	ysis)	Checked by	AML	Date	Dec-20
LOAD CASE	2 – 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-6.7	0.0	-1.1	-0.4	-333.5	0.1			
2	-6.8	0.0	-1.7	-0.4	-333.4	0.1			
3	-6.9	0.0	-2.2	-0.4	-333.4	0.1			
4	-7.0	0.0	-2.7	-0.4	-333.3	0.1			
5	-7.1	0.0	-3.2	-0.4	-333.2	0.1			
6	-7.2	0.0	-3.7	-0.4	-333.1	0.1			
7	-7.2	0.0	-4.2	-0.4	-333.1	0.1			
8	-15.2	0.0	52.7	-0.4	-326.3	-0.1			
9	-15.1	0.0	52.2	-0.4	-326.3	-0.1			
10	-15.0	0.0	51.6	-0.4	-326.4	-0.1			
11	-14.9	0.0	51.1	-0.4	-326.5	-0.1			
12	-14.8	0.0	50.6	-0.4	-326.6	-0.1			
13	-14.8	0.0	50.1	-0.4	-326.6	-0.1			
14	-14.7	0.0	49.6	-0.4	-326.7	-0.1			
LOAD CASE	1 – 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	К	K	IN-K	IN-K	IN-K			
1	-6.7	0.0	1.6	-0.4	-361.2	0.1			
2	-6.8	0.0	1.1	-0.4	-361.1	0.1			

-0.4

-0.4

-0.4

-0.4

-0.4

-0.4

-0.4

-0.4

-0.4

-0.4

-0.4

-0.4

-361.1

-361.0

-360.9

-360.8

-360.8

-354.0

-354.0

-354.1

-354.3

-354.3

-354.4

-354.2

0.1

0.1

0.1

0.1

0.1

-0.1

-0.1

-0.1

-0.1

-0.1

-0.1

-0.1

Description	Gate Monolith		Computed by	ЈМН	Date	Dec-20	
	River Road Gate Monolith		-		_		
	CPGA Input & Output Files (Concrete Design)	Checked by	AML	Date	Dec-20	
Input file:							
100 MG	DNOLITH, TOW EL. 16.13, T	OS EL.10.49;	HP 14X73 PII	ES			
200 PI	ROP 29000 729 261 21.4 1.	7 0 ALL					
300 SC	DIL ES 0.3805 TIP 42.49 0	ALL					
400 P	IN ALL						
500 A1	LLOW H 50 30 492.7 535 29	72.2 994.4 AL	L				
600 F0	DVSTR 1 1 1						
700 F0	DVSTR 1 1 2 3						
800 BA	ATTER 6 All						
1200 2	ANGLE 180 8 TO 14						
1300 1	PILE 1 3 -30 0						
1400 1	PILE 2 3 -20 0						
1500 1	PILE 3 3 -10 0						
1600 1	PILE 4 3 0 0						
1700 1	PILE 5 3 10 0						
1800 1	PILE 6 3 20 0						
1900 1	PILE 7 3 30 0						
2000 1	PILE 8 -3 -30 0						
2100 1	PILE 9 -3 -20 0						
2200 1	PILE 10 -3 -10 0						
2300 1	PILE 11 -3 0 0						
2400 1	PILE 12 -3 10 0						
2500 1	PILE 13 -3 20 0						
2600 1	PILE 14 -3 30 0						
4500 1	LOAD 1 0 0 809.3 -595.1 1	40.2 0					
4600 1	LOAD 2 -245.4 0 542.6 -46	2 1192.5 0					
4700 1	LOAD 3 -245.4 0 542.6 -46	2 954.9 0					
9000 1	FOUT 1 2 3 4 5 6 7 RR01S.	DOC					
9100 F	FO ALL						
9200 F	'LB ALL						

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Monolith	_			
	CPGA Input & Output Files (Concrete Desig	n) Checked by _	AML	Date	Dec-20

CPGA RESULTS with Load Factors

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 06-DEC-20 RUN TIME: 19:05:17

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE
- NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.49; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 14 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х Ү		Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-30.00 ,	0.00)
(3.00 ,	30.00 ,	0.00)

PILE PROPERTIES AS INPUT

E I1 I2 A C33 B66 KSI IN**4 IN**4 IN**2 0.29000E+05 0.72900E+03 0.26100E+03 0.21400E+02 0.17000E+01 0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

Job	Maurepa	aus Swamp		-	Project	No. 6	60632162		
Descript	tion	Gate Mono	lith	-	Computed	d by	ЈМН	Date	Dec-20
		River Road	Gate Monolith	_					
		CPGA Inpu	t & Output Files	(Concrete Desig	gn) Checked	d by	AML	Date _	Dec-20
ES	ESOI	L LENGT	H L	LU					
	K/IN*	*2	FT	FT					
	0.3805	0E+00 T	0.42490E+0	0.00000E+	00				
ESOIL K/I	G(ORIGINA:	L) RGROU	P RCYCLIC						
0.38	3050E+00	0.1000	E+01 0.1000E+0)1					
THIS S	SOIL DESCI	RIPTION APPL	IES TO THE FOL	LOWING PILES	-				
AL	L								
*****	****	* * * * * * * * * * * *	* * * * * * * * * * * * * * *	****	* * * * * * * * * * * *	* * * * * *	*****		
	PILE :	STIFFNESSES .	AS CALCULATED	FROM PROPERTI	ES				
0.179	968E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.000	00E+00		
0.000)00E+00	0.23229E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.000	00E+00		
0.000)00E+00	0.00000E+00	0.20410E+04	0.00000E+00	0.00000E+00	0.000	00E+00		
0.000)00E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.000	00E+00		
0 000)00E+00	00000E+00	0 00000E+00	0 00000E+00	0 000005+00	0 000	00E+00		

 0.00000E+00
 0.0000E+00
 0.0

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1

Maurepaus Swamp

Project No. 60632162

Description		Gate Mon	olith	_		Compu	ited by	JMH	Date	Dec-20
		River Roa	d Gate Monolith	_					_	
		CPGA Inp	ut & Output Files	s (Concr	ete Design)	Chec	ked by	AML	Date	Dec-20
	PILE G	EOMETRY AS	INPUT AND/OR	GENERAT	ED					
NUM	х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FT	FT	FΤ			FT				
1	3.00	-30.00	0.00	6.00	0.00	43.08	P			
2	3.00	-20.00	0.00	6.00	0.00	43.08	P			
3	3.00	-10.00	0.00	6.00	0.00	43.08	P			
4	3.00	0.00	0.00	6.00	0.00	43.08	P			
5	3.00	10.00	0.00	6.00	0.00	43.08	P			
6	3.00	20.00	0.00	6.00	0.00	43.08	P			
7	3.00	30.00	0.00	6.00	0.00	43.08	P			
8	-3.00	-30.00	0.00	6.00	180.00	43.08	P			
9	-3.00	-20.00	0.00	6.00	180.00	43.08	P			
10	-3.00	-10.00	0.00	6.00	180.00	43.08	P			
11	-3.00	0.00	0.00	6.00	180.00	43.08	P			
12	-3.00	10.00	0.00	6.00	180.00	43.08	P			
13	-3.00	20.00	0.00	6.00	180.00	43.08	P			
14	-3.00	30.00	0.00	6.00	180.00	43.08	P			

```
603.07
```

APPLIED LOADS

LOAD CASE	PX K	PY K	PZ K	MX FT-K	MY FT-K	MZ FT-K
1	0.0	0.0	809.3	-595.1	140.2	0.0
2	-245.4	0.0	542.6	-462.0	1192.5	0.0
3	-245.4	0.0	542.6	-462.0	954.9	0.0

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.10170E+04
 -0.84181E-05
 0.11369E-11
 -0.14552E-10
 -0.16534E+06
 0.30305E-03

 -0.84181E-05
 0.32521E+03
 0.55885E-04
 0.00000E+00
 0.20119E-02
 -0.62528E-11

 0.11369E-11
 0.55885E-04
 0.27809E+05
 0.11642E-09
 0.29104E-10
 -0.20119E-02

 0.43656E-10
 0.43368E-18
 -0.11642E-09
 0.16018E+10
 -0.37253E-08
 -0.44703E-07

 -0.16534E+06
 0.20119E-02
 0.29104E-10
 -0.37253E-08
 0.36040E+08
 -0.72427E-01

 0.30305E-03
 -0.62528E-11
 -0.20119E-02
 -0.59605E-07
 -0.72427E-01
 0.59002E+08

Description	Gate Monolith	-	Computed	bv JMH	Date	Dec-20
••••	River Road Gate Monolith	-			_	
	CPGA Input & Output Files	(Concrete Design)	Checked	by AML	Date _	Dec-20
	14 PILES 3 LOAD (CASES				
LOAD CASE 1.	NUMBER OF FAILURES = 1	14. NUMBER OF PI	ILES IN TEN	SION = 0.		
LOAD CASE 2.	NUMBER OF FAILURES =	7. NUMBER OF PI	ILES IN TEN	SION = 0.		
LOAD CASE 3.	NUMBER OF FAILURES =	7. NUMBER OF PI	ILES IN TEN	SION = 0.		
************	******	******	*******	********	k	
PILE CA	AP DISPLACEMENTS					
LOAD						
CASE DX	DY DZ	RX	RY	RZ		
IN	IN IN	RAD	RAD	RAD		
1 0.2986E-0	01 -0.5364E-08 0.2910E-0)1 -0.4458E-05 ().1837E-03	0.1064E-11		
2 -0.6954E+0	00 -0.4073E-08 0.1951E-0)1 -0.3461E-05 -0	.2793E-02	0.8082E-12		
3 -0.7460E+0	00 -0.3458E-08 0.1951E-0	01 -0.3461E-05 -0	.3105E-02	0.6861E-12		
E	LASTIC CENTER INFORMATION	1		* * * * * * * * * * * * * *	×	
ELASTIC CENTER :	IN PLANE X-Z X	Z				
	FT	FΤ				
	0.00	0.00				
****	*****	****	*****	*****	k	
PILE FO	DRCES IN LOCAL GEOMETRY					
M1	& M2 NOT AT PILE HEAD FO	OR PINNED PILES				
* 1	INDICATES PILE FAILURE					
# 3	INDICATES CBF BASED ON MO	MENTS DUE TO				
	(F3*EMIN) FOR (CONCRETE PILES				
в	INDICATES BUCKLING CONTRO	DLS				

Descri	ption	Gate	e Monolith		_		Comp	uted by	ЈМН	Date	Dec-20
		Rive	er Road Gat	e Monolith	-			-		-	
		CPG	GA Input & G	Output Files	(Concrete	Design)	Cheo	ked by _	AML	Date _	Dec-20
LOAD	CASE -	1									
PILE	Fl	F2	F3	M1	М2	МЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	0.5	0.0	58.5	0.0	-13.9	0.0	1.17	0.13	*		
2	0.5	0.0	57.5	0.0	-14.0	0.0	1.15	0.13	*		
3	0.5	0.0	56.4	0.0	-14.0	0.0	1.13	0.13	*		
4	0.5	0.0	55.3	0.0	-14.1	0.0	1.11	0.13	*		
5	0.5	0.0	54.2	0.0	-14.1	0.0	1.08	0.12	*		
6	0.5	0.0	53.1	0.0	-14.2	0.0	1.06	0.12	*		
7	0.5	0.0	52.1	0.0	-14.2	0.0	1.04	0.12	*		
8	-0.6	0.0	65.1	0.0	19.4	0.0	1.30	0.15	*		
9	-0.6	0.0	64.0	0.0	19.4	0.0	1.28	0.15	*		
10	-0.6	0.0	63.0	0.0	19.4	0.0	1.26	0.15	*		
11	-0.6	0.0	61.9	0.0	19.3	0.0	1.24	0.15	*		
12	-0.6	0.0	60.8	0.0	19.3	0.0	1.22	0.14	*		
13	-0.6	0.0	59.7	0.0	19.2	0.0	1.19	0.14	*		
14	-0.6	0.0	58.7	0.0	19.2	0.0	1.17	0.14	*		
LOAD	CASE -	2									
PILE	F1	F2	F3	M1	M2	МЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-12.7	0.0	10.9	0.0	385.7	0.0	0.22	0.41			
2	-12.7	0.0	10.1	0.0	385.7	0.0	0.20	0.41			
3	-12.7	0.0	9.2	0.0	385.7	0.0	0.18	0.41			
4	-12.7	0.0	8.4	0.0	385.6	0.0	0.17	0.40			
5	-12.7	0.0	7.6	0.0	385.6	0.0	0.15	0.40			
6	-12.7	0.0	6.7	0.0	385.5	0.0	0.13	0.40			
7	-12.7	0.0	5.9	0.0	385.5	0.0	0.12	0.40			
8	12.6	0.0	72.7	0.0	-382.0	0.0	1.45	0.53	*		
9	12.6	0.0	71.8	0.0	-382.0	0.0	1.44	0.53	*		
10	12.6	0.0	71.0	0.0	-382.1	0.0	1.42	0.53	*		
11	12.6	0.0	70.2	0.0	-382.1	0.0	1.40	0.53	*		
12	12.6	0.0	69.3	0.0	-382.2	0.0	1.39	0.53	*		
13	12.6	0.0	68.5	0.0	-382.2	0.0	1.37	0.52	*		
14	12.6	0.0	67.7	0.0	-382.2	0.0	1.35	0.52	*		

Descri	ption	Gate	Monolith		-		Compi	uted by	JMH		Date	Dec-20
		Rive	r Road Ga	te Monolith	-			-			_	
		CPG	A Input &	Output Files	(Concrete	Design)	Chec	ked by	AML		Date _	Dec-20
LOAD	CASE -	3										
PILE	Fl	F2	F3	Ml	М2	MЗ	ALF	CBF				
	K	K	K	IN-K	IN-K	IN-K						
1	-13.6	0.0	16.5	0.0	414.0	0.0	0.33	0.45				
2	-13.6	0.0	15.6	0.0	414.0	0.0	0.31	0.45				
3	-13.6	0.0	14.8	0.0	413.9	0.0	0.30	0.45				
4	-13.6	0.0	14.0	0.0	413.9	0.0	0.28	0.44				
5	-13.6	0.0	13.1	0.0	413.9	0.0	0.26	0.44				
6	-13.6	0.0	12.3	0.0	413.8	0.0	0.25	0.44				
7	-13.6	0.0	11.5	0.0	413.8	0.0	0.23	0.44				
8	13.5	0.0	67.1	0.0	-410.3	0.0	1.34	0.55		*		
9	13.5	0.0	66.3	0.0	-410.3	0.0	1.33	0.55		*		
10	13.5	0.0	65.4	0.0	-410.4	0.0	1.31	0.55		*		
11	13.5	0.0	64.6	0.0	-410.4	0.0	1.29	0.54		*		
12	13.5	0.0	63.8	0.0	-410.4	0.0	1.28	0.54		*		
13	13.5	0.0	62.9	0.0	-410.5	0.0	1.26	0.54		*		
14	13.5	0.0	62.1	0.0	-410.5	0.0	1.24	0.54		*		

PILE FORCES IN GLOBAL GEOMETRY

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	10.1	0.0	57.7	0.0	0.0	0.0
2	9.9	0.0	56.6	0.0	0.0	0.0
3	9.7	0.0	55.5	0.0	0.0	0.0
4	9.5	0.0	54.5	0.0	0.0	0.0
5	9.4	0.0	53.4	0.0	0.0	0.0
6	9.2	0.0	52.3	0.0	0.0	0.0
7	9.0	0.0	51.3	0.0	0.0	0.0
8	-10.1	0.0	64.3	0.0	0.0	0.0
9	-9.9	0.0	63.3	0.0	0.0	0.0
10	-9.7	0.0	62.2	0.0	0.0	0.0
11	-9.5	0.0	61.1	0.0	0.0	0.0
12	-9.4	0.0	60.1	0.0	0.0	0.0
13	-9.2	0.0	59.0	0.0	0.0	0.0
14	-9.0	0.0	58.0	0.0	0.0	0.0

Description	n	Gate Monolit	th	_	(Computed by	JMH	Date	Dec-20
		River Road C	Sate Monolith	1		-			
		CPGA Input	& Output File	s (Concrete	Design)	Checked by	AML	Date _	Dec-20
LOAD CAS	SE - 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-10.7	0.0	12.8	0.0	0.0	0.0			
2	-10.9	0.0	12.0	0.0	0.0	0.0			
3	-11.0	0.0	11.2	0.0	0.0	0.0			
4	-11.1	0.0	10.4	0.0	0.0	0.0			
5	-11.3	0.0	9.5	0.0	0.0	0.0			
6	-11.4	0.0	8.7	0.0	0.0	0.0			
7	-11.5	0.0	7.9	0.0	0.0	0.0			
8	-24.3	0.0	69.6	0.0	0.0	0.0			
9	-24.2	0.0	68.8	0.0	0.0	0.0			
10	-24.1	0.0	68.0	0.0	0.0	0.0			
11	-23.9	0.0	67.1	0.0	0.0	0.0			
12	-23.8	0.0	66.3	0.0	0.0	0.0			
13	-23.7	0.0	65.5	0.0	0.0	0.0			
14	-23.5	0.0	64.7	0.0	0.0	0.0			

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-10.7	0.0	18.5	0.0	0.0	0.0
2	-10.9	0.0	17.7	0.0	0.0	0.0
3	-11.0	0.0	16.8	0.0	0.0	0.0
4	-11.1	0.0	16.0	0.0	0.0	0.0
5	-11.3	0.0	15.2	0.0	0.0	0.0
6	-11.4	0.0	14.4	0.0	0.0	0.0
7	-11.5	0.0	13.5	0.0	0.0	0.0
8	-24.3	0.0	64.0	0.0	0.0	0.0
9	-24.2	0.0	63.1	0.0	0.0	0.0
10	-24.1	0.0	62.3	0.0	0.0	0.0
11	-23.9	0.0	61.5	0.0	0.0	0.0
12	-23.8	0.0	60.7	0.0	0.0	0.0
13	-23.7	0.0	59.8	0.0	0.0	0.0
14	-23.5	0.0	59.0	0.0	0.0	0.0

Job Maurer	M Daus Swamp	Project No.	60632162	_	
Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Gate Monolith			_	
Summa	ary of Shear & Moment	Checked by	AML	Date	Dec-20
				R	eferences

Load	V _{u,max}	$M_{u,max}$	
Case	(kip/ft)	(kip/ft)	
LC1	0.00	0.00	*Note: LC 1 only has vertical forces, so there is no shear or moment on the wall.
LC2	1.59	2.98	
LC3	1.59	2.98	The following calculations are the max shear (Vu) and
			moment (Mu) on the wall form LC 2 and LC 3:

_

	PROJECT/JOB	NO		TH			CALCUL	DATION NO	E	-	
	COMPUTED BY		_	~ 11				DAT	E		-
Wall Calculations.	SCALE							HEET NO	-	OF	
vui cuicuiapons.	111	TT	T	1				T	T		
Allumetime		*	These	calu	lation	ne colu	1 Khou	, the	1000	lins	
ASSUMPTIONS .		1	lond	tion	for	water +	D T60	UCL	14	3)	
t= 15=15"										~	
(over= 3"	PAC	sume	#66	Jars				i.			_
d = 19 - 3"	75"			it							_
6= 12"			hu	ila L	54		_				-
Que 7.75		1	. (1	1		EL	16.1	15	-	-
Pram = , 9		1		A		_	-			-	-
FU= 60/15		5.6	35	4						-	-
$f_i^{\prime} = 4 k_{si}$		1	A	-				_		_	_
		1	1	1	-	++	-1	ELI	0.44	-	
		11		1		-				-	-
U Shear Calculatio	ns:		-	-	-		-	-	-	-	-
				-	-	-	-			-	
hwilat		-		-			-	1	++	-	
V - 46	V(H2)	-1	111	1.14	KI	21/0	5/2	51)2	-	-	
vy - 2 ku	ater/UI	r'	2	1.00	1/12	11	105	1	-	-	
	1 1/	-	091	Kill.	PI	-	-		-	-	
	Vu		1115		6				1	1	
		=	1 59	kie	G	= 11	001	f	wall	1	
	1.6 Vy	=	1, 59	Kil/	ft :	= Vy	on l	of	wall]	
	1.6 Vy	= (1, 59	Kil/	ft :	= 14	on l	of	wall]	
D Moment (alulati	1.6 Vy	=	1, 59	Kij/	ft :	= 14	on I	of	wall)	
D Moment Calculation	1.6 Vy	= [1, 59	Ki1/	fe :	= 14	on l	'of	wall]	
D Moment Calculation	$\frac{V_{4}}{I_{6} V_{4}}$ $\frac{I_{6} V_{4}}{I_{7}} = (1$	= [(5.6	Ku/	ft :	= V4	on I	of 1	wall) onl'	ofue
D Moment Calculation Ny = Vy (†		= [1, 59	Kil/ 35")	ft =	= 14 12.98	on I	of	wall = My) onl'	ofu
D Moment Calculation Ny = Vy (†	$\frac{V_4}{l_16} \frac{V_4}{V_4}$ $\frac{V_5}{V_3} = (1)$	= ((5.6)	kil/ 35")	F# =	= V4	on 1	of	wall = My	ont	ofue
D Moment Calculation My = Vy (H		= ((5.6	ku/ 35")	f# =	= 14 12.98	on l	of f	wall = My	ont	ofue
D Moment Calculation Ny = Vy (†	$\frac{V_{4}}{I_{16} V_{4}}$ $\frac{I_{16} V_{4}}{I_{3}} = (I$	= (.59)	(5.6	Ku/	FF =	= 14 12.98	on l	ft ft	wall = My	ont	ofu
D Moment Calculatio Ny = Vy (t		= ((<u>5.6</u>)	Kij/ 35")	f# =	= Uy 12.98	on 1	of f	wall	ont	ofue
D Moment (alculation) My = Vy (t		.59)) (5.6	Ku/	ft =	= Uy 12.98	on 1	fe	wall	ont	ofu
D Moment Calculation My = Vy (†	$\begin{array}{c} & V_{4} \\ 1.6 & V_{4} \\ \\ sons: \\ V_{3} \end{array} = (1 \\ \\ \end{array}$	= () (5.6	Kil/ 35")		= Ky	on l	ft	wall	ont	ofue
D Moment Calculation My = Vy (†		= () (5.6	Kil/ 35")	F# =	= 14	on 1	ft ft	wall	ont	ofue
D Moment Calculati Ny = Vy (†		= (.59)) (5.6	kil/ 35")	14	= U4 12.98	on l	fe fe	wall	ont	ofue

Description Gate Monolith River Poad Gate Monolith

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Monoli	th			
Shea	r & Moment Check for Wall	Checked by	AML	Date	Dec-20
				Refe	erences
* Given Inform	<u>mation:</u>				
	Wall Thickness:	1 50 ft			
	Clear Cover:	0.25 ft			
r	Diameter Bar to Start:	0.06 ft			
		0.00 11			
	Maximum Shear (V,):	1.59 kips per foot			
^	Maximum Moment (M,):	2.98 kip-ft per foo	t		
	φ_{shear} =	0.75 (ACI 318)			
	$\varphi_{moment} =$	0.9 (ACI 318)			
	f _{v rebar} =	60 ksi			
	f' _c =	4 ksi			
* Shear Calcu	lations:				
Desig	n Shear Strength (@V.) > Re	auired Shear Streng	th (V)	(ACT Fa 11-1)	
Desig				(//01 29.11 1)	
Shear Ca	ipacity (φV _c): φ _{shear} * 2 * √f'	c * b * d		(ACI Eq. 11-3)	
	Øshear = 0.75				
	f'c = 4 ksi				
	b = 1 ft s	trip			
	d = 1.22 ft	· · · F			
	,.				
φV	$V_c = 16649.4$ lbs				
	16.65 kips	** φVc=16.6	≥ Vu=1.6,	Shear Capacity O	К
* Reinforceme	nt Calculations:				
				0.0404.0.5	
Limit of Ma	iximum Reinforcement: 0.25	$\Sigma \times \rho_b$ (Design Criter	ia, EM 1110	-2-2104, 3-5)	

Project No.

60632162

LIMIT OF MAXIN	num Reinforcement:	$0.25 \times \rho_b$ (Design C	riteria, EN	1110-2-2	104, 3-5)
	where $\rho_{\rm b}$ =	0.0285 for f' _c = 4	1,000psi, f	y = 60,000	lpsi
	Max Rebar =	0.00713 *b * d			
Maxir	num Reinforcement:	0.0071 * b * d =	1.25	in ²	per 1ft strip
I					1
	A _{gross} =	1.5 ft * 12 in/ft * 12	in strip =	216.00	in ²
Limits of Minir	num Reinforcement:	0.005 x Agross =	1.08	in²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
		(3*√(f' _c) *b*d)/f _y =	0.55	in²	(ACI 318-14, 9.6.1.2, min for flexural members)
		(200*b*d)/f _y =	0.59	in²	(ACI 318-14, 9.6.1.2, min for flexural members)
				-	
	Min Reinforcemer	nt, temp & shrinkage:	0.54	in²	per 1ft strip, per face
	Min Reir	forcement, flexural:	0.59	in ²	per 1ft strip, per face

AECOM

Job Maur	epaus Swamp	Project No.	60632162		
Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Monolit	h			
Shea	r & Moment Check for Wall	Checked by	AML	Date	Dec-20
				Re	ferences

* Moment Calculations:

* T = A_s × f_y * C = 0.85 × f'_c × a × b * Assuming Tension = Compression → A_s × f_y = 0.85 × f'_c × a × b * φMn = φ × T × (d - (a / 2)) = φ × A_s × f_y × (d - (a / 2))

* Capacity of Min Flexural Reinforcement:

a =
$$(A_s \times f_y) / (0.85 \times f'_c \times b)$$

= 0.860 in

φM _n =	448.4	kip-in
=	37.37	kip-ft

* Capacity of Maximum Reinforcement:

a = (A_s x f_y) / (0.85 x f'_c x b) = 1.839 in

φMn =	925.4	kip-in
=	77.12	kip-ft

FLOODED SIDE

T&S WALL REBAR

F.S. & P.S. WALL REBAR

4

4

44

3" CLR.

(TYP)

4

PROTECTED SIDE

GRADE

The minimum proposed reinforcement for T&S Wall Rebar is #6 @ 9" (A = 0.59 in²) and the minimum proposed reinforcement for F.S. & P.S. Wall Rebar is #6 @ 9"(A=0.59 in²).

Job Maure	paus Swamp	Project No.	60632162		
Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Mo	nolith			
Slab		Checked by	AML	Date	Dec-20
				Re	eferences

)	Cata Manalith	<u>Computed by</u>	INALI	Dete	Dec 20
rescription	Biver Road Gate Mor	computed by	JMH	Date	Dec-20
Slab C		Checked by	AML	Date	Dec-20
0.0.0 0				Re	eferences
	*Note: The following moment (Mu) on bo calculations for the All reactions are tak	g calculations represent th sides of the slab for slab can be found in the ken from the pinned or f	the total shear all load cases. C "Slab Conc Che ixed results fro	(Vu) and Capacity eck" tab. om CPGA.	
	AECOM Imagine it. Delivered.	JOB TITLE MQUIPPAS WSLP PROJECTIJOB NO. COMPUTED BY TH	Structures - Ri calculation NO DATE	ver hoad	
	Slab (alculations:	VERIFIED BY	DATE	OF	
	@ Construction Sur	charge			
	-> Dead wit	t = , 25 hie/fe*			
	→ Assume l between f	0 of triblength F.S15- riles	- P.S.		
		5 K/Az3 sullh	sureh. 5.635		
		- 6.95 - r	1-3.45'-7		
	Flood Side :	10'-	/		
	$V_{ui} R = \frac{36.5}{kip}$	from CIGA guistab	1-3.115-4		
	(1)246 = (6-15')(= 14.(125)	(0')(3')(.15)(25)	surdarge Vustab		
	Surange = (., 15, 0) = 15, 0	74£)(10)(6:357 3 kip	4.25-7		
	$V_{u} =$ $V_{u} =$	15.63 T 24,125 - 36.5 7.3 Kip			
	1/2/	1 [73 60] - 117 60			

b Maure	paus Swamp	Project No.	60632162		
scription	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Gate	Monolith		_	
Slab C	alculations	Checked by	AML	Date	Dec-20
0		Mallbood US	Ll (hautture) -	Diver Rha	1
	AECOM Imagine It. Delivered.	PROJECT/JOB NO.	CALCULATION NO	ANT NOG	0
		COMPUTED BY	DATE		
		SCALE		3 OF_	
	My:	1 4 0 MV			
	$R \rightarrow$	36.5 Kip (v) 41,05			_
	Wylab ->	18.125 hipa) 3.125 (F			-
	Surch->	15.63 hip @ 3.125 D			
	M - 60	15/12/15 1 (10 15/1)	110 - (36 5) (11.17)		
	/114 - (d. D.)	(3)(3)(3)(3) + (3)(3)(3)	(45) - (00.0) (T.03)		-
	My= -18.	39 hip-fe			
	1. = 1.1	-18 39 -29.43	-2.943 hil-	Æ	
	14-10	10.39	FE A	5	_
		510 -	undarne		-
		trib	1 E Mu		
	Protected side !		Justas Wa		_
	Vu-> D- No	His Fax (PAA	1 4		_
	R= 40,1	hip from cro-A	R		
	Wyab = (J.)	$(10)(3)(.15h_{43})$ +.	5-1-1-1		
	ws1a6 = 10	.125 Kip			_
	Surcharge = (15 1/22) (10') (2.25')			
	(rharap = c	135 K0			
	Buland P				-
		Vu= 5.925 + 10.125 -	40.2		-
		Vy = -24.45 Kip			
			14		
		Yu - 1.6 -24.45 / = -39.12	NIP = -3.912 //p/	Æ	_
		0-			-
			length		

A Job	Maure	M paus Swamp	Project No.	60632162		
Descrip	otion	Gate Monolith	Computed by	ЈМН	Date	Dec-20
		River Road Gate Monolith			_	
	Slab C	alculations	Checked by	AML	Date	Dec-20
					R	eferences

AECOM	Imagine it. Delivered.	JOB TITLE	madicidas	USLE	SILUCIUS	Pive	1/ 04
		COMPUTED BY		SH	DAT	те	
		VERIFIED BY			DAT	E	
		SCALE			SHEET N	.4	OF
Mu =	0-2	40) Kip	@ .15	Ð			
. 4		1010 1		0			
	Wylab >	10.125 hip	@ 1.125	Ð			
S	urcharge—	> 5.625 hip	@ 1.115	Ð			
$M_{4} = ($	40.2) (.25) + (10.125)(1.125) +	(5.625)(1.1,5)		
My =	7.67 k	ip-ft					
1-	11/2/2	- 11 176	io fe 1	117 K.P	ft		
Iny-	1.0(1.61)	- 10.0000	11/2 7 1		4		
		10		_	-		
			Tib Matt	_			
			gin				
			-				
				_	_		
				_			
			-		_		
				-			++
							++
							++
							++
							++
							++

	aurepaus Swamp	Project No.	60632162			
Descriptio	n Gate Monolith	Computed by	JMH	Date	Dec-20	
	River Road Gate Mo	onolith				
S	ab Calculations	Checked by	AML	Date	Dec-20	
				Re	eferences	

	Computed by	JMH Date Dec-20
River Road Ga	te Monolith	
Slab Calculations	Checked by	AML Date Dec-20
		References
AECOM Imagine It. Delivered. $V_{4} = 4.2$ $V_{4} = 30.63$ $V_{4} = 1.6$ $M_{4} = 1.6$ $M_{4} = 1.6$ $M_{4} = 1.6$ $M_{4} = 1.6$	JOB TITLE MAUTEDAS WS PROJECTIJOB NO. COMPUTED BY JH VERIFIED BY SCALE + 3.3 + J6./J5 + J1.98 - J1.98 - J2.73 + J2.98 +	SLE <u>Struttures</u> - River Road

4x4 = 1 in

Date Dec-20

	M Daus Swamp	Project No	60632162
	spaus Swamp		00032102
Description	Gate Monolith	Computed by	JMH
	River Road Gate Monolith		
	Deleviettere e		A 841

Slab Calc	ulations	Checked by	AML	Date	Dec-20
				Ī	References
				-	

	0-4 11 11	41-			h				_		D
escription	Gate Monoli	th Cata Mana	Com	nputed	by	JN	ЛН		Da	te	Dec-2
Slab	River Road	Gate Mono		ackad	by	~	л		Da	to	Dec
Siab	Calculations			leckeu		AI			Da	Ref	erences
	AECOM Ima	gine it. Job vered. PRO COM VER SCA		irepas -	WSL TH	-P 5.	truc	ALCULATI	- Rive	er Rec	ıd
	Vu =	1.5 + 3	3 + 28,1	5 +	21, 98	-23.	19				_
	= 31	.715 Kip) .($a = V_u =$	50.74	hip	- 5	.074	h			
				10'				FE			
					9 trib		-				
			40 1	110	() m			-		_	
	My R			1.0.5	Ð		1				
	Wig	ate > 3.	3h@ 1		Ð						
	w.sh	16 -> 24	6.115 h@	3.115	Đ		-				
	hiver	1 -> 21.	98 h @	3.115'	Đ	-	-				
	Uplif	+ -> 23	19 h @	3.6	A		-				
					T	1	1		No		
	$M_{\rm H} = \left(1 \right)$	5)(4,25) +	- (3.3)(() +	(28.125)	(3.1)5	77	- (21.9	14)(3.1	25)	-
	-	(3.19) (3.6)				-				
	1.= 8	2.77 hip-ft	D16 =	132.43	hip-fi		13	3.243	hip-ft		
	, w			1	0'		-		ft		
					Us trib lengt	4					
	Protected Side	,									
	Vu -> R	= 49.9 hip				Mu	+	15/0	slab		_
	Ws	lab= 10. 125	hie			(1)	4	t		+	
	1	= 5 61 =	1.37 hip			14	1	h			
	- u				_	.15	17	KIW			
	Vy= 10.1	15 + 1.37	7 - 49.9				1.7	5-1	3	d.15	
	V. = -38	.41 hip)].	6= -61	.45 hi		145 h	:0.		1.315	1	onig
			1	ST I		, <u>, , , , , , , , , , , , , , , , , , </u>	A		KIP		
				11.1			1	100			

Construction Construction of y Owner The part of the part o	Computer by Computer by Computer by Communication Detry River Road Gate Monolith Checked by AML Date Dec-2 References AECOM Date Dec-2 References Main Computer by AML Date Dec-2 References Computer by Stab Contract Multifat VSLP Huttifat Main Computer by Stab Contract Multifat VSLP Huttifat Contract Multifat Main Computer by Stab Contract Multifat VSLP Huttifat Contract Multifat Main Contract Multifat VSLP Huttifat VSLP Multifat Contract Multifat Main Contract Multifat VSLP Huttifat Contract Multifat Contract Multifat Contract Multifat Main Contract Multifat VSLP Huttifat Contract Multifat Contract Multifat Contract Multifat Main Contract Multifat VSLP Multifat Contract Multifat Contract Multifat Contract Multifat Multifat Noth <t< th=""><th>crintion</th><th>Gate Monolith</th><th>Comr</th><th>uted by</th><th>.ІМН</th><th>Date</th><th>Dec-20</th></t<>	crintion	Gate Monolith	Comr	uted by	.ІМН	Date	Dec-20
Slab Calculations Checked by AML Date Dec.2 References AECOM regent Multiflat VSUI Structures Multiflat VSUI Structures Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main	Stab Calculations Checked by AML Date Dec2 References	cription	River Road Gate I	Monolith		JWIN		Dec-20
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	References	Slab C		Che	cked by	АМІ	Date	Dec-20
EXEMPTING $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	AECOM beyond	0100 0				74112	Re	eferences
			AECOM Imagine It. Delivered. $M_{4}: R \rightarrow G_{1}$	JOB TITLE	Pas WsLf → H → H → H → H → H → H → H → H	Structures - calculation No. Date oate sheet No.	River Road	
	7							

Accession Maurepaus Swamp Project No. Description Gate Monolith Computed by River Road Gate Monolith Slab Conc. Check Checked by * Given Information: Slab Thickness: 3.00 ft Slab Width: 10.00 ft

60632162

JMH

AML

Date

Date

Dec-20

Dec-20

References

* Shear Calculations:

1- Shear Capacity:

Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u)

f'_c =

4 ksi

Maurepaus Swamp Project No. 60632162 Job Description **Gate Monolith** Computed by JMH Date Dec-20 **River Road Gate Monolith** Slab Conc. Check AML Dec-20 Checked by Date References 2- Punching Shear Capacity (ACI 318-14 Table 22.6.5.2): Vc = minimum value = Eq. a: $4 \times J(f'_c) \times b_0 \times d$ for $\beta_c < 2.0$ Eq. b: $(2 + (4 / \beta_c)) \times J(f'_c) \times b_0 \times d$ for $\beta_c > 2.0$ Eq. c: $((a_s \times d) / b_0 + 2) \times J(f'_c) \times b_0 \times d$ b₀ / d effect based on a_s (interior column: $a_s = 40$, edge column: $a_s = 30$, corner column: $a_s = 20$) d for piles = 26.203 in (Slab thickness - 9" pile embed - cover - 0.5d_{bar}) where β_c = Long side / Short side = b_0 = Perimeter of Critical Section = $\pi^*(D_{pile} + d)$ = 125.045 a_s = 20 (worst case - corner column) Vc = minimum value = Eq. a: 828.91 kips 1243.36 kips Eq. b: 1282.94 kips Eq. c: φV_c = 621.68 kips Check corner pile failure to edge of slab: $D_{pile}/2+d/2 =$ 1.66 ft /2 + d/2 Dpile Diameter of corner failure = 1.658 + 2 ft 3.66 ft 2.00 Dia. punching shear calc above = 3.32 Diameter of punching shear calculation is smaller than the diameter of this corner failure area. Therefore, no recheck of corner punching failure is required. 30.10 kips φVc used in design = ** φVc = 30.1k≥ Vu = 6.8k, Shear Capacity OK Maximum Pile Reaction = 69.60 ** φVc=622k≥ Vu=70k, Punching Shear Capacity OK

Job Maure	epaus Swamp	Project No.	60632162	-	
Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	River Road Gate Mo	nolith			
Slab	Conc. Check	Checked by	AML	Date	Dec-20
				Re	ferences

3- Deep Beam One-Way Shear Capacity (ϕV_{c1}):

For $(w/d) \ge 1.0$, a one-way (normal) shear investigation with loads outside the critical section (located at a distance d from the face of the column, b = footing width) and

$$v_c = 1.9\sqrt{f_c'} + 2500\rho_w \left(\frac{V_u d}{M_u}\right) \ge 2\sqrt{f_c'}$$
 (ACI Eq. 11-5)

which reduces for $\rho_w \approx 0.002$ and 3,000 psi $\leq f_c' \leq 4,000$ psi to $v_c = 1.9\sqrt{f_c'} + 0.1\sqrt{f_c'} (V_u d/M_u) \geq 2\sqrt{f_c'}$.

For $(w/d) < 1.0, 1.0 > M_u/V_u d > 0; \infty > V_u d/M_u \ge 1.0$ (no limits on $M_u, V_u d$, other than above)

$$v_c = \left(\frac{d}{w}\right) \left[3.5 - 2.5\left(\frac{M_u}{V_u d}\right)\right] \left[1.9\sqrt{f_c'} + 0.1\sqrt{f_c'}\left(\frac{V_u d}{M_u}\right)\right]$$

$$\leq 10\sqrt{f_c'} \quad (\text{ACI Eq. 13-2})$$

* Reinforcement Calculations:

Limit of Maximum Reinforcement: (0.25 x pb (Design Cr	riteria, EM 1110-2-2	104, 3-5)
where $ ho_{ m b}$ =	0.0285 for f'c = 4	,000psi, fy = 60,000	Dpsi
Max Rebar =	0.00713 *b * d		
Maximum Reinforcement:	0.0071 * b * d =	2.26 in ²	per 1ft strip
A _{gross} = :	3 ft * 12 in/ft * 12 in	strip = 432.00	in ²
Limits of Minimum Reinforcement:	0.005 x Agross =	2.16 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
	(3*√(f' _c) *b*d)/f _y =	1.00 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
	(200*b*d)/f _y =	1.06 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
Min Reinforcemen	t, temp & shrinkage:	1.08 in ²	per 1ft strip, per face
Min Rein	forcement, flexural:	1.06 in ²	per 1ft strip, per face

AECOM

					References		
Slab Conc. Check		Checked by	AML	Date	Dec-20		
		River Road Gate Mor	nolith				
Descrip	tion	on Gate Monolith	Computed by	ЈМН	Date	Dec-20	
Job	Maure	paus Swamp	Project No.	60632162	-		

* Moment Calculations:

* Capacity of Maximum Reinforcement:

 $a = (A_s \times f_y) / (0.85 \times f'_c \times b)$ 3.324 in =

** φMn=252 ≥ Mu=13.2, Section OK	ТОР
** φMn=252 ≥ Mu=2.9, Section OK	Bottom

The minimum proposed reinforcement for to T&S Slab Rebar

is #6 @ 6"(A = 0.88 in2) and the minimum proposed

reinforcment for Top & Bot Slab Rebar is #7 @ 6"(A =1.2in2).

φMn =	3023.8	kip-in	**φ	M	
=	251.98	kip-f†	** φ	M	
escription	Gate Monolith	Computed by	JMH	Date	Dec-20
------------	---------------------	-------------------------------------	-----------------------	----------	-----------
	River Road Gate M	onolith			
Slab C	alculations	Checked by	AML	Date	Dec-20
				R	eferences
	*Note: The followi	ng calculations represe	nt the total shear ((Vu) and	
	moment (Mu) on b	oth sides of the slab f	or all load cases. Co	apacity	
	calculations for th	e slab can be found in [.]	the "Slab Conc Che	ck" tab.	
		JOB TITLE MAUMPOGS	SIP Structures - Riv	er Road	
	AECOM Delivered.	PROJECT/JOB NO.	CALCULATION NO.		
			DATEDATE		
		SCALE	SHEET NO.	10 OF	
				-	
	· Shear & Momen	It on Pilaster:			
	Ascump	sait coming is the	ile (tributany land		-
		gui opening is to a	at Criticity High	1-20/	-
	> Pilaster	sale 2×2			
	-> wall st	m height = $5,635$			_
	AU - FA	X X UP (HU -) L			-
	0 14 = 26	Puqter) (IT) (Trib length)	,		-
	= 1/2	(0614 h/p3) (5.635')	(10^{1})		
			1		_
		2/ n/ps/ 1.6 - 31.7	τα <mark>ρ</mark>		-
	$(n - \lambda (1))$	141 - 6174:0 156	351		_
	Q 114 - (Vy)	(73) - (31.1 mp)(-2)	3)		-
		My = 59.54 hip -1	2		
				_	
				-	-
					-
					_
					-

AECOM

Job	Maurepa	aus Swamp		P	roject N	lo.	60632	162	_		
- Descripti	on	GATE SUPPORT STRU	JCTURES	Con	nputed	by_	JMI	4	Date	[Dec-20
		River Road Gate Mono	lith								
S, M & T (Check fo	or Pilaster River Road G	ate	Ch	necked	by_	AM	L	Date	[Dec-20
									R	eferences	5
<u>* Given I</u>	Informat	<u>tion:</u>									
		Pilaster Width:		2.00	f†						
		Pilaster Thickness:		2.00	f†	-					
		Clear Cover:		0.33	f†	=	4.00 ii	n			
		Diameter Bar to Start:		0.08	f†	=	1.00 ii	n			
		Stirup Bar Dia:		0.05	f†	=	0.625 ii	n			
		Maximum Shear (V _u):		31.7	kips pe	r fo	oot				
		Maximum Moment (M _u):	5	9.54	kip-ft p	oer	foot				
Gate	e Wt. In	duced Moment (M _{u,gate}):		N/A	kip-ft p	per	foot				
		Maximum Torsion (T_u):		0	kip-ft		*Center lin	e of lat	ches are at ce	enter of p	ilaster, so Tu = 0
		φ _{shear} =		0.75	(ACI 31	18)					
		φ_{moment} =		0.9	(ACI 31	18)					
		$\varphi_{torsion}$ =		0.75	(ACI 31	18)					
		f _{y, rebar} =		60	ksi						
		f' _c =		4	ksi						
<u>* Shear</u>	Calculati	ions:									
	Design S	ihear Strength (φVn)≥R	Required SI	hear S	Strengt	۰h (۱	√ _u)		(ACI Eq. 11-	-1)	
	Shear Co	apacity (ϕV_c): $\phi_{shear} * 2$	*√f' _c *b*	* d					(ACI Eq. 11-	-3)	
		$\varphi_{shear} = 0.75$ $f'_c = 4$	ksi								
		d = 1.63	ft	[19.	50	in				
ſ	φV _c =	44398.4 lbs									
		44.40 kips			** φVc	=44	4.4 ≥ Vu=3	1.7, 5	5hear Capacit	у ОК	

AECOM

Job Maurep		paus Swamp	Project No.	Project No. 60632162			
Descri	iption	GATE SUPPORT STRUCTUR	ES Computed by	JMH	Date	Dec-20	
		River Road Gate Monolith					
S, M &	T Check	for Pilaster River Road Gate	Checked by	AML	Date	Dec-20	
					Refer	ences	
<u>* Rein</u>	forcemer	nt Calculations:					
	Limit of	Maximum Reinforcement: 0.25 x	p _b (Design Crit	eria, EM 1110-2	-2104, 3-5)		
		where $\rho_{\rm b}$ =	0.0285 for f'_ = 4.0	00psi, fy = 60.0	00psi		
		Max Rebar =	0 00713 *b * d		F -		
					_		
		Maximum Reinforcement:	0.0071 * b * d =	3.33 in ²	per 2ft strip		
					_		
		A_{gross} = 2 ft *	12 in/ft * 24 in strip	= 576.	00 in ²		
	Limits of	Minimum Reinforcement:	0.003 x Agross =	1.73 in ²	(EM 1110-2-2	104, 2.9.3, temp. & shrinkage)	
		(3	3*√(f' _c) *b*d)/f _v =	1.48 in ²	(ACI 318-14, 9.6.1	.2, min for flexural members)	
			(200*b*d)/f _v =	1.56 in ²	(ACI 318-14, 9.6.1	.2, min for flexural members)	
		Min Reinforcement,	temp & shrinkage:	0.86 in ²	per 2ft strip, pe	er face	
		Min Reinfo	prcement, flexural:	1.56 in ²	per 2ft strip, pe	er face	

* Moment Calculations:

$$T = A_s \times f_v$$

- * Assuming Tension = Compression \longrightarrow $A_s \times f_y = 0.85 \times f'_c \times a \times b$
- * ϕ Mn = $\phi \times T \times (d (a / 2))$ = $\phi \times A_s \times f_y \times (d - (a / 2))$

Job Maur	M epaus Swamp	Project No.	60632162	-		
Description	GATE SUPPORT STRUCTURES	Computed by	JMH	Date	Dec-20	
	River Road Gate Monolith					
S, M & T Check for Pilaster River Road Gate		Checked by	AML	Date	Dec-20	
				Refe	rences	

* Capacity of Min Flexural Reinforcement:

Min reinforcement is sufficient.

* Capacity of Maximum Reinforcement:

=	2.452	in
φMn =	3290.5	kip-in
=	274.21	kip-ft

** φMn=274.2 ≥ Mu=59.5, Section OK

Maurepaus Swamp

Storage Monolith

River Road Storage Monolith

AECOM Project : 60632162

Foundation, Wall & Slab

Computed by:	JMH	Checked by:	ND
Date:	Dec-20	Date:	Dec-20

Job	Maurepaus Swamp	Project No. 60632162	
Description	Storage Monolith	Computed by JMH	Date Dec-20
	River Road Storage Monolith		
	Wall Geometry	Checked by ND	Date Dec-20
			References
WALL GEOME	<u>TRY:</u>		ROTECTED SIDE
Top of Pilaster EL	. 16.13 NAVD88	TOW EL XXX	V
Top of Wall EL	. 16.13 NAVD88		$\langle $
100 Yr. Water E	I. NAVD88		Z
10 Yr. Water E	INAVD88	SWL V	× ·
Top of Slab EL	. 10.49 NAVD88		
н	= 8.64 ft.	GRADE	비겁卢◇
h1	= <u>5.64</u> ft.	I I I I I I I I I I I I I I I I I I I	
h2	= 3.00 ft. (Base Slab Height)		
h3	= 0.00 ft. (P.S. Soil Height)		GRADE
h4	= 0.00 ft.		
h5	= 0.00 ft. (F.S. Soil Height)		<u>_</u>
В	= 10.00 ft. (Base Slab Width)	Р 4	
b1	= <u>1.50</u> ft. (Wall Stem Width, top)		\square
b2	= 6.25 ft. (F.S. Slab Width)	b5 / /	
b3	= <u>1.50</u> ft. (Wall Stem Width, bottom)		
b4	= 2.25 ft. (P.S. Slab Width)		
b5	= 2.00 ft. (F.S. Pile Row Edge Space)	B/2	B/2
b6	= 5.00 ft. (Sheet Pile Edge Space)	$b^{1/2}$ $+$ $b^{1/2}$ $b^{3/2}$	b4
BA I	= 0.00 (Wall Batter, N/A)		
rs Grade	= 10.47 NAVD86 (Average of PS soil for all)	I-WALL CRUSS-SECTION	a ia inte page
	[].	<u>inotes:</u> 1) positive y axis	s is into page
Monolith Length	= 52.7 ft	2) pile batters var	ry from those shown
		in diagram	

Note: The monolith is considered and analyzed as a straigh t-wall with no turn for this submittal.

Description	Storage Monolith
	River Road Storage Monolith
	Applied Loads in SAP Model

Pile Layout:

Job	Maurepaus Swamp		Project No.	60632162		
Description	Storage Monolith		Computed by	ЈМН	Date	Dec-20
	River Road Storage Mor	olith	-			
	Assumptions		Checked by	ND	. Date	Dec-20
						References
Un	it Weight of Storm Water =	0.0624	kcf			
	Wet Unit Weight of Soil =	0.1200	kcf			
	Sat Unit Weight of Soil =	0.0576	kcf			
	Unit Weight of Concrete =	0.1500	kcf			
	Impact Load =	0.0000	k/ft			
	FS Wind force above SWL=	0.0500	ksf			
Constr	uction Surcharge Pressure =	0.2500	ksf			
Unbalanced	Load for Stability Analysis:					
	F _{cap} (k/ft) =	0.00	(10y SWL Case; Force acts	at bottom of s	lab)	
	F _{cap} (k/ft) =	0.00	(100y SWL Case; Force act	ts at bottom of	slab)	
	F _{cap} (k/ft) =	0.00	(Water to TOW Case; Ford	ce acts at botto	om of slab)	
	K _o , Granular fill =	0.95	(for lateral soil forces)			
Assumed	Wall Reinforcement Cover =	0.25	ft			
	Assumed Wall $d_{bar} =$	0.06	ft			
	Gate Length =	42.00	ft			
	Gate Weight =	13.86	Kip * laken from s	similar roller ga	te from Hobo	Ken project.

AECOM

Job <u>Mau</u>	repaus Swamp	Project No.	60632162			
Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20	
Rive	r Road Storage Monolith					
Load Cases		Checked by	ND	Date	Dec-20	
				Re	eferences	

No. of Load Cases 3 Update

No.	DCD LC No.	Description	FS Water El.	PS Water El.	Pile Design Over Stresses
1	1	Construction Surcharge	7.49	7.49	1.17
2	2a	Water to TOW (impervious cutoff)	16.13	7.49	1.33
3	2b	Water to TOW (pervious cutoff)	16.13	7.49	1.33

* Impact load is not applicable for this section, so it is excluded from the load combinations

* Forces induced by 10y water elevation are not applicable for this section, so they are excluded from the load combinations

*Earthquake and Wave Loads are to be determined and are excluded from these calculations

*Forces from the gate and the construction surcharge will not act simultaneously; for the construction case, surcharge governs over the gate weight so that the gate weight is excluded from these calculations.

Area Surface Pressure - Face Bottom (h,vert (TOW))

188

162

1.08

Kip, ft, F

SAP2000 20.1.0

Frame Span Loads (gate) (GLOBAL CSys)

Kip, ft, F

AECOM

Job	Maurep	baus Swamp	Project No.	60589133			
Descri	iption	Storage Monolith	Computed by	ЈМН	Date	Dec-20	
		River Road Storage Monolith			_		_
Summary of Foundation Loads		Checked by	ND	Date	Dec-20		
					R	eferences	

UNFACTORED LOADS FOR CPGA										
Load	F×	Fy	Fz	M×	My	Mz				
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)				
LC1	0.00	0.00	453.13	0.00	168.87	0.00				
LC2	-122.40	0.00	308.28	0.00	683.76	0.00				
LC3	-122.40	0.00	308.28	0.00	565.26	0.00				

This table represents the base reactions taken from SAP. The moments were taken from the centroid of the structure with positive-x facing the flood side and positive-z facing downwards.

FACTORED LOADS FOR CPGA											
Load	Fx	Fy	Fz	M×	My	Mz					
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)					
LC1	0.00	0.00	725.00	0.00	270.20	0.00					
LC2	-195.84	0.00	493.26	0.00	1094.02	0.00					
LC3	-195.84	0.00	493.26	0.00	904.41	0.00					

Description

р

Storage Monolith

Soil & Pile Information Required for CPGA

River Road Storage Monolith

Project No. 60632162

Computed by

Date Dec-20

Checked by ND

JMH

Date Dec-20 References

Pile Layout: 14 HP Piles

Row	<u>1</u>	<u>Row</u> 2						
pile no.	×	у	pile no.	×	у			
1	3.00	-22.50	7	-3.00	-22.50			
2	3.00	-13.50	8	-3.00	-13.50			
3	3.00	-4.50	9	-3.00	-4.50			
4	3.00	4.50	10	-3.00	4.50			
5	3.00	13.50	11	-3.00	13.50			
6	3.00	22.50	12	-3.00	22.50			

 Tip Elevation:
 (For CPGA, need Tip Elevation as a function of CPGA Axis at B.O. Slab, +Z points downward)

 B.O.S. Elevation =
 7.49

 NAVD88
 Pile Tip El. =

 "TIP" in CPGA =
 42.49 ft

<u>Pile Properties & Attributes</u>

E =	2900000.00	psi
A =	21.40	in ² HP14X73
I _x =	729.00	in ⁴
I _y =	261.00	in ⁴
C ₃₃ =	1.70	(factor for method of axial load transfer from pile to soil; = 1 full tip bearing, = 2 full skin friction)
S _x =	107.00	in ³
S _y =	35.80	in ³
F _y =	50.00	ksi

*Note: All soil properties and pile capacities are taken from 95% submittal for Maurepas intake structure.

Allowable Compression (AC) =	50.00	kips
Allowable Tension (AT) =	30.00	kips
ACC =	492.66	kips
ATT =	535.00	kips
AM1 =	2972.22	kip-in
AM2 =	994.44	kip-in

Maurepaus S	wamp	Project No. 60632162	
ription	Storage Monol	h Computed by JMH	Date Dec-20
	River Road Sto	age Monolith	
Soil & Pile Inf	ormation Requi	ed for CPGA Checked by ND	Date Dec-20
			References
	Mono	ith width = 53 ft $E_s = 540.40$ psi = 0.5404 ksi	
GROUP	FACTORS		
Pile Spacing in Direction of Loading	From EM1110-2- 2906	Group reduction is based on distance between piles in direction of loading. T includes distance due to battering and is taken over the distance 10 x d _{pile} (p fixety).	This oint of
	D		
3B	0.33	Assume a batter of 6.00	
4B	0.38	B = d _{pile} = 13.6 in = 1.133 ft	
5B	0.45		
6B	0.56	Distance between piles at B.O. Slab = 6.00 ft	
7B	0.71	Average distance between piles over 10*dpile = 7.89 ft	
8B	1		
		Average distance between piles in terms of pile width B = 6.96 B	
		Group Reduction "D" value for this distance =0.70	
		Therefore, Es including group reduction = 0.38 ksi	

Checked by ND

Description Storage Monolith **River Road Storage Monolith** Soil & Pile Information Required for CPGA

Computed by JMH

Date Dec-20

Date Dec-20

References

Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage Monolith				
	CPGA Input & Output Files (Pile An	alysis) Checked by	ND	Date	Dec-20
Input file:					
100 MO	NOLITH, TOW EL. 16.13, TOS EL	.10.49; HP 14X73 P	ILES		
200 PR	OP 29000 729 261 21.4 1.7 0 A	LL			
300 SO	IL ES 0.3805 TIP 42.49 0 ALL				
400 PI	N ALL				
500 AL	LOW H 50 30 492.7 535 2972.2	994.4 ALL			
600 FO	VSTR 1.17 1.17 1				
700 FO	VSTR 1.33 1.33 2 3				
800 BA	TTER 6 All				
1200 A	NGLE 180 7 TO 12				
1300 P	ILE 1 3 -22.5 0				
1400 P	ILE 2 3 -13.5 0				
1500 P	ILE 3 3 -4.5 0				
1600 P	ILE 4 3 4.5 0				
1700 P	ILE 5 3 13.5 0				
1800 P	ILE 6 3 22.5 0				
1900 P	ILE 7 -3 -22.5 0				
2000 P	ILE 8 -3 -13.5 0				
2100 P	ILE 9 -3 -4.5 0				
2200 P	ILE 10 -3 4.5 0				
2300 P	ILE 11 -3 13.5 0				
2400 P	ILE 12 -3 22.5 0				
4500 L	OAD 1 0 0 453.1 0 168.9 0				
4600 L	OAD 2 -122.4 0 308.3 0 683.8	0			
4700 L	OAD 3 -122.4 0 308.3 0 565.3	0			
9000 F	OUT 1 2 3 4 5 6 7 RR01P.DOC				
9100 P	FO ALL				
9200 P	LB ALL				

Description	Storage Monolith	Computed by	JMH	Date	Dec-20
	River Road Storage Monolith	· · · -		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	ND	Date	Dec-20

CPGA RESULTS without Load Factors (pinned connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 11-DEC-20 RUN TIME: 12:16:33

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.49; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 12 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-22.50 ,	0.00)
(3.00 ,	22.50 ,	0.00)

PILE PROPERTIES AS INPUT

 E
 I1
 I2
 A
 C33
 B66

 KSI
 IN**4
 IN**2

 <td

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

Description ES ESOIL K/IN**2	Storage Mo River Road CPGA Input	nolith Storage Monoli t & Output Files	th (Pile Analysis)	Computed	by JMH	Date	Dec-20
ES ESOIL K/IN**2	River Road CPGA Input	Storage Monoli	th (Pile Analysis)				
ES ESOIL K/IN**2	LENGTH			Checked	hy ND	Date	Dec-20
ES ESOIL K/IN**2	LENGTI	- I.		Uncencu			D00-20
K/IN**2			LU				
0.38050E	+00 т	0.42490E+	PT 02 0.00000E	+00			
ESOIL(ORIGINAL) K/IN**2	RGROUI	P RCYCLIC					
0.38050E+00	0.1000	E+01 0.1000E+	01				
THIS SOIL DESCRI	PTION APPL	IES TO THE FO	LLOWING PILES	-			
ALL							
*****	*******	******	* * * * * * * * * * * * * *	* * * * * * * * * * * * * *	********	****	
PILE ST	IFFNESSES A	AS CALCULATED	FROM PROPERT	IES			
0.17968E+02 0.	00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+	00	
0.00000E+00 0.	23229E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+	00	
0.00000E+00 0.	00000E+00	0.20410E+04	0.00000E+00	0.00000E+00	0.0000E+	00	
0.00000E+00 0.	00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+	00	
0.00000E+00 0.	00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+	00	
0.00000E+00 0.	00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+	00	
THIS MATRIX APPL	IES TO THE	FOLLOWING PI	les -				
1							
		nananananan eta	nanananan ereketetetetet		alata alata en en entre		

Description		Storage Mon	olith			Comput	ed by	ЈМН	Date	Dec-20
		River Road S	torage Mono	lith						
		CPGA Input 8	Cutput Files	s (Pile Ar	alysis)	Check	ed by	ND	Date	Dec-20
	PILE G	EOMETRY AS IN	IPUT AND/OR	GENERAT	ED					
NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FΤ	FT	FT			FΤ				
1	3.00	-22.50	0.00	6.00	0.00	43.08	P			
2	3.00	-13.50	0.00	6.00	0.00	43.08	P			
3	3.00	-4.50	0.00	6.00	0.00	43.08	Р			
4	3.00	4.50	0.00	6.00	0.00	43.08	Р			
5	3.00	13.50	0.00	6.00	0.00	43.08	P			
6	3.00	22.50	0.00	6.00	0.00	43.08	Р			
7	-3.00	-22.50	0.00	6.00	180.00	43.08	P			
8	-3.00	-13.50	0.00	6.00	180.00	43.08	Р			
9	-3.00	-4.50	0.00	6.00	180.00	43.08	Р			
10	-3.00	4.50	0.00	6.00	180.00	43.08	P			
11	-3.00	13.50	0.00	6.00	180.00	43.08	Р			
12	-3.00	22.50	0.00	6.00	180.00	43.08	P			
516.91										

APPLIED LOADS

LOAD	PX	PY	ΡZ	MX	MY	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0.0	0.0	453.1	0.0	168.9	0.0 1.17 1.17
2	-122.4	0.0	308.3	0.0	683.8	0.0 1.33 1.33
3	-122.4	0.0	308.3	0.0	565.3	0.0 1.33 1.33

Description	Storage Monoli	th		Computed b	y JMH	Date	Dec-20
	CPGA Input & C	output Files (P	ile Analysis)	Checked b	y ND	Date	Dec-20
ORI	IGINAL PILE GROUP S	TIFFNESS MAT	RIX				
-0 72155E-0	3 -0./2155E-05 0.9 5 0 27875E+03 0 4	7902E-04 0	14552E-10 - 00000E+00	U.141/2E+U6 0 17245E-02 -	0.25976E-03 0.48885E-11		
0.90949E-12	2 0.47902E-04 0.2	3836E+05 0.	11642E-09	0.29104E-10 -	0.17245E-02		
0.14552E-10	0.00000E+00 0.0	00000E+00 0.	81090E+09 -	0.37253E-08 -	0.22352E-07		
-0.14172E+06	6 0.17245E-02 0.2	9104E-10 0.	00000E+00	0.30891E+08 -	0.62081E-01		
0.25976E-03	3 -0.51159E-11 -0.1	7245E-02 -0.	14901E-07 -	0.62081E-01	0.30018E+08		
	12 PILES	3 LOAD CAS	ES				
LOAD CASE	1. NUMBER OF FAI	LURES = 0.	NUMBER OF	PILES IN TEN	SION = 0.		
LOAD CASE	2. NUMBER OF FAI	LURES = 0.	NUMBER OF	PILES IN TEN	SION = 0.		
LOAD CASE	3. NUMBER OF FAI	LURES = 0.	NUMBER OF	PILES IN TEN	SION = 0.		
* * * * * * * * * * * * *	****	*****	* * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *		
PII	LE CAP DISPLACEMENT	S					
LOAD							
CASE I	DX DY	DZ	RX	RY	RZ		
]	IN IN	IN	RAD	RAD	RAD		
1 0.419	97E-01 -0.3777E-08	0.1901E-01	0.4328E-21	0.2582E-03	0.1263E-11		
2 -0.382	25E+00 -0.2911E-08	0.1293E-01	0.2263E-22	-0.1489E-02	0.9731E-12		
3 -0.412	20E+00 -0.2553E-08	0.1293E-01	-0.2810E-21	-0.1670E-02	0.8534E-12		
* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	*****	* * * * * * * * * * * * *	* * * * * * * * * * * * *		
	ELASTIC CENTER I	NFORMATION					
ELASTIC CENT	TER IN PLANE X-Z	Х	Z				
		FT	FT				
		0.00	0.00				
*********	* * * * * * * * * * * * * * * * * * * *	****	****	* * * * * * * * * * * * *	* * * * * * * * * * * * *		

Description Storage Monolith		Computed by	ЈМН	Date	Dec-20	
	River Road Storage Monolith	-				
	CPGA Input & Output Files (Pile Analysis)	Checked by	ND	Date	Dec-20	

PILE FORCES IN LOCAL GEOMETRY

- M1 & M2 NOT AT PILE HEAD FOR PINNED PILES
- * INDICATES PILE FAILURE
- # INDICATES CBF BASED ON MOMENTS DUE TO
 - (F3*EMIN) FOR CONCRETE PILES
- B INDICATES BUCKLING CONTROLS
- LOAD CASE 1

PILE	F1	F2	F3	M1	M2	M3 ALF CBF
	K	K	K	IN-K	IN-K	IN-K
1	0.7	0.0	33.6	0.0	-21.7	0.0 0.58 0.08
2	0.7	0.0	33.6	0.0	-21.7	0.0 0.58 0.08
3	0.7	0.0	33.6	0.0	-21.7	0.0 0.58 0.08
4	0.7	0.0	33.6	0.0	-21.7	0.0 0.58 0.08
5	0.7	0.0	33.6	0.0	-21.7	0.0 0.58 0.08
6	0.7	0.0	33.6	0.0	-21.7	0.0 0.58 0.08
7	-0.8	0.0	42.9	0.0	25.2	0.0 0.73 0.10
8	-0.8	0.0	42.9	0.0	25.2	0.0 0.73 0.10
9	-0.8	0.0	42.9	0.0	25.2	0.0 0.73 0.10
10	-0.8	0.0	42.9	0.0	25.2	0.0 0.73 0.10
11	-0.8	0.0	42.9	0.0	25.2	0.0 0.73 0.10
12	-0.8	0.0	42.9	0.0	25.2	0.0 0.73 0.10

PILE	F1	F2	F3	Ml	M2	M3 ALF CBF
	K	K	K	IN-K	IN-K	IN-K
1	-7.0	0.0	5.6	0.0	212.2	0.0 0.08 0.17
2	-7.0	0.0	5.6	0.0	212.2	0.0 0.08 0.17
3	-7.0	0.0	5.6	0.0	212.2	0.0 0.08 0.17
4	-7.0	0.0	5.6	0.0	212.2	0.0 0.08 0.17
5	-7.0	0.0	5.6	0.0	212.2	0.0 0.08 0.17
6	-7.0	0.0	5.6	0.0	212.2	0.0 0.08 0.17
7	6.9	0.0	46.5	0.0	-209.9	0.0 0.70 0.23
8	6.9	0.0	46.5	0.0	-209.9	0.0 0.70 0.23
9	6.9	0.0	46.5	0.0	-209.9	0.0 0.70 0.23
10	6.9	0.0	46.5	0.0	-209.9	0.0 0.70 0.23
11	6.9	0.0	46.5	0.0	-209.9	0.0 0.70 0.23
12	6.9	0.0	46.5	0.0	-209.9	0.0 0.70 0.23

Descri	ption	Stora	age Monoli	th	-	с	omput	ed by	ЈМН	Date	Dec-20
		Rive	r Road Stor	rage Monolit	h						
		CPG	A Input & C	Output Files (Pile Analysis)		Check	ed by	ND	Date	Dec-20
LOAD	CASE -	3									
PILE	F1	F2	F3	M1	М2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-7.5	0.0	8.9	0.0	228.6	0.0	0.13	0.19			
2	-7.5	0.0	8.9	0.0	228.6	0.0	0.13	0.19			
3	-7.5	0.0	8.9	0.0	228.6	0.0	0.13	0.19			
4	-7.5	0.0	8.9	0.0	228.6	0.0	0.13	0.19			
5	-7.5	0.0	8.9	0.0	228.6	0.0	0.13	0.19			
6	-7.5	0.0	8.9	0.0	228.6	0.0	0.13	0.19			
7	7.4	0.0	43.2	0.0	-226.3	0.0	0.65	0.24			
8	7.4	0.0	43.2	0.0	-226.3	0.0	0.65	0.24			
9	7.4	0.0	43.2	0.0	-226.3	0.0	0.65	0.24			
10	7.4	0.0	43.2	0.0	-226.3	0.0	0.65	0.24			
11	7.4	0.0	43.2	0.0	-226.3	0.0	0.65	0.24			
12	7.4	0.0	43.2	0.0	-226.3	0.0	0.65	0.24			

PILE FORCES IN GLOBAL GEOMETRY

PX	PY	ΡZ	MX	МҮ	MZ
K	K	K	IN-K	IN-K	IN-K
6.2	0.0	33.1	0.0	0.0	0.0
6.2	0.0	33.1	0.0	0.0	0.0
6.2	0.0	33.1	0.0	0.0	0.0
6.2	0.0	33.1	0.0	0.0	0.0
6.2	0.0	33.1	0.0	0.0	0.0
6.2	0.0	33.1	0.0	0.0	0.0
-6.2	0.0	42.4	0.0	0.0	0.0
-6.2	0.0	42.4	0.0	0.0	0.0
-6.2	0.0	42.4	0.0	0.0	0.0
-6.2	0.0	42.5	0.0	0.0	0.0
-6.2	0.0	42.5	0.0	0.0	0.0
-6.2	0.0	42.5	0.0	0.0	0.0
	PX K 6.2 6.2 6.2 6.2 6.2 6.2 6.2 -6.2 -6.2 -	PX PY K K 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 -6.2 0.0 -6.2 0.0 -6.2 0.0 -6.2 0.0 -6.2 0.0 -6.2 0.0 -6.2 0.0	PX PY PZ K K K 6.2 0.0 33.1 6.2 0.0 33.1 6.2 0.0 33.1 6.2 0.0 33.1 6.2 0.0 33.1 6.2 0.0 33.1 6.2 0.0 33.1 6.2 0.0 33.1 6.2 0.0 42.4 -6.2 0.0 42.4 -6.2 0.0 42.4 -6.2 0.0 42.5 -6.2 0.0 42.5 -6.2 0.0 42.5	PX PY PZ MX K K K IN-K 6.2 0.0 33.1 0.0 6.2 0.0 33.1 0.0 6.2 0.0 33.1 0.0 6.2 0.0 33.1 0.0 6.2 0.0 33.1 0.0 6.2 0.0 33.1 0.0 6.2 0.0 33.1 0.0 6.2 0.0 33.1 0.0 6.2 0.0 42.4 0.0 -6.2 0.0 42.4 0.0 -6.2 0.0 42.4 0.0 -6.2 0.0 42.5 0.0 -6.2 0.0 42.5 0.0 -6.2 0.0 42.5 0.0 -6.2 0.0 42.5 0.0	PX PY PZ MX MY K K K IN-K IN-K 6.2 0.0 33.1 0.0 0.0 6.2 0.0 33.1 0.0 0.0 6.2 0.0 33.1 0.0 0.0 6.2 0.0 33.1 0.0 0.0 6.2 0.0 33.1 0.0 0.0 6.2 0.0 33.1 0.0 0.0 6.2 0.0 33.1 0.0 0.0 6.2 0.0 33.1 0.0 0.0 6.2 0.0 42.4 0.0 0.0 -6.2 0.0 42.4 0.0 0.0 -6.2 0.0 42.5 0.0 0.0 -6.2 0.0 42.5 0.0 0.0 -6.2 0.0 42.5 0.0 0.0

Description	ı	Storage Monolith		-	Computed by			Date	Dec-20
		River Road S	Storage Monolit	h		_			
		CPGA Input	& Output Files (Pile Analy	vsis)	Checked by	ND	Date	Dec-20
LOAD CAS	E – 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-6.0	0.0	6.7	0.0	0.0	0.0			
2	-6.0	0.0	6.7	0.0	0.0	0.0			
3	-6.0	0.0	6.7	0.0	0.0	0.0			
4	-6.0	0.0	6.7	0.0	0.0	0.0			
5	-6.0	0.0	6.7	0.0	0.0	0.0			
6	-6.0	0.0	6.7	0.0	0.0	0.0			
7	-14.4	0.0	44.7	0.0	0.0	0.0			
8	-14.4	0.0	44.7	0.0	0.0	0.0			
9	-14.4	0.0	44.7	0.0	0.0	0.0			
10	-14.4	0.0	44.7	0.0	0.0	0.0			
11	-14.4	0.0	44.7	0.0	0.0	0.0			
12	-14.4	0.0	44.7	0.0	0.0	0.0			

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-6.0	0.0	10.0	0.0	0.0	0.0
2	-6.0	0.0	10.0	0.0	0.0	0.0
3	-6.0	0.0	10.0	0.0	0.0	0.0
4	-6.0	0.0	10.0	0.0	0.0	0.0
5	-6.0	0.0	10.0	0.0	0.0	0.0
6	-6.0	0.0	10.0	0.0	0.0	0.0
7	-14.4	0.0	41.4	0.0	0.0	0.0
8	-14.4	0.0	41.4	0.0	0.0	0.0
9	-14.4	0.0	41.4	0.0	0.0	0.0
10	-14.4	0.0	41.4	0.0	0.0	0.0
11	-14.4	0.0	41.4	0.0	0.0	0.0
12	-14.4	0.0	41.4	0.0	0.0	0.0

Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage Monolith	_		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	ND	Date	Dec-20

CPGA RESULTS without Load Factors (fixed connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 11-DEC-20 RUN TIME: 12:17:15

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.49; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 12 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-22.50 ,	0.00)
(3.00 ,	22.50 ,	0.00)

PILE PROPERTIES AS INPUT

Description	Storage Mo	onolith	_	Computed	by JMH	Date	Dec-20	
•	River Road	I Storage Monol	lith	•	·			
	CPGA Inpu	it & Output Files	s (Pile Analysis)	Checked	by ND	Date	Dec-20	
E	I1	I2	A	C33	B66			
KSI	IN**4	IN**4	IN**2					
0.29000E+05	0.72900E+03	0.26100E+03	0.21400E+02	0.17000E+01	0.00000E+00			
THESE PILE PRO	PERTIES APPI	Y TO THE FOLI	LOWING PILES -					
ALL								
* * * * * * * * * * * * * * *	* * * * * * * * * * * *	*****	****	* * * * * * * * * * * * *	*****	÷		
SOTI.	DESCRIPTIONS	AS INPUT						
5011	DESCRETTIONS	AD INICI						
ES ESOI	L LENGI	'H L	LU					
K/IN* 0.3805	*2 0E+00 T	FT 0.42490E+	FT -02 0.00000E	+00				
ESOIL (ORIGINA	L) RGROU	IP RCYCLIC	2					
0.38050E+00	0.1000)E+01 0.1000E+	-01					
THIS SOIL DESC	RIPTION APPI	IES TO THE FO	LLOWING PILES	-				
ALL								
*****	* * * * * * * * * * * * *	****	****	* * * * * * * * * * * * *	****	÷		
PILE	STIFFNESSES	AS CALCULATED) FROM PROPERT	IES				
0.35937E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.16971E+04	0.00000E+00			
0.00000E+00	0.46458E+02	0.00000E+00	-0.28362E+04	0.00000E+00	0.00000E+00			
0.00000E+00	0.00000E+00	0.20410E+04	0.00000E+00	0.00000E+00	0.00000E+00			
0.00000E+00 -	0.28362E+04	0.00000E+00	0.34630E+06	0.00000E+00	0.00000E+00			
0.16971E+04	0.00000E+00	0.00000E+00	0.00000E+00	0.16028E+06	0.00000E+00			
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00			
THIS MATRIX AP	PLIES TO THE	FOLLOWING PI	TES -					
1								
* * * * * * * * * * * * * * *	* * * * * * * * * * * *	*****	****	* * * * * * * * * * * * *	****	÷		
PILE	GEOMETRY AS	INPUT AND/OR	GENERATED					

Descriptio	on	Storage Mond	olith			Comput	ed by	ЈМН	Date	Dec-20
		River Road St	orage Mon	olith						
		CPGA Input &	CPGA Input & Output Files (Pile A			Check	Checked by		Date	Dec-20
NUM	Y	v	7	ваттгр	ANGLE	LENCTH	FIXITV			
NOPI	FT	FT	FT	DATIEN	ANGLE	FT	LIVIII			
1	3.00	-22.50	0.00	6.00	0.00	43.08	F			
2 3	3.00 3.00	-13.50 -4.50	0.00	6.00 6.00	0.00	43.08 43.08	F			
4	3.00	4.50	0.00	6.00	0.00	43.08	F			
5	3.00	13.50	0.00	6.00	0.00	43.08	F			
6	3.00	22.50	0.00	6.00	0.00	43.08	F			
7	-3.00	-22.50	0.00	6.00	180.00	43.08	F			
8	-3.00	-13.50	0.00	6.00	180.00	43.08	F			
9	-3.00	-4.50	0.00	6.00	180.00	43.08	F			
10	-3.00	4.50	0.00	6.00	180.00	43.08	F			
11	-3.00	13.50	0.00	6.00	180.00	43.08	F			
12	-3.00	22.50	0.00	6.00	180.00	43.08	F			
516.91										
++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++	+++++++++	+++++++++	++++++++	+++++++	++++++	. 4. 4	

APPLIED LOADS

LOAD	PX	PY	ΡZ	MX	МҮ	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0.0	0.0	453.1	0.0	168.9	0.0 1.17 1.17
2	-122.4	0.0	308.3	0.0	683.8	0.0 1.33 1.33
3	-122.4	0.0	308.3	0.0	565.3	0.0 1.33 1.33

Job Mau	irepaus Swamp			Project No	. 60632162		
Description	Storage Monol	ith		Computed by	/	Date	Dec-20
	River Road Sto	rage Monolith	Nile Anelysie)	Cheeked by		Data	Dec 20
	CPGA Input &	Output Files (I	rile Analysis)	Checked by	/ <u>ND</u>	Date	Dec-20
OF	RIGINAL PILE GROUP	STIFFNESS MA	TRIX				
0.10815E+0	04 -0.63764E-05 0.	45475E-12 -0	.16407E-03 -	D.12038E+06 0	.16147E-03		
-0.63764E-0	0.55750E+03 0.	47476E-04 -0	.33572E+05	D.18732E-02 -0	.59117E-11		
0.45475E-1	2 0.47476E-04 0.	23842E+05 0	.40737E-04	0.00000E+00 -0	.17091E-02		
-0.16407E-(-0.12038E+(0.16147E-(03 -0.33572E+05 0. 06 0.18732E-02 0. 03 -0.22737E-11 -0.	40737E-04 0 00000E+00 -0 17091E-02 -0	.81514E+09 - .24328E-01 - .74506E-08 -	0.24328E-01 -0 0.33063E+08 -0 0.75636E-01 0	.14901E-07 .75636E-01 .38031E+08		
	12 PILES	3 load ca	SES				
LOAD CASE	1. NUMBER OF FA	ILURES = 0	. NUMBER OF	PILES IN TENS	ION = 0.		
LOAD CASE	2. NUMBER OF FA	ILURES = 0	. NUMBER OF	PILES IN TENS	SION = 6.		
LOAD CASE	3. NUMBER OF FA	ILURES = 0	. NUMBER OF	PILES IN TENS	SION = 0.		
* * * * * * * * * * * *	****	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * *	****		
Pl	LE CAP DISPLACEMEN	TS					
LOAD							
CASE	DX DY	DZ	RX	RY	RZ		
	IN IN	IN	RAD	RAD	RAD		
1 0.11	47E-01 -0 1838E-08	0.1900E-01	-0.7126E-13	0.1031E-03	0.1010E-11		
2 -0.14	138E+00 -0.1827E-08	0.1293E-01	-0.1131E-12	-0.2755E-03	0.6439E-12		
3 -0.15	519E+00 -0.1676E-08	0.1293E-01	-0.1106E-12	-0.3478E-03	0.5343E-12		
*******	ELASTIC CENTER	************ INFORMATION	*****	* * * * * * * * * * * * * * * *	*****		
ELASTIC CEN	NTER IN PLANE X-Z	Х	Z				
		FT	FT				
		0.00	0.00				

Description	Storage Monolith	Computed by	JMH	Date	Dec-20
	River Road Storage Monolith	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by	ND	Date	Dec-20

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES $% \left({{{\left({{{\left({{{}_{{\rm{T}}}} \right)}} \right)}}} \right)$

* INDICATES PILE FAILURE

- # INDICATES CBF BASED ON MOMENTS DUE TO (F3*EMIN) FOR CONCRETE PILES
- B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

Fl	F2	F3	M1	М2	МЗ	ALF	CBF
K	K	K	IN-K	IN-K	IN-K		
0.5	0.0	34.6	0.0	31.5	0.0	0.59	0.09
0.5	0.0	34.6	0.0	31.5	0.0	0.59	0.09
0.5	0.0	34.6	0.0	31.5	0.0	0.59	0.09
0.5	0.0	34.6	0.0	31.5	0.0	0.59	0.09
0.5	0.0	34.6	0.0	31.5	0.0	0.59	0.09
0.5	0.0	34.6	0.0	31.5	0.0	0.59	0.09
-0.7	0.0	41.9	0.0	-42.1	0.0	0.72	0.11
-0.7	0.0	41.9	0.0	-42.1	0.0	0.72	0.11
-0.7	0.0	41.9	0.0	-42.1	0.0	0.72	0.11
-0.7	0.0	41.9	0.0	-42.1	0.0	0.72	0.11
-0.7	0.0	41.9	0.0	-42.1	0.0	0.72	0.11
-0.7	0.0	41.9	0.0	-42.1	0.0	0.72	0.11
	F1 K 0.5 0.5 0.5 0.5 0.5 0.5 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	F1 F2 K K 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0	F1 F2 F3 K K K 0.5 0.0 34.6 0.5 0.0 34.6 0.5 0.0 34.6 0.5 0.0 34.6 0.5 0.0 34.6 0.5 0.0 34.6 0.5 0.0 34.6 0.5 0.0 34.6 0.5 0.0 34.6 0.5 0.0 34.6 0.7 0.0 41.9 -0.7 0.0 41.9 -0.7 0.0 41.9 -0.7 0.0 41.9 -0.7 0.0 41.9 -0.7 0.0 41.9 -0.7 0.0 41.9 -0.7 0.0 41.9	F1 F2 F3 M1 K K K IN-K 0.5 0.0 34.6 0.0 0.5 0.0 34.6 0.0 0.5 0.0 34.6 0.0 0.5 0.0 34.6 0.0 0.5 0.0 34.6 0.0 0.5 0.0 34.6 0.0 0.5 0.0 34.6 0.0 0.5 0.0 34.6 0.0 0.5 0.0 34.6 0.0 -0.7 0.0 41.9 0.0 -0.7 0.0 41.9 0.0 -0.7 0.0 41.9 0.0 -0.7 0.0 41.9 0.0 -0.7 0.0 41.9 0.0	F1 F2 F3 M1 M2 K K K IN-K IN-K 0.5 0.0 34.6 0.0 31.5 0.5 0.0 34.6 0.0 31.5 0.5 0.0 34.6 0.0 31.5 0.5 0.0 34.6 0.0 31.5 0.5 0.0 34.6 0.0 31.5 0.5 0.0 34.6 0.0 31.5 0.5 0.0 34.6 0.0 31.5 0.5 0.0 34.6 0.0 31.5 0.5 0.0 34.6 0.0 31.5 0.7 0.0 41.9 0.0 -42.1 -0.7 0.0 41.9 0.0 -42.1 -0.7 0.0 41.9 0.0 -42.1 -0.7 0.0 41.9 0.0 -42.1 -0.7 0.0 41.9 0.0 -42.1 -0.7	F1 F2 F3 M1 M2 M3 K K K K IN-K IN-K IN-K 0.5 0.0 34.6 0.0 31.5 0.0 0.0 0.5 0.0 34.6 0.0 31.5 0.0 0.0 0.5 0.0 34.6 0.0 31.5 0.0 0.0 0.5 0.0 34.6 0.0 31.5 0.0 0.0 0.5 0.0 34.6 0.0 31.5 0.0 0.0 0.5 0.0 34.6 0.0 31.5 0.0 0.0 0.5 0.0 34.6 0.0 31.5 0.0 0.0 -0.7 0.0 41.9 0.0 -42.1 0.0 0.0 -0.7 0.0 41.9 0.0 -42.1 0.0 0.0 -0.7 0.0 41.9 0.0 -42.1 0.0 0.0 -0.7 0.0	F1 F2 F3 M1 M2 M3 ALF K K K IN-K IN-K IN-K IN-K 0.5 0.0 34.6 0.0 31.5 0.0 0.59 0.5 0.0 34.6 0.0 31.5 0.0 0.59 0.5 0.0 34.6 0.0 31.5 0.0 0.59 0.5 0.0 34.6 0.0 31.5 0.0 0.59 0.5 0.0 34.6 0.0 31.5 0.0 0.59 0.5 0.0 34.6 0.0 31.5 0.0 0.59 0.5 0.0 34.6 0.0 31.5 0.0 0.59 0.7 0.0 41.9 0.0 -42.1 0.0 0.72 -0.7 0.0 41.9 0.0 -42.1 0.0 0.72 -0.7 0.0 41.9 0.0 -42.1 0.0 0.72 -0.7

PILE	F1	F2	F3	M1	M2	M3 ALF CBF
	K	K	K	IN-K	IN-K	IN-K
1	-5.7	0.0	-2.3	0.0	-291.3	0.0 0.06 0.22
2	-5.7	0.0	-2.3	0.0	-291.3	0.0 0.06 0.22
3	-5.7	0.0	-2.3	0.0	-291.3	0.0 0.06 0.22
4	-5.7	0.0	-2.3	0.0	-291.3	0.0 0.06 0.22
5	-5.7	0.0	-2.3	0.0	-291.3	0.0 0.06 0.22
6	-5.7	0.0	-2.3	0.0	-291.3	0.0 0.06 0.22
7	5.5	0.0	54.3	0.0	284.1	0.0 0.82 0.30
8	5.5	0.0	54.3	0.0	284.1	0.0 0.82 0.30
9	5.5	0.0	54.3	0.0	284.1	0.0 0.82 0.30
10	5.5	0.0	54.3	0.0	284.1	0.0 0.82 0.30
11	5.5	0.0	54.3	0.0	284.1	0.0 0.82 0.30
12	5.5	0.0	54.3	0.0	284.1	0.0 0.82 0.30

Maurepaus Swamp Project No. 60632162 Description Storage Monolith Computed by JMH Dec-20 Date **River Road Storage Monolith** CPGA Input & Output Files (Pile Analysis) ND Checked by Date Dec-20 3 LOAD CASE -PILE FЗ M1 M2 F1 F2 MЗ ALF CBF K K K IN-K IN-K IN-K -6.1 0.0 0.3 0.0 -317.1 0.0 0.00 0.24 1 2 -6.1 0.0 0.3 0.0 -317.1 0.0 0.00 0.24 0.0 -317.1 0.0 0.00 0.24 3 -6.1 0.3 0.0 0.0 0.00 0.24 -6.1 0.0 0.3 0.0 -317.1 4 5 -6.1 0.0 0.3 0.0 -317.1 0.0 0.00 0.24 0.0 0.00 0.24 6 -6.1 0.0 0.3 0.0 -317.1 0.0 51.8 309.9 7 6.0 0.0 0.0 0.78 0.31 51.8 309.9 0.0 0.0 0.78 0.31 8 6.0 0.0 309.9 6.0 0.0 51.8 0.0 0.78 0.31 9 0.0 0.0 51.8 0.0 0.78 0.31 10 6.0 0.0 309.9 11 6.0 0.0 51.8 0.0 309.9 0.0 0.78 0.31 6.0 0.0 51.8 309.9 0.0 0.78 0.31 12 0.0

PILE FORCES IN GLOBAL GEOMETRY

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	6.2	0.0	34.1	0.0	31.5	0.0
2	6.2	0.0	34.1	0.0	31.5	0.0
3	6.2	0.0	34.1	0.0	31.5	0.0
4	6.2	0.0	34.1	0.0	31.5	0.0
5	6.2	0.0	34.1	0.0	31.5	0.0
6	6.2	0.0	34.1	0.0	31.5	0.0
7	-6.2	0.0	41.4	0.0	42.1	0.0
8	-6.2	0.0	41.4	0.0	42.1	0.0
9	-6.2	0.0	41.4	0.0	42.1	0.0
10	-6.2	0.0	41.4	0.0	42.1	0.0
11	-6.2	0.0	41.4	0.0	42.1	0.0
12	-6.2	0.0	41.4	0.0	42.1	0.0

Descriptio	on	Storage Mor	nolith		С	omputed by	JMH	Date	Dec-20
		River Road	Storage Monol	lith		_			
		CPGA Input	& Output Files	s (Pile Anal	ysis)	Checked by	ND	Date	Dec-20
LOAD CA	SE - 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-6.0	0.0	-1.3	0.0	-291.3	0.0			
2	-6.0	0.0	-1.3	0.0	-291.3	0.0			
3	-6.0	0.0	-1.3	0.0	-291.3	0.0			
4	-6.0	0.0	-1.3	0.0	-291.3	0.0			
5	-6.0	0.0	-1.3	0.0	-291.3	0.0			
6	-6.0	0.0	-1.3	0.0	-291.3	0.0			
7	-14.4	0.0	52.7	0.0	-284.1	0.0			
8	-14.4	0.0	52.7	0.0	-284.1	0.0			
9	-14.4	0.0	52.7	0.0	-284.1	0.0			
10	-14.4	0.0	52.7	0.0	-284.1	0.0			
11	-14.4	0.0	52.7	0.0	-284.1	0.0			
12	-14.4	0.0	52.7	0.0	-284.1	0.0			

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-6.0	0.0	1.3	0.0	-317.1	0.0
2	-6.0	0.0	1.3	0.0	-317.1	0.0
3	-6.0	0.0	1.3	0.0	-317.1	0.0
4	-6.0	0.0	1.3	0.0	-317.1	0.0
5	-6.0	0.0	1.3	0.0	-317.1	0.0
6	-6.0	0.0	1.3	0.0	-317.1	0.0
7	-14.4	0.0	50.1	0.0	-309.9	0.0
8	-14.4	0.0	50.1	0.0	-309.9	0.0
9	-14.4	0.0	50.1	0.0	-309.9	0.0
10	-14.4	0.0	50.1	0.0	-309.9	0.0
11	-14.4	0.0	50.1	0.0	-309.9	0.0
12	-14.4	0.0	50.1	0.0	-309.9	0.0

Description	Storage Monolith	Computed by	JMH	Date	Dec-20
	River Road Storage Monolith	-			
	CPGA Input & Output Files (Concrete Desig	n) Checked by	ND	Date _	Dec-20
Input file:					
100 MC	NOLITH, TOW EL. 16.13, TOS EL.10.49;	; HP 14X73 PII	ES		
200 PF	COP 29000 729 261 21.4 1.7 0 ALL				
300 SC	DIL ES 0.3805 TIP 42.49 0 ALL				
400 PI	N ALL				
500 AI	LOW H 50 30 492.7 535 2972.2 994.4 A	ALL			
600 FC	WSTR 1 1 1				
700 FC	WSTR 1 1 2 3				
800 BA	ATTER 6 All				
1200 A	NGLE 180 7 TO 12				
1300 E	PILE 1 3 -22.5 0				
1400 E	PILE 2 3 -13.5 0				
1500 F	PILE 3 3 -4.5 0				
1600 E	PILE 4 3 4.5 0				
1700 E	PILE 5 3 13.5 0				
1800 E	PILE 6 3 22.5 0				
1900 E	PILE 7 -3 -22.5 0				
2000 E	PILE 8 -3 -13.5 0				
2100 E	PILE 9 -3 -4.5 0				
2200 F	PILE 10 -3 4.5 0				
2300 E	PILE 11 -3 13.5 0				
2400 E	PILE 12 -3 22.5 0				
4500 I	OAD 1 0 0 725 0 270.2 0				
4600 I	OAD 2 -195.8 0 493.3 0 1094 0				
4700 I	OAD 3 -195.8 0 493.3 0 904.4 0				
9000 F	OUT 1 2 3 4 5 6 7 RR01S.DOC				
9100 P	FO ALL				
9200 P	LB ALL				

Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage Monolith	_			
	CPGA Input & Output Files (Concrete Design)	Checked by	ND	Date	Dec-20

CPGA RESULTS with Load Factors

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 11-DEC-20 RUN TIME: 12:18:54

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE
- NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.49; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 12 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-22.50 ,	0.00)
(3.00 ,	22.50 ,	0.00)

PILE PROPERTIES AS INPUT

E I1 I2 A C33 B66 KSI IN**4 IN**4 IN**2 0.29000E+05 0.72900E+03 0.26100E+03 0.21400E+02 0.17000E+01 0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

Project No. 60632162

Description	Storage Monolith	Computed by	JMH	Date	Dec-20
	River Road Storage Monolith	_		_	
	CPGA Input & Output Files (Concrete Design)	Checked by	ND	Date	Dec-20

ESOIL LENGTH L LU K/IN**2 FT FT ES 0.38050E+00 T 0.42490E+02 0.00000E+00

ESOIL (ORIGINAL) RGROUP RCYCLIC K/IN**2 0.38050E+00 0.1000E+01 0.1000E+01

THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -

ALL

PILE STIFFNESSES AS CALCULATED FROM PROPERTIES

0.17968E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.23229E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.20410E+04 0.00000E+00 0.00000E+00

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1

Description	n	Storage Monolith				Compu	Computed by		Date	Dec-20
		River Road	l Storage Mono	lith		· · · -				
		CPGA Inpu	it & Output File	s (Concr	ete Design)	Chec	ked by	ND	Date	Dec-20
	PILE G	EOMETRY AS	INPUT AND/OR	GENERAT	ED					
NUM	х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FT	FT	FT			FΤ				
1	3.00	-22.50	0.00	6.00	0.00	43.08	P			
2	3.00	-13.50	0.00	6.00	0.00	43.08	P			
3	3.00	-4.50	0.00	6.00	0.00	43.08	P			
4	3.00	4.50	0.00	6.00	0.00	43.08	P			
5	3.00	13.50	0.00	6.00	0.00	43.08	P			
6	3.00	22.50	0.00	6.00	0.00	43.08	P			
7	-3.00	-22.50	0.00	6.00	180.00	43.08	P			
8	-3.00	-13.50	0.00	6.00	180.00	43.08	P			
9	-3.00	-4.50	0.00	6.00	180.00	43.08	P			
10	-3.00	4.50	0.00	6.00	180.00	43.08	P			
11	-3.00	13.50	0.00	6.00	180.00	43.08	P			
12	-3.00	22.50	0.00	6.00	180.00	43.08	P			
516.91										

APPLIED LOADS

LOAD CASE	PX K	PY K	PZ K	MX FT-K	MY FT-K	MZ FT-K
1	0.0	0.0	725.0	0.0	270.2	0.0
2	-195.8	0.0	493.3	0.0	1094.0	0.0
3	-195.8	0.0	493.3	0.0	904.4	0.0

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.87174E+03
 -0.72155E-05
 0.90949E-12
 -0.14552E-10
 -0.14172E+06
 0.25976E-03

 -0.72155E-05
 0.27875E+03
 0.47902E-04
 0.00000E+00
 0.17245E-02
 -0.48885E-11

 0.90949E-12
 0.47902E-04
 0.23836E+05
 0.11642E-09
 0.29104E-10
 -0.17245E-02

 0.14552E-10
 0.0000E+00
 0.81090E+09
 -0.37253E-08
 -0.22352E-07

 -0.14172E+06
 0.17245E-02
 0.29104E-10
 0.0000E+00
 0.30891E+08
 -0.62081E-01

 0.25976E-03
 -0.51159E-11
 -0.17245E-02
 -0.14901E-07
 -0.62081E-01
 0.30018E+08

Description		Storage Monolith River Road Storage Monolith			Computed by			н	Date _	Dec-20	
		CPGA Ir	nput & (Output File	es (Co	oncrete Desig	n) Checked	by N	D	Date	Dec-20
		12	PILES	3 LOAD	CASE	ES					
LOAD CASE	1.	NUMBER	OF FAI	ILURES =	12.	NUMBER OF	PILES IN TEN	ISION =	0.		
LOAD CASE	2.	NUMBER	OF FAI	LURES =	6.	NUMBER OF	PILES IN TEN	ISION =	0.		
LOAD CASE	3.	NUMBER	OF FAI	ILURES =	6.	NUMBER OF	PILES IN TEN	ISION =	0.		
********	****	******	*****	******	****	* * * * * * * * * * * *	******	******	****		
PI	LE CA	P DISPLA	CEMENT	'S							
CASE	אס		NY.	D7		RX	BY	R7			
CADE	IN	I	N.	IN		RAD	RAD	RAD			
1 0.67	14E-0	1 -0.604	4E-08	0.3042E	-01	0.6924E-21	0.4130E-03	0.2020E	-11		
2 -0.61	19E+0	0 -0.465	8E-08	0.2070E	-01	0.3657E-22	-0.2382E-02	0.1557E	-11		
3 -0.65	90E+0	0 -0.408	5E-08	0.2070E	-01 -	-0.4493E-21	-0.2672E-02	0.1365E	-11		
*******	****	******	*****	******	****	* * * * * * * * * * * *	****	******	****		
	EL	ASTIC CE	NTER 1	INFORMATI	ON						
ELASTIC CEN	TER I	N PLANE	X-Z	Х		Z					
				FT		FT					
				0.00		0.00					
********	****	* * * * * * * *	*****	*******	****	* * * * * * * * * * * *	*****	******	****		
PI	LE FO	RCES IN	LOCAL	GEOMETRY							
	N/1	6 M2 MO	י י י חוק ו	מגמט סדי	۳00 -	ייידיי השואורס					
	ж т 141	NDICATES	. AI PI	FATINDE	ruk i	атимер Бірду					
	ш т # т	NDICATES	CBF F	BASED ON	MOMEN	אדא הנוד די					
	<i>п</i>		(F3*F	MIN) FOR	CONC	CRETE PILES					
	ΒI	NDICATES	BUCKI	LING CONT	ROLS						

Descri	ption	Stor	age Monol	ith			Comp	uted by	JMH	Date	Dec-20
		Rive	r Road Sto	rage Monolith	ı			-		_	
		CPG	A Input &	Output Files (Concrete I	Design)	Cheo	ked by _	ND	Date _	Dec-20
LOAD	CASE -	1									
PILE	Fl	F2	F3	М1	М2	МЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	1.1	0.0	53.8	0.0	-34.8	0.0	1.08	0.14	*		
2	1.1	0.0	53.8	0.0	-34.8	0.0	1.08	0.14	*		
3	1.1	0.0	53.8	0.0	-34.8	0.0	1.08	0.14	*		
4	1.1	0.0	53.8	0.0	-34.8	0.0	1.08	0.14	*		
5	1.1	0.0	53.8	0.0	-34.8	0.0	1.08	0.14	*		
6	1.1	0.0	53.8	0.0	-34.8	0.0	1.08	0.14	*		
7	-1.3	0.0	68.6	0.0	40.3	0.0	1.37	0.18	*		
8	-1.3	0.0	68.6	0.0	40.3	0.0	1.37	0.18	*		
9	-1.3	0.0	68.6	0.0	40.3	0.0	1.37	0.18	*		
10	-1.3	0.0	68.6	0.0	40.3	0.0	1.37	0.18	*		
11	-1.3	0.0	68.6	0.0	40.3	0.0	1.37	0.18	*		
12	-1.3	0.0	68.6	0.0	40.3	0.0	1.37	0.18	*		
LOAD	CASE -	2									
PILE	F1	F2	F3	Ml	М2	MЗ	ALF	CBF			
	K	K	К	IN-K	IN-K	IN-K					
1	-11.2	0.0	9.0	0.0	339.4	0.0	0.18	0.36			
2	-11.2	0.0	9.0	0.0	339.4	0.0	0.18	0.36			
3	-11.2	0.0	9.0	0.0	339.4	0.0	0.18	0.36			
4	-11.2	0.0	9.0	0.0	339.4	0.0	0.18	0.36			
5	-11.2	0.0	9.0	0.0	339.4	0.0	0.18	0.36			
6	-11.2	0.0	9.0	0.0	339.4	0.0	0.18	0.36			
7	11.0	0.0	74.3	0.0	-335.7	0.0	1.49	0.49	*		
8	11.0	0.0	74.3	0.0	-335.7	0.0	1.49	0.49	*		
9	11.0	0.0	74.3	0.0	-335.7	0.0	1.49	0.49	*		
10	11.0	0.0	74.3	0.0	-335.7	0.0	1.49	0.49	*		
11	11.0	0.0	74.3	0.0	-335.7	0.0	1.49	0.49	*		
12	11.0	0.0	74.3	0.0	-335.7	0.0	1.49	0.49	*		

Descri	ption	Stor	age Monol	ith	-	(Compi	uted by	JMH	Date	Dec-20
		Rive	r Road Sto	h	1		-		_		
		CPG	A Input &	Output Files	(Concrete D)esign)	Chec	ked by	ND	Date	Dec-20
LOAD	CASE -	3									
PILE	F1	F2	F3	M1	м2	МЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-12.0	0.0	14.2	0.0	365.7	0.0	0.28	0.40			
2	-12.0	0.0	14.2	0.0	365.7	0.0	0.28	0.40			
3	-12.0	0.0	14.2	0.0	365.7	0.0	0.28	0.40			
4	-12.0	0.0	14.2	0.0	365.7	0.0	0.28	0.40			
5	-12.0	0.0	14.2	0.0	365.7	0.0	0.28	0.40			
6	-12.0	0.0	14.2	0.0	365.7	0.0	0.28	0.40			
7	11.9	0.0	69.1	0.0	-362.0	0.0	1.38	0.50		*	
8	11.9	0.0	69.1	0.0	-362.0	0.0	1.38	0.50		*	
9	11.9	0.0	69.1	0.0	-362.0	0.0	1.38	0.50		*	
10	11.9	0.0	69.1	0.0	-362.0	0.0	1.38	0.50		*	
11	11.9	0.0	69.1	0.0	-362.0	0.0	1.38	0.50		*	
12	11.9	0.0	69.1	0.0	-362.0	0.0	1.38	0.50		*	

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	10.0	0.0	52.9	0.0	0.0	0.0
2	10.0	0.0	52.9	0.0	0.0	0.0
3	10.0	0.0	52.9	0.0	0.0	0.0
4	10.0	0.0	52.9	0.0	0.0	0.0
5	10.0	0.0	52.9	0.0	0.0	0.0
6	10.0	0.0	52.9	0.0	0.0	0.0
7	-10.0	0.0	67.9	0.0	0.0	0.0
8	-10.0	0.0	67.9	0.0	0.0	0.0
9	-10.0	0.0	67.9	0.0	0.0	0.0
10	-10.0	0.0	67.9	0.0	0.0	0.0
11	-10.0	0.0	67.9	0.0	0.0	0.0
12	-10.0	0.0	67.9	0.0	0.0	0.0

Description		Storage Mon	olith	- 1941-	c	Computed by	JMH	Date	Dec-20
		River Road S	itorage Mon	olith		Checked by		Data	Dec 20
		CPGA input	& Output Fil	es (Concrete	Design)	Checked by	ND		Dec-20
LOAD CASI	E – 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-9.5	0.0	10.7	0.0	0.0	0.0			
2	-9.5	0.0	10.7	0.0	0.0	0.0			
3	-9.5	0.0	10.7	0.0	0.0	0.0			
4	-9.5	0.0	10.7	0.0	0.0	0.0			
5	-9.5	0.0	10.7	0.0	0.0	0.0			
6	-9.5	0.0	10.7	0.0	0.0	0.0			
7	-23.1	0.0	71.5	0.0	0.0	0.0			
8	-23.1	0.0	71.5	0.0	0.0	0.0			
9	-23.1	0.0	71.5	0.0	0.0	0.0			
10	-23.1	0.0	71.5	0.0	0.0	0.0			
11	-23.1	0.0	71.5	0.0	0.0	0.0			
12	-23.1	0.0	71.5	0.0	0.0	0.0			
LOAD CASI	E – 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	К	K	IN-K	IN-K	IN-K			
1	-9.5	0.0	16.0	0.0	0.0	0.0			
2	-9.5	0.0	16.0	0.0	0.0	0.0			
3	-9.5	0.0	16.0	0.0	0.0	0.0			
4	-9.5	0.0	16.0	0.0	0.0	0.0			
5	-9.5	0.0	16.0	0.0	0.0	0.0			
6	-9.5	0.0	16.0	0.0	0.0	0.0			
7	-23.1	0.0	66.2	0.0	0.0	0.0			
8	-23.1	0.0	66.2	0.0	0.0	0.0			
9	-23.1	0.0	66.2	0.0	0.0	0.0			
10	-23.1	0.0	66.2	0.0	0.0	0.0			
11	-23.1	0.0	66.2	0.0	0.0	0.0			
12	-23 1	0 0	66.2	0 0	0.0	0.0			

Job Maure	M paus Swamp	Project No.	60632162			
Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20	
	River Road Storage Monolith					•
Summ	ary of Shear & Moment	Checked by	ND	Date	Dec-20	_
				R	eferences	-

Load	V _{u,max}	$M_{u,max}$	
Case	(kip/ft)	(kip/ft)	
LC1	0.00	0.00	*Note: LC 1 only has vertical forces, so there is no shear or moment on the wall.
LC2	1.59	2.98	
LC3	1.59	2.98	The following calculations are the max shear (Vu) and
T			moment (Mu) on the wall form LC 2 and LC 3:

Delivered.	PROJECT/JOB N	10	1.4				CALCU	LATION N	10		
	COMPUTED BY		_	D.H	_			DA	TE		
111 /1 1.1.	VERIFIED BY				_			SHEET	10	OF	
vall calculations:			1			11	-	TT	TT		
1	_	N.	There	cale	1.15			1. 4	0 100	line	
Assumptions?	_	Y	nese	tion	far	ns on	1 Sho		110	-3)	
+- 15-10"			2010	1. Out	101	Pulli	10 10	W UL	Cal	2	
(Over = 3"	AS	ume	#6	bars							
$d = 19^{\circ} - 3^{\circ}$	- 75"			. 4							
b= 12"			h	vila	5						
Q. 12.75			. (124		FI	11	115		
\$ = . 9		1		A			44	. 10.	1000		-
F. = 60/15		5.6	35	1						-	
$f_1 = 4 ksi$			1	1							
10	a		1	1			-	FI	10.4	1	
		1							19.1	1	-
) Shear Calculation	ns:					-				-	-
						-	-			-	-
hwilat			-	-			-			_	
1116	1/12)		1	111	14	M	-12	~1)°	4	-	
Vy = 2 lug	ter)(T)	2	21.	2627	1/1	1	2,63	PI		-	
	Vu	=	991	Kip/	R		-	++		-	
	1.11	- 1	1 1	1 4		- 11	-	r F		1-	
	1.6 44	-	1, 5	14/	17	- 14	on	0	wal		
									-		
Manat Calulatie			-					-			
2 moment calculatio	ny .		10	20-1			-		-	-	++
$\Lambda = U (H$	z = f	59	15.	32	=	1 9	5 h-	ft	= M	ant	afin
my - vy t	3) - 0	14	1	51		m. 1	-	FL	- ///	- Contra	0104
						4		10	-		
			-								
			1								
			-						-		T
								+			++
								1			

Dec-20

Dec-20

Δ COM Job Maurepaus Swamp Project No. 60632162 Description Storage Monolith Computed by JMH Date River Road Storage Monolith Shear & Moment Check for Wall Checked by ND Date References * Given Information: 1.50 ft Wall Thickness: Clear Cover: 0.25 ft Diameter Bar to Start: 0.06 ft Maximum Shear (V_u): 1.59 kips per foot Maximum Moment (M_u): 2.98 kip-ft per foot φ_{shear} = 0.75 (ACI 318) 0.9 (ACI 318) ϕ_{moment} = 60 ksi f_{y, rebar} = f'_c = 4 ksi * Shear Calculations: Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u) (ACI Eq. 11-1) Shear Capacity (ϕV_c): $\phi_{shear} * 2 * \int f'_c * b * d$ (ACI Eq. 11-3) 0.75 φ_{shear} = 4 ksi f'_c = 1 ft strip b = 1.22 ft d = 16649.4 lbs $\phi V_c =$ 16.65 kips ** φVc=16.6 ≥ Vu=1.6, Shear Capacity OK

* Reinforcement Calculations:

Limit	of Maximum Reinforcement: 0.25 x ρ_b (Designation of Maximum Reinforcement: 0.25 x ρ_b (Designation of Maximum Reinforcement: 0.0285) for f	n Criteria, EM 1110-2-2 = 4,000psi, fy = 60,00	2104, 3-5) Opsi
	Max Rebar = 0.00713 *b * d		
	Maximum Reinforcement: 0.0071 * b * o	l = 1.25 in ²	per 1ft strip
	A _{gross} = 1.5 ft * 12 in/ft *	12 in strip = 216.00) in ²
Limits	of Minimum Reinforcement: 0.005 × Agros	s = 1.08 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
	(3*√(f' _c) *b*d)/	y = 0.55 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
	(200*b*d)/	f _y = 0.59 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
			7
	Min Reinforcement, temp & shrinka	ge: 0.54 in²	per 1ft strip, per face
	Min Reinforcement, flexu	ral: 0.59 in ²	per 1ft strip, per face

Job <u>Maur</u>	epaus Swamp	Project No. 60632162				
Description	Storage Monolith	Computed by	JMH	Date	Dec-20	
	River Road Storage Mon	olith				
Shea	r & Moment Check for Wall	Checked by	ND	Date	Dec-20	
				References		

* Moment Calculations:

* T = A_s × f_y * C = 0.85 × f'_c × a × b * Assuming Tension = Compression → A_s × f_y = 0.85 × f'_c × a × b * φMn = φ × T × (d - (a / 2)) = φ × A_s × f_y × (d - (a / 2))

* Capacity of Min Flexural Reinforcement:

φM _n =	448.4	kip-in
=	37.37	kip-ft

* Capacity of Maximum Reinforcement:

a = (A_s x f_y) / (0.85 x f'_c x b) = 1.839 in

φMn =	925.4	kip-in	
=	77.12	kip-ft	

FLOODED SIDE

T&S WALL REBAR

F.S. & P.S. WALL REBAR

4

4

44

3" CLR.

(TYP)

4

PROTECTED SIDE

GRADE

The minimum proposed reinforcement for T&S Wall Rebar is #6 @ 9" (A = 0.59 in²) and the minimum proposed reinforcement for F.S. & P.S. Wall Rebar is #6 @ 9"(A=0.59 in²).

ob Maure	paus Swamp	Project No.	60632162		
Description	Storage Monolith	Computed by	JMH	Date	Dec-20
	River Road Storage M	lonolith			
Slab		Checked by	ND	Date	Dec-20
				Re	eferences

Job Maure	paus Swamp	Project No.	60632162		
Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage M	onolith			
Slab Calculations		Checked by	ND	Date	Dec-20
				Re	eferences

AECONI Delivered.	PROJECT/JOB NO	14	C	ALCULATION NO DATE	
	VERIFIED BY			DATE	3OF
M> R= 33	1 10 (0)	4.15' E			
w.slab =	25.31 Kp @)	3.115' @			
Surch.=	14.06 Ky 6)	3.45 0			-
$M_{\rm H} = (14.06)(3$.(45) + (d	5.31)(3.16	(33.	1) (4.15)	
$M_{11} = -17.64$	111 - FZ				
1.6 mu = -29.23	h - f = -	3.14 K-F	6 2 Mu		
	length				
Protected Side:		Mu	surch.		
$V_{u} \rightarrow R = 41.5$	hip from CPF,	e (val	1		
$\omega_{slab} = 0.11$	/(4)(3)(-15 h ki0	5)	A 25'		
Surhane = (15	Kuf)(9)(1))	K1125-/		
Surcharge = 5.	OG Kip	/			
$V_{\rm H} = 9.11 + 5.06$	- 41.5				
$V_{u} = -\lambda g. 33 kip$					-
	-5.11	1			
104445. 32 Kir	2 = -5.04	Kilfe = h			
4 stail	. length				
$M_{\rm H} \rightarrow R =$	42.5 hip @) .15' (
w,slab=	9.11 Kip (8)	1.115' (A	Ð		
(urth =	5.06 10 6	1115' G	5		

Job Maure	paus Swamp	Project No.	60632162		
Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage M	onolith			
Slab Calculations		Checked by	ND	Date	Dec-20
				Re	eferences

Delivered.	PROJECT/JOB NO.			CALCULATION NO.		_
	COMPUTED BY JH			DATE		_
	VERIFIED BY	_		DATE	4 05	-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SCALE			SHEET NO.		-
			1	VIII		_
$M_{\rm U} = (9.11)(1.1)$	25) + (5.06)(1.145) +	(41.5	5)(.25)		
$M_{u} = 5.32$	hip-ft					
16Mu = 8.51 K	ip-ft - as	hio-fy .	M			
a		fr	mu			
	ytrik length	10				
	109/					
Dater to The	(imposition ()					-
	(Intervious)	+++	+			-
-> concrete w						-
=> h, lat can be	grored	10	15 A	×-15-×-125	1	
-> hivert		Tr	Junet		1	-
	hous				- and	-
(assume sheet	pileto				5.635	-
be at middle	of slab/					_
→ assume 9'o	f trib.	V	V	¥ L	-1	_
length between	n piles				3	_
					J	_
		1	A	T		
Flood Side:				3 Uplift im	0	
			there	- 10		
$V_{1} \rightarrow R = -1.7$	kie from ClGA		V. clab	Filly		
1 15 2			Visia			
wislab= 29.3	1 hip (see LC1 alls)	1	1			
1.04=513	5)(9)(1)5)(0)	that R	u .	, w		-
VINU1-12.02	1/1/10:00/1.000		×3.125	x -		-
hover = 19.7	5 kip roi	1	-3.75-	/		-
11101-141.	NIN (min) (NI	Hkef) A	-4.15-	/		-
401177-10.6.	22 1 1 1 (1199) (-009	1 1101				-
Unlift = 24.	15 Kip					_
- Mit - 1 40 1	a					_

 $V_{4} = -43.54$ kip

160 = -69.74 Kip = -7.75 Kip = 14

q' Vy trib. length

RiverRoad_Storage.xlsm

4x4 = 1 in

Job Maure	epaus Swamp	Project No.	60632162		
Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage M	onolith			
Slab (Calculations	Checked by	ND	Date	Dec-20
				Re	eferences

ALCONI Delivered.	PROJECT/JOB NO.		CALCULATION NO	
			DATE_	
	SCALE		SHEET NO.	6 OF
		1111		
	- 7 k. A 15	16		
My -7 K=	sd. / hp a .ds			_
wislab =	9.11 hip @ 1.125	Ð		
$M_{11} = A_{11} V_{1,115}$	-(527)(25)			
and first files	//			
$M_{u} = -2.93 \text{ hip}$	-ft			
111 0 1110 1	. Cr			
1.6/14 - 4.69 h	11-16 = - 52 K	-ft = My		
9	T	fe		
	Trib. length			1 Jan 1 -
				_
		1-6.25-	-15'	1
		hiven		
		1		1
2 Walen + TRUI	opruiau()			1
3. Water to TOWC	pervious)			1
3. Water to TOWC -> conc. wt.	pervious)			5.(35'
3. Water to TOWC → conc. wt. → h.lat can be i	pervious)			5.635
3. Water to TOWC \rightarrow conc. wt. \rightarrow h.lat can be i \rightarrow h.vert	pervious) 'gnored	Y Y Y	<pre>c</pre>	5.035
3. Vater to TOWC -> conc. wt. -> h.lat can be i -> l.veri -> uglift, pervious	ignored	¥ ¥ ¥	r	\$.035
3. Water to TOWC \rightarrow conc. wt. \rightarrow h.lat can be i \rightarrow h.vert \rightarrow upi/f4, pervious \rightarrow Assume 9' of	pervious) ignored trib.			\$.435
3. Vater to TOWC → conc. wt. → h.lat can be i → h.veri → uplift, pervious → Assume 9' of length: between	pervious) "groved trib. Liles		Sudift. pervio	1 \$ (35) - - - - - - - - - - - - -
3. Vater to TOWC → conc. wt. → h.lat can be i → k.vert → uplift, pervious → Assume 9' of length between	pervious) ignored trib. Lifes		Suplift, pervio	1 \$.135 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1
3. Vater to TOWC → conc. wt. → h.lat can be i → l.veri → uplift, pervious → Assume 9' of length letween Flood Side !	pervious)	Y Y Y	Supliff, pervio	1 5.(35)
3. Vater to TOWC → conc. wt. → h.lat can be i → 1.ver7 → upi/4, pervious → Assume 9' of length between Flood Side:	pervious)	y y y	Suplift, pervio	
3. Water to TOWC \rightarrow conc. wt. \rightarrow h.lat can be i \rightarrow h.vert \rightarrow uplith, pervious \rightarrow Assume 9' of length between Flood Side: $V_{u} \rightarrow R = 1.3$	pervious)	Ihver Ihver Inslab	Supliff, pervio	
3. Vater to TOWC → conc. wt. → h.lat can be i → h.veri → uplift, pervious → Assume 9' of length between Plood Side: Vu → R=1.3 wslab=15.	pervious) "gnored trib. tri	I A A I A A I A A I A A R (I)	Supliff, pervio	
3. Water to TOWC \rightarrow conc. wt. \rightarrow h.lat can be i \rightarrow h.vert \rightarrow uplift, pervious \rightarrow Assume 9' of length between Flood Side: $V_u \rightarrow R = 1.3$ w.slab=25:	pervious) gnored trib. files Kip from CPOA SI Kip (see LC1 calcs)	huch jhuch jhuch kush kush	Supliff, pervio	1 5.135
3. Water to TOWC \rightarrow conc. wt. \rightarrow h.lat can be i \rightarrow h.lat can be i \rightarrow h.lat can be i \rightarrow h.lat can be i \rightarrow h.let can be i h.let can be	pervious) gnoved trib. files Kip from CPOA St Kip (see LCL calcs) St Kip (see LCL calcs)	hived instab	Suplift, pervio	1 5.135
3. Water to TOWC \rightarrow conc. wt. \rightarrow h.lat can be i \rightarrow h.lat can be i \rightarrow h.vert \rightarrow upith, pervious \rightarrow Assume 9' of length between Plood Side : $V_{u} \rightarrow R = 1.3$ w.slab = 25.2 h.vert = 19.7 Uplift = (4)	pervious) groved trib. lifes Kip from CPOA 31 Kip (see LC1 calcs) 5 Kip (see LC1 calcs) 5 Kip (see LC1 calcs) 5 Kip (see LC1 calcs)	A A A A A A A A A A A A A A A A A A A	Suplift, pervio	1 5.135 2 2 3 4 4 7 1.93 kip
3. Water to TOWC \rightarrow conc. wt. \rightarrow h.lat can be i \rightarrow h.vert \rightarrow upith, pervious \rightarrow Assume 9' of length between Plood Side ! Vu \rightarrow R = 1.3 w.slab=25: h.vert=19.7 Uplift= (4)	pervious) "groved trib. lifes Nip from CPOA 31 Kip (see LC1 calcs) 5 Kip (see LC1 calcs) 5 + 1.52 (5.351	Linvert Justab R (2) Linvert Justab R (2) Linvert Justab	Supliff, pervio Mu Vu LC:35 HR	1 5.635 7 3 7 7 7 7 1.93 kip

Job Maure	paus Swamp	Project No.	60632162		
Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage M	onolith			
Slab Calculations		Checked by	ND	Date	Dec-20
				Re	eferences

ECOM Imagine it. Delivered	JOB TITLE			0	ALCULATION	NO.	
	COMPUTED BY	H			DA	TE	
	VERIFIED BY				DA	TE 7	
	SCALE					vo(_	
				-			
$V_{y} = 25.31 +$	19.78 -	1.3 -	10.84	++-			
U. = IN AF KA			-				
vy - da. 43 hip						-	-
6Vu = 36.72 kip	= 4.08 K	10 =1	lu				-
9'25		Æ					
len	5th						
$M_{\rm U} \rightarrow R = 1.2$	5 kip (2) 4	15' E					
wideh = 1	E U KINGD 3	US'A	$\left\{ \right\}$				
$h_i vert =$	19.78 Kip @ 3	3.115 E	2				
Uplift=	20.84 kip @	3.6' E	9				
A - (15 21)/3/15	+ (1074)	(211-)	- (12)	(me)	- 110	nuV>	1)
my - an silleras	1 (19.79)	(2.125)	(1-5)	(4.23)	(20.	othe	6/
Mu = 60.36 Kip-	A						
1 - 91 57 4 8	1 11						
6/14 - 16.01 11-1	5 = 10.73	hip-ft	= My				
9'~>ti	ib.	ft	-				
100	gth						
				My			
Protected Sile:				1	10	Slab	
				1			
Vu -> R = 50.1	Kip from CPi	Э.А		14	15		110
w.slab = 9.1	Kip (see] []	(des)		1	1.6		0
(10):14 = 1	h = k(109)	111			A.15'	21	1%
1 101 - 1	Dr dlivy	(4.0.)	_		A.7	5	Y
4/147= 1,	es hip				-11154	1.0	N Kie
1 - 911 - 50	1 -112		-			0)	4 NJ
vut nil so	((.0.)						

Job <u>Maure</u>	paus Swamp	Project No.	60632162		
Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage M	onolith			
Slab Calculations		Checked by	ND	Date	Dec-20
				Re	eferences

AECOM Imagine IC. Delivered.	PROJECT/JOB NO.	CALCULATION NO.
	COMPUTED BY JH	DATE
	VERIFIED BY	DATE
	SCALE	SHEET NO. 4 OF
M -> R =	50.1k@ 15' E	
mu r	all the A LUS A	
wislab =	1.(1 hip @ 1.10	
Uplift =	1.23 kip @ ,75 0	
A = 611)(111t	-) - (501)(11) - (11)	$\gamma \gamma $
Mu - [1.11/(1.105	1 (201)(.05) (1.05	<i>h</i> . <i>n</i>
Au = -3.20	K-#	
1/0		
1.6/1u = - 5.12	h-1= = -57 h-ft	
9	shi të	
	The length	

AECOM Job Maurepaus Swamp Project No. 60632162 Description Storage Monolith Computed by JMH Date Dec-20 **River Road Storage Monolith** Slab Conc. Check Checked by ND Date Dec-20 References * Given Information: 3.00 ft Slab Thickness: Slab Width: 10.00 ft Clear Cover: 0.75 ft Diameter Bar to Start: 0.09 ft 1.13 ft Diameter of Pile: Load Fact. Maximum Pile Reaction: 71.50 kips 1 71.50 kips *From Factored CPGA Results Maximum Shear: 7.75 kips 10.73 kip-ft Maximum Moment (Top): 3.14 kip-ft Maximum Moment (Bottom): 0.75 (ACI 318) φ_{shear} = 0.9 (ACI 318) ϕ_{moment} = 60 ksi f_{y, rebar} = f'_c = 4 ksi * Shear Calculations: 1- Shear Capacity: Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u) Shear Capacity (ϕV_c): $\phi_{shear} * 2 * J f'_c * b * d$ (ACI Eq. 11-3)

	φ _{shear} = f' _c = b = d =	0.75 4 1 2.20	ksi ft strip ft	26.44 in
φV _c =	30095.3	lbs		
	30.10	kips	**	′φVc=30.1 ≥ Vu=7.8, Shear Capacity OK

Maurepaus Swamp Project No. 60632162 Job Description Storage Monolith Computed by JMH Date Dec-20 **River Road Storage Monolith** Slab Conc. Check ND Dec-20 Checked by Date References 2- Punching Shear Capacity (ACI 318-14 Table 22.6.5.2): Vc = minimum value = Eq. a: $4 \times J(f'_c) \times b_0 \times d$ for $\beta_c < 2.0$ Eq. b: $(2 + (4 / \beta_c)) \times \sqrt{(f'_c)} \times b_0 \times d$ for $\beta_c > 2.0$ Eq. c: $((a_s \times d) / b_0 + 2) \times J(f'_c) \times b_0 \times d$ b₀ / d effect based on a_s (interior column: $a_s = 40$, edge column: $a_s = 30$, corner column: $a_s = 20$) d for piles = 26.436 in (Slab thickness - 9" pile embed - cover - 0.5d_{bar}) where β_c = Long side / Short side = b_0 = Perimeter of Critical Section = $\pi^*(D_{pile} + d)$ = 125.777 a_s = 20 (worst case - corner column) Vc = minimum value = Eq. a: 841.17 kips 1261.76 kips Eq. b: 1304.59 kips Eq. c: φV_c = 630.88 kips Check corner pile failure to edge of slab: $D_{pile}/2+d/2 =$ 1.67 ft /2 + d/2 Dpile Diameter of corner failure = 1.668 + 2 ft 3.67 ft 2.00 Dia. punching shear calc above = 3.34 Diameter of punching shear calculation is smaller than the diameter of this corner failure area. Therefore, no recheck of corner punching failure is required. φVc used in design = 30.10 kips ** φVc = 30.1k≥ Vu = 7.8k, Shear Capacity OK Maximum Pile Reaction = 71.50 ** φVc=631k≥ Vu=72k, Punching Shear Capacity OK

				Ro	ferences
Slab Conc. Check		Checked by	ND	Date	Dec-20
	River Road Storage M	lonolith			
Description	Storage Monolith	Computed by	JMH	Date	Dec-20
lob <u>Mau</u>	repaus Swamp	Project No.	60632162	-	

3- Deep Beam One-Way Shear Capacity (ϕV_{c1}):

For $(w/d) \ge 1.0$, a one-way (normal) shear investigation with loads outside the critical section (located at a distance d from the face of the column, b = footing width) and

$$v_c = 1.9\sqrt{f_c^r} + 2500\rho_w \left(\frac{V_u d}{M_u}\right) \ge 2\sqrt{f_c^r}$$
 (ACI Eq. 11-5)

which reduces for $\rho_w \approx 0.002$ and 3,000 psi $\leq f_c' \leq 4,000$ psi to $v_c = 1.9\sqrt{f_c'} + 0.1\sqrt{f_c'} (V_u d/M_u) \geq 2\sqrt{f_c'}$.

For (w/d) < 1.0, $1.0 > M_u/V_u d > 0$; $\infty > V_u d/M_u \ge 1.0$ (no limits on $M_u, V_u d$, other than above)

$$v_c = \left(\frac{d}{w}\right) \left[3.5 - 2.5\left(\frac{M_u}{V_u d}\right)\right] \left[1.9\sqrt{f_c} + 0.1\sqrt{f_c}\left(\frac{V_u d}{M_u}\right)\right]$$

$$\leq 10\sqrt{f_c'} \quad (\text{ACI Eq. 13-2})$$

* Reinforcement Calculations:

Limit of Maximum Reinforcement: ().25 x ρ _b (Design Cr	riteria, EM 1110-2-2	2104, 3-5)
where $p_{\rm b}$ =	0.0285 for f'c = 4	,000psi, fy = 60,00	Opsi
Max Rebar =	0.00713 *b * d		
Maximum Reinforcement:	0.0071 * b * d =	2.26 in ²	per 1ft strip
A _{gross} = 3	3 ft * 12 in/ft * 12 in	strip = 432.00) in ²
Limits of Minimum Reinforcement:	0.005 x Agross =	2.16 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
	$(3*\sqrt{f'_c})*b*d)/f_y =$	1.00 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
	(200*b*d)/f _y =	1.06 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
Min Reinforcemen	t, temp & shrinkage:	1.08 in ²	per 1ft strip, per face
Min Rein	forcement, flexural:	1.06 in ²	per 1ft strip, per face

Job <u>Maure</u>	epaus Swamp	Project No.	60632162		
Description	Storage Monolith	Computed by	ЈМН	Date	Dec-20
	River Road Storage M	onolith		-	
Slab	Conc. Check	Checked by	ND	Date	Dec-20
				Re	ferences

* Moment Calculations:

2,20

0.9

The minimum proposed reinforcement for to T&S Slab Rebar is #7 @ 6"(A =1.2in2) and the minimum proposed reinforcment for Top & Bot Slab Rebar is #7 @ 6"(A =1.2in2).

a = (A_s x f_y) / (0.85 x f'_c x b) = 3.324 in

φMn =	3023.8	kip-in
=	251.98	kip-ft

d =

 ϕ_{moment} =

** φMn=252 ≥ Mu=10.7, Section OK	ТОР
** φMn=252 ≥ Mu=3.1, Section OK	Bottom

Maurepaus Swamp

CN-02 (Represents CN-01)

CN Gate Storage Monolith

AECOM Project : 60632162

Foundation, Wall & Slab

Computed by:	JMH	Checked by:	JRA
Date:	Dec-20	Date:	Dec-20

ob	Maurepaus Swamp	Project No. 60632162	
escription	CN-02 (Represents CN-01)	Computed by JMH	Date Dec-20
	CN Gate Storage Monolith		
	Wall Geometry	Checked by JRA	Date Dec-20
			References
VALL GEOMET	<u>rry:</u>	FLOOD SIDE	PROTECTED SIDE
Fop of Pilaster EL	. 16.13 NAVD88	TOW EL x.xx	
Top of Wall EL	. 16.13 NAVD88		×
100 Yr. Water El	. NAVD88		Z
10 Yr. Water El	. NAVD88	SWL Z	v
Top of Slab EL	. 11.98 NAVD88		
H=	7.15 ft.	GRADE	¹' ∐ϥϸᡧ
h1=	4.15 ft.	т Е XXX	
h2=	3.00 ft. (Base Slab Height)		
h3=	0.00 ft. (P.S. Soil Height)	بد ا	GRADE
h4=	= 0.00 ft.		² ч
h5=	0.00 ft. (F.S. Soil Height)		
B=	10.00 ft. (Base Slab Width)	2	
b1=	1.50 ft. (Wall Stem Width, top)		\square
b2=	5.25 ft. (F.S. Slab Width)		
b3=	1.50 ft. (Wall Stem Width, bottom)		
b4=	= <u>3.25</u> ft. (P.S. Slab Width)		
b5=	2.00 ft. (F.S. Pile Row Edge Space)		
b6=	6.00 ft. (Sheet Pile Edge Space)	B/2	b4
BAT=	0.00 (Wall Batter, N/A)	K B	——————————————————————————————————————
PS Grade =	11.98 NAVD88 (Average of PS soil for all)	T-WALL CROSS-SECTION	
		<u>Notes:</u> 1) positive 'Y' ax	is is into page
Monolith Length =	46.00 ft	2) pile batters vo	ary from those shown
		in diagram	
Bottom Of Slab =	8.98 NAVD88		

Note: In this report, white boxes are for input data and colored boxes are calculated values. Note: CN-01 and CN-02 have been deemed to be equal and opposite.

Description	CN-02 (Represents CN-01)
	CN Gate Storage Monolith
	Applied Loads in SAP Model

Pile and Pilaster Layout:

Job	Maurepaus Swamp		Project No.	60632162		
Description	CN-02 (Represents CN-0	1)	Computed by	ЈМН	Date	Dec-20
	CN Gate Storage Monoli	th	-			
	Assumptions		Checked by	JRA	Date	Dec-20
					-	References
U	nit Weight of Storm Water =	0.0624	kcf			
	Wet Unit Weight of Soil =	0.1200	kcf			
	Sat Unit Weight of Soil =	0.0576	kcf			
	Unit Weight of Concrete =	0.1500	kcf			
	Impact Load =	0.0000]k/ft			
	FS Wind force above SWL=	0.0500	ksf			
Const	truction Surcharge Pressure =	0.2500	ksf			
Unbalance	ed Load for Stability Analysis:					
	F _{cap} (k/ft) =	0.00	(10y SWL Case; Force acts	at bottom of s	lab)	
	F _{cap} (k/ft) =	0.00	(100y SWL Case; Force act	s at bottom of	slab)	
	F _{cap} (k/ft) =	0.00	(Water to TOW Case; Forc	e acts at botto	om of slab)	
	K _o , Granular fill =[0.95	(for lateral soil forces)			
Assume	d Wall Reinforcement Cover =	0.25	ft			
	Assumed Wall $d_{bar} =$	0.06	ft			
	Gate Length =	93.12	ft			
	Gate Opening =	89.12	ft *Tributary Lei	ngth = 44.56'		
	Gate Weight =	22.35	kip *Taken from s	similar roller ga	ite from Hobol	ken project.

Job Maure	paus Swamp	Project No.	60632162		
Description	CN-02 (Represents CN-01)	Computed by	ЈМН	Date	Dec-20
CN Ga	ate Storage Monolith	_			
Load	Cases	Checked by	JRA	Date	Dec-20
				Re	eferences

No. of Load Cases 3 Update

No.	DCD LC No.	Description	FS Water El.	PS Water El.	Pile Design Over Stresses
1	1	Construction Surcharge	8.98	8.98	1.17
2	2a	Water to TOW (impervious cutoff)	16.13	8.98	1.33
3	2b	Water to TOW (pervious cutoff)	16.13	8.98	1.33

* Impact load is not applicable for this section, so it is excluded from the load combinations

* Forces induced by 10y water elevation are not applicable for this section, so they are excluded from the load combinations

*Earthquake and Wave Loads are to be determined and are excluded from these calculations

Job	Maurepaus Swamp		Project No.	60589133		
Desci	ription	CN-02 (Represents CN-01)	Computed by	ЈМН	Date	Dec-20
		CN Gate Storage Monolith				
	Summa	ary of Foundation Loads	Checked by	JRA	Date	Dec-20
					R	eferences

	UNFACTORED LOADS FOR CPGA								
Load	ad Fx Fy Fz Mx My Mz								
Case	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)				
LC1	0.00	0.00	348.19	0.00	25.76	0.00			
LC2	-73.37	0.00	192.69	0.00	320.62	0.00			
LC3	-73.37	0.00	213.19	0.00	245.36	0.00			

This table represents the base reactions taken from SAP. The moments were taken from the centroid of the structure with positivex facing the flood side and positive-z facing downwards.

*Loads exported from SAP 2000 are within 5% on the conservative side of the actual loads on the monolith; OK to use for this submittal.

*Forces from the gate and the construction surcharge will not act simultaneously; for the construction case, surcharge governs over the gate weight so that the gate weight is excluded from these calculations.

	FACTORED LOADS FOR CPGA											
Load	Fx	Fy	Fz	M×	Mz							
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)						
LC1	0.00	0.00	557.10	0.00	41.22	0.00						
LC2	-117.40	0.00	308.30	0.00	512.99	0.00						
LC3	-117.40	0.00	341.11	0.00	392.58	0.00						

Description CN-02 (Represents CN-01)
CN Gate Storage Monolith
Soil & Pile Information Required for CPGA

Project No.	60632162

JRA

Checked by

Computed by JMH Date Dec-20

Date Dec-20

References

Pile Layout: 14 HP Piles

Row	<u>1</u>	<u>Row</u> 2					
pile no.	×	у	pile no.	×	У		
1	3.00	-20.00	6	-3.00	-20.00		
2	3.00	-10.00	7	-3.00	-10.00		
3	3.00	0.00	8	-3.00	0.00		
4	3.00	10.00	9	-3.00	10.00		
5	3.00	20.00	10	-3.00	20.00		

 Tip Elevation:
 (For CPGA, need Tip Elevation as a function of CPGA Axis at B.O. Slab, +Z points downward)

 B.O.S. Elevation =
 8.98

 Pile Tip El. =
 -32

 NAVD89
 "TIP" in CPGA =

 40.98 ft
 10.98 ft

Pile Properties & Attributes

E =	29000000.00	psi
A =	21.40	in ² HP14X73
I _x =	729.00	in ⁴
I _y =	261.00	in ⁴
C ₃₃ =	1.70	(factor for method of axial load transfer from pile to soil; = 1 full tip bearing, = 2 full skin friction)
S _x =	107.00	in ³
S _y =	35.80	in ³
F _y =	50.00	ksi

*Note: All soil properties and pile capacities are taken from 95% submittal for Maurepas intake structure.

Allowable Compression (AC) =	40.00	kips
Allowable Tension (AT) =	25.00	kips
ACC =	492.66	kips
ATT =	535.00	kips
AM1 =	2972.22	kip-in
AM2 =	994.44	kip-in

tion CN-02 (Repres	nts CN-01) Computed by JMH	Date Dec-20
CN Gate Stora	e Monolith	
Soil & Pile Information Requi	ed for CPGA Checked by JRA	Date Dec-20
		References
Mono	ith width = $\begin{array}{c} 46 \\ E_s = 540.40 \\ psi = 0.5404 \\ ksi \end{array}$	
GROUP FACTORS		
Pile Spacing in Direction of Loading	Group reduction is based on distance between piles in direction of lo includes distance due to battering and is taken over the distance 10 to fixetv).	bading. This K d _{pile} (point of
D		
3B 0.33	Assume a batter of 6.00	
4B 0.38	$B = d_{pile} = 13.6$ in = 1.	133 ft
5B 0.45		
6B 0.56	Distance between piles at B.O. Slab =	5.00 ft
7B 0.71	Average distance between piles over 10*dpile =	7.89 ft
8B 1		
	Average distance between piles in terms of pile width B =	6.96 B
	Group Reduction "D" value for this distance =	0.70

Description CN-02 (Represents CN-01)		Computed by	JMH
	CN Gate Storage Monolith	_	
Soil & Pi	le Information Required for CPGA	Checked by	JRA

Date Dec-20 References

Date Dec-20

Description	CN-02 (Represents CN-01)		Computed by	ЈМН	Date	Dec-20
	CN Gate Storage Monolith					
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20
Input file:						
100 MC	NOLITH, TOW EL. 16.13, T	TOS EL.11.98;	HP 14X73 PII	LES		
200 PR	OP 29000 729 261 21.4 1.	7 0 ALL				
300 SC	IL ES 0.3805 TIP 40.98 0) ALL				
400 PI	N ALL					
500 AL	LOW H 40 25 492.7 535 29	72.2 994.4 AI	LL			
600 FC	VSTR 1.17 1.17 1					
700 FC	VSTR 1.33 1.33 2 3					
800 BA	TTER 6 All					
1200 A	NGLE 180 6 TO 10					
1300 P	PILE 1 3 -20 0					
1400 P	PILE 2 3 -10 0					
1500 P	PILE 3 3 0 0					
1600 P	PILE 4 3 10 0					
1700 P	PILE 5 3 20 0					
1800 P	ILE 6 -3 -20 0					
1900 P	ILE 7 -3 -10 0					
2000 P	ILE 8 -3 0 0					
2100 P	ILE 9 -3 10 0					
2200 P	PILE 10 -3 20 0					
4500 L	OAD 1 0 0 348.2 0 25.8 0)				
4600 L	OAD 2 -73.4 0 192.7 0 32	20.6 0				
4700 L	OAD 3 -73.4 0 213.2 0 24	15.4 0				
9000 F	OUT 1 2 3 4 5 6 7 CN01P.	DOC				
9100 P 9200 P	FO ALL LB ALL					

				-,			
Description	CN-02 (Represent	ts CN-01)		Computed by	JMH	Date	Dec-20
	CN Gate Storage	Monolith	ilo Analysis)	Checked by	IDA	Data	Dec 20
	CFGA Input & Out	ipul Files (Fi	ne Analysis)	Checked by	JKA		Dec-20
CPGA RESU	JLTS withou	t Load	Factor	s (pinned	conne	ction)	
CPGA - CASE PI	LE GROUP ANALYSIS	PROGRAM					
RUN DATE: 21-D	EC-20 RUN TIME	: 09:18:29					
FOR PILES	WITH UNSUPPORTED H	EIGHT:					
A. CP	GA CANNOT CALCULAT	E PMAXMOM F	OR NH TYPE S	SOIL			
B. TH	E ALLOWABLE STRESS	CHECKS, AS	C AND AST, A	ARE			
NO	T FULLY DEVELOPED	FOR UNSUPPO	RTED PILES.				
WO	KK IS IN PROGRESS	TO COMPLETE	THIS ASPEC	OF CPGA.			
ELASTIC CE	NTER LOCATION IS N	OT COMPUTED	FOR 3-DIMEN	ISIONAL PROBLEMS			
			, 10K 5 D1MB				
MONOLITH, TOW DATA UNKNOWN -	EL. 16.13, TOS EL. REJECTED.	10.0; HP 14	X73 PILES				
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN.	10.0; HP 14 RUN. ED WITHIN A	X73 PILES	7			
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN	10.0; HP 14 RUN. ED WITHIN A X	X73 PILES	Z			
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = (10.0; HP 14 RUN. ED WITHIN A X -3.00 ,	X73 PILES	z 0.00)			
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((10.0; HP 14 RUN. ED WITHIN A X -3.00 , 3.00 ,	X73 PILES	Z 0.00) 0.00)			
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((10.0; HP 14 RUN. ED WITHIN A X -3.00, 3.00,	X73 PILES	Z 0.00) 0.00)	*****		
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((10.0; HP 14 RUN. ED WITHIN A X -3.00, 3.00,	X73 PILES	Z 0.00) 0.00)	*****		
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((+	10.0; HP 14 RUN. ED WITHIN A X -3.00, 3.00, ***********	X73 PILES	Z 0.00) 0.00)	******		
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL ************************ PILE E	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((+++++++++++++++++++++++++++++++++	10.0; HP 14 RUN. ED WITHIN A X -3.00, 3.00, T T	X73 PILES	Z 0.00) 0.00)	*********		
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL *********************** PILE E KSI	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((*********************************	10.0; HP 14 RUN. ED WITHIN A X -3.00, 3.00, ************ T 2 ***4	X73 PILES	Z 0.00) 0.00)	*********		
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL ****************** PILE E KSI 0.29000E+05	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((*********************************	10.0; HP 14 RUN. ED WITHIN A X -3.00, 3.00, ***********************************	<pre>X73 PILES X73 PILES A BOX Y20.00, 20.00, **********************************</pre>	Z 0.00) 0.00) c33 17000E+01 0.00	********* B66 000E+00		
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL ************************************	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((the second s	10.0; HP 14 RUN. ED WITHIN A X -3.00, 3.00, T T 2 **4 00E+03 0.2 HE FOLLOWIN	X73 PILES X73 PILES Y -20.00, 20.00, X************ A IN**2 1400E+02 0. IG PILES -	Z 0.00) 0.00) C33 17000E+01 0.00	********* B66 000E+00		
MONOLITH, TOW DATA UNKNOWN - THERE ARE 10 3 ALL PILE COORD WITH DIAGONAL ************************************	EL. 16.13, TOS EL. REJECTED. PILES AND LOAD CASES IN THIS INATES ARE CONTAIN COORDINATES = ((the second s	10.0; HP 14 RUN. ED WITHIN A X -3.00, 3.00, ***********************************	X73 PILES X73 PILES A BOX Y -20.00, 20.00, 20.00, XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Z 0.00) 0.00) c33 .17000E+01 0.00	********* B66 000E+00		

SOIL DESCRIPTIONS AS INPUT

Descripti	on	CN-02 (Re	presents CN-01))		Compu	ted by	ЈМН	Date	Dec-20
		CN Gate S	torage Monolith							
		CPGA Inpu	it & Output Files	s (Pile A	nalysis)	Check	ced by	JRA	Date	Dec-20
ES	ESOIL	LENGT	H L		LU					
	K/IN**2		FT		FT					
	0.38050E	+00 Т	0.40980E+	02 0.	00000E+0	0				
ESOIL(K/IN	ORIGINAL)	RGROU	P RCYCLIC							
0.380	50E+00	0.1000	E+01 0.1000E+	01						
THIS SO	IL DESCRI	PTION APPL	IES TO THE FO	LLOWING	PILES -					
7.1.1										
ADD										
*****	******	* * * * * * * * * *	*****	* * * * * * *	* * * * * * * *	********	*****	* * * * * * * *	*	
	PILE ST	IFFNESSES	AS CALCULATED	FROM PI	ROPERTIE	S				
						-				
0.1796	8E+02 0.0	00000E+00	0.00000E+00	0.0000	DE+00 0	.00000E+00	0.00	000E+00		
0.0000	0E+00 0.2	23229E+02	0.00000E+00	0.0000	0E+00 0	.00000E+00	0.00	000E+00		
0.0000	0E+00 0.0	00000E+00	0.21162E+04	0.0000	0E+00 0	.00000E+00	0.00	000E+00		
0.0000	0E+00 0.0	00000E+00	0.00000E+00	0.0000	0E+00 0	.00000E+00	0.00	000E+00		
0.0000	0E+00 0.0	00000E+00	0.00000E+00	0.0000	0E+00 0	.00000E+00	0.00	000E+00		
0.0000	0E+00 0.0	00000E+00	0.00000E+00	0.0000	0E+00 0	.00000E+00	0.00	000E+00		
THIS MA	TRIX APPL	IES TO THE	FOLLOWING PI	LES -						
*****	******	* * * * * * * * * *	*****	* * * * * * * *	******	********	******	******	*	
	PILE GEO	OMETRY AS	INPUT AND/OR	GENERATI	ED					
NUM	х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FT	FT	FT			FT				
1	3.00	-20.00	0.00	6.00	0.00	41.55	P			
2	3.00	-10.00	0.00	6.00	0.00	41.55	P			
3	3.00	0.00	0.00	6.00	0.00	41.55	P			
4	3.00	10.00	0.00	6.00	0.00	41.55	P			
5	3.00	20.00	0.00	6.00	0.00	41.55	Р			
6	-3.00	-20.00	0.00	6.00	180.00	41.55	Р			
7	-3.00	-10.00	0.00	6.00	180.00	41.55	P			
8	-3.00	0.00	0.00	6.00	180.00	41.55	P			
9	-3.00	10.00	0.00	6.00	180.00	41.55	P			
10	-3.00	20.00	0.00	6.00	180.00	41.55	P			
415.45										
*****	******	* * * * * * * * * *	*****	* * * * * * *	* * * * * * * *	********	******	* * * * * * * *	*	
		AP	PLIED LOADS							

 LOAD
 PX
 PY
 PZ
 MX
 MY
 MZ OVERSTRESS

 CASE
 K
 K
 K
 FT-K
 FT-K
 CASE
 FT-K
 COM TEN

 1
 0.0
 0.0
 348.2
 0.0
 25.8
 0.0
 1.17
 1.17

 2
 -73.4
 0.0
 192.7
 0.0
 320.6
 0.0
 1.33
 1.33

 3
 -73.4
 0.0
 213.2
 0.0
 245.4
 0.0
 1.33
 1.33

Description	CN-02 (Represents CN-01)		Computed by	JMH	Date	Dec-20
	CN Gate Storage Monolith		_		-	
	CPGA Input & Output Files (P	Pile Analysis)	Checked by	JRA	Date _	Dec-20

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.74678E+03
 -0.62602E-05
 0.79581E-12
 0.00000E+00
 -0.12249E+06
 0.22537E-03

 -0.62602E-05
 0.23229E+03
 0.41402E-04
 0.00000E+00
 0.14905E-02
 -0.55707E-11

 0.79581E-12
 0.41402E-04
 0.20595E+05
 0.58208E-10
 0.00000E+00
 -0.14905E-02

 0.00000E+00
 0.00000E+00
 0.59314E+09
 0.00000E+00
 -0.11176E-07

 -0.12249E+06
 0.14905E-02
 0.00000E+00
 -0.37253E-08
 0.26691E+08
 -0.53657E-01

 0.22537E-03
 -0.56843E-11
 -0.14905E-02
 -0.74506E-08
 -0.53657E-01
 0.21808E+08

10 PILES 3 LOAD CASES

LOAD CASE	1.	NUMBER OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD CASE	2.	NUMBER OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD CASE	3.	NUMBER OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.

PILE CAP DISPLACEMENTS

LOAD						
CASE	DX	DY	DZ	RX	RY	RZ
	IN	IN	IN	RAD	RAD	RAD
1	0.7695E-02	-0.3107E-08	0.1691E-01	-0.1659E-20	0.4692E-04	0.1191E-11
2	-0.3019E+00	-0.1839E-08	0.9357E-02	-0.9182E-21	-0.1241E-02	0.7051E-12
3	-0.3244E+00	-0.1743E-08	0.1035E-01	-0.1016E-20	-0.1378E-02	0.6685E-12

ELASTIC CENTER INFORMATION

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Description	CN-02 (Represents CN-01)		Computed by	JMH	Date	Dec-20
	CN Gate Storage Monolith		-		-	
	CPGA Input & Output Files (Pil	le Analysis)	Checked by	JRA	Date _	Dec-20

PILE FORCES IN LOCAL GEOMETRY

- M1 & M2 NOT AT PILE HEAD FOR PINNED PILES
- * INDICATES PILE FAILURE
- # INDICATES CBF BASED ON MOMENTS DUE TO
 - (F3*EMIN) FOR CONCRETE PILES
- B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

PILE	F1	F2	F3	M1	M2	M3 ALF CBF	
	K	K	ĸ	IN-K	IN-K	IN-K	
1	0.1	0.0	34.4	0.0	-2.8	0.0 0.74 0.06	
2	0.1	0.0	34.4	0.0	-2.8	0.0 0.74 0.06	
3	0.1	0.0	34.4	0.0	-2.8	0.0 0.74 0.06	
4	0.1	0.0	34.4	0.0	-2.8	0.0 0.74 0.06	
5	0.1	0.0	34.4	0.0	-2.8	0.0 0.74 0.06	
6	-0.2	0.0	36.1	0.0	5.8	0.0 0.77 0.07	
7	-0.2	0.0	36.1	0.0	5.8	0.0 0.77 0.07	
8	-0.2	0.0	36.1	0.0	5.8	0.0 0.77 0.07	
9	-0.2	0.0	36.1	0.0	5.8	0.0 0.77 0.07	
10	-0.2	0.0	36.1	0.0	5.8	0.0 0.77 0.07	

LOAD CASE - 2

PILE	Fl	F2	F3	M1	M2	MЗ	ALF	CBF
	K	K	K	IN-K	IN-K	IN-K		
1	-5.5	0.0	7.8	0.0	167.6	0.0 (0.15	0.14
2	-5.5	0.0	7.8	0.0	167.6	0.0 (0.15	0.14
3	-5.5	0.0	7.8	0.0	167.6	0.0 (0.15	0.14
4	-5.5	0.0	7.8	0.0	167.6	0.0 (0.15	0.14
5	-5.5	0.0	7.8	0.0	167.6	0.0 (0.15	0.14
6	5.5	0.0	31.3	0.0	-165.9	0.0 (0.59	0.17
7	5.5	0.0	31.3	0.0	-165.9	0.0 (0.59	0.17
8	5.5	0.0	31.3	0.0	-165.9	0.0 (0.59	0.17
9	5.5	0.0	31.3	0.0	-165.9	0.0 (0.59	0.17
10	5.5	0.0	31.3	0.0	-165.9	0.0 (0.59	0.17

Description		CN-	02 (Repres	-	Computed by				Date	Dec-20	
		CN	Gate Stora	ge Monolith	-			-		-	
		CPG	SA Input &	Output Files (Pile Analys	is)	Che	cked by	JRA	Date _	Dec-20
LOAD (CASE -	3									
PILE	Fl	F2	F3	М1	M2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-5.9	0.0	12.3	0.0	180.2	0.0	0.23	0.16			
2	-5.9	0.0	12.3	0.0	180.2	0.0	0.23	0.16			
3	-5.9	0.0	12.3	0.0	180.2	0.0	0.23	0.16			
4	-5.9	0.0	12.3	0.0	180.2	0.0	0.23	0.16			
5	-5.9	0.0	12.3	0.0	180.2	0.0	0.23	0.16			
6	5.9	0.0	30.9	0.0	-178.4	0.0	0.58	0.18			
7	5.9	0.0	30.9	0.0	-178.4	0.0	0.58	0.18			
8	5.9	0.0	30.9	0.0	-178.4	0.0	0.58	0.18			
9	5.9	0.0	30.9	0.0	-178.4	0.0	0.58	0.18			
10	5.9	0.0	30.9	0.0	-178.4	0.0	0.58	0.18			

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	5.8	0.0	34.0	0.0	0.0	0.0
2	5.8	0.0	34.0	0.0	0.0	0.0
3	5.8	0.0	34.0	0.0	0.0	0.0
4	5.8	0.0	34.0	0.0	0.0	0.0
5	5.8	0.0	34.0	0.0	0.0	0.0
6	-5.8	0.0	35.7	0.0	0.0	0.0
7	-5.8	0.0	35.7	0.0	0.0	0.0
8	-5.8	0.0	35.7	0.0	0.0	0.0
9	-5.8	0.0	35.7	0.0	0.0	0.0
10	-5.8	0.0	35.7	0.0	0.0	0.0

Descripti	on	CN-02 (Repr CN Gate Sto	esents CN-0 rage Monoli	1) th		Computed by	JMH	Date	Dec-20
		CPGA Input	& Output Fil	es (Pile Anal	ysis)	Checked by	JRA	Date	Dec-20
LOAD CA	ASE - 2								
PILE	PX	PY	PZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-4.2	0.0	8.6	0.0	0.0	0.0			
2	-4.2	0.0	8.6	0.0	0.0	0.0			
3	-4.2	0.0	8.6	0.0	0.0	0.0			
4	-4.2	0.0	8.6	0.0	0.0	0.0			
5	-4.2	0.0	8.6	0.0	0.0	0.0			
6	-10.5	0.0	30.0	0.0	0.0	0.0			
7	-10.5	0.0	30.0	0.0	0.0	0.0			
8	-10.5	0.0	30.0	0.0	0.0	0.0			
9	-10.5	0.0	30.0	0.0	0.0	0.0			
10	-10.5	0.0	30.0	0.0	0.0	0.0			
LOAD CA	ASE - 3								
PILE	PX	PY	PZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-3.8	0.0	13.1	0.0	0.0	0.0			
2	-3.8	0.0	13.1	0.0	0.0	0.0			
3	-3.8	0.0	13.1	0.0	0.0	0.0			
4	-3.8	0.0	13.1	0.0	0.0	0.0			
5	-3.8	0.0	13.1	0.0	0.0	0.0			
6	-10.9	0.0	29.5	0.0	0.0	0.0			
7	-10.9	0.0	29.5	0.0	0.0	0.0			
8	-10.9	0.0	29.5	0.0	0.0	0.0			
9	-10.9	0.0	29.5	0.0	0.0	0.0			
10	-10.9	0.0	29.5	0.0	0.0	0.0			

Description	CN-02 (Represents CN-01)	Computed by	JMH	Date	Dec-20
	CN Gate Storage Monolith	_		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20

CPGA RESULTS without Load Factors (FIXED connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 21-DEC-20 RUN TIME: 09:19:27

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.0; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 10 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-20.00 ,	0.00)
(3.00 ,	20.00 ,	0.00)

PILE PR	CN Gate Sto CPGA Input	rage Monolith & Output Files (Pile Analysis	Chacka		-		
PILE PR	CPGA Input	& Output Files (Pile Analysis	Chocko				
PILE PR	OPERTIES AS) Checke	d by JRA	Date _	Dec-20	
		INPUT						
E	Il	I2	A	C33	B66			
KSI	IN**4	IN**4	IN**2					
0.29000E+05 0.	72900E+03 (0.26100E+03 0	.21400E+02	0.17000E+01	0.00000E+00			
THESE PILE PROPE	RTIES APPLY	TO THE FOLLOW	ING PILES -					
ΔΤ.Τ.								
*****	* * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * *			
SOIL DE	SCRIPTIONS A	AS INPUT						
ES ESOIL	LENGTH	L	LU					
K/IN**2		FT	FT					
0.38050E	+00 Т	0.40980E+02	0.00000E-	+00				
ESOIL (ORIGINAL)	RGROUP	RCYCLIC						
0.38050E+00	0.1000E+	+01 0.1000E+01						
THIS SOIL DESCRI	PTION APPLIE	ES TO THE FOLL	OWING PILES	-				
ALL								

Description	CN-02 (Represents CN-01)	Computed by	ЈМН	Date	Dec-20
	CN Gate Storage Monolith			_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date _	Dec-20

PILE STIFFNESSES AS CALCULATED FROM PROPERTIES

 0.35937E+02
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.16971E+04
 0.00000E+00

 0.00000E+00
 0.46458E+02
 0.00000E+00
 -0.28362E+04
 0.00000E+00
 0.00000E+00

 0.00000E+00
 0.00000E+00
 0.21162E+04
 0.00000E+00
 0.00000E+00
 0.00000E+00

 0.00000E+00
 -0.28362E+04
 0.00000E+00
 0.34630E+06
 0.00000E+00
 0.00000E+00

 0.16971E+04
 0.00000E+00
 0.00000E+00
 0.34630E+06
 0.00000E+00
 0.00000E+00

 0.16971E+04
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00

 0.16971E+04
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00

 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY
	FT	FT	FT			FT	
1	3.00	-20.00	0.00	6.00	0.00	41.55	F
2	3.00	-10.00	0.00	6.00	0.00	41.55	F
3	3.00	0.00	0.00	6.00	0.00	41.55	F
4	3.00	10.00	0.00	6.00	0.00	41.55	F
5	3.00	20.00	0.00	6.00	0.00	41.55	F
6	-3.00	-20.00	0.00	6.00	180.00	41.55	F
7	-3.00	-10.00	0.00	6.00	180.00	41.55	F
8	-3.00	0.00	0.00	6.00	180.00	41.55	F
9	-3.00	10.00	0.00	6.00	180.00	41.55	F
10	-3.00	20.00	0.00	6.00	180.00	41.55	F

415.45

		AI	PPLIED LOAD	S		
LOAD	PX	PY	ΡZ	MX	МҮ	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0 0	0.0	3/8 2	0 0	25.8	0 0 1 17 1 17
2	-73.4	0.0	192.7	0.0	320.6	0.0 1.33 1.33
3	-73.4	0.0	213.2	0.0	245.4	0.0 1.33 1.33

Description	CN-02 (Represents CN-01)	Computed by	JMH	Date	Dec-20	
	CN Gate Storage Monolith	-		-		
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20	
*******	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date		

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.92160E+03
 -0.55610E-05
 0.34106E-12
 -0.13673E-03
 -0.10470E+06
 0.14346E-03

 -0.55610E-05
 0.46458E+03
 0.41048E-04
 -0.27976E+05
 0.16144E-02
 -0.45475E-11

 0.34106E-12
 0.41048E-04
 0.20600E+05
 0.33948E-04
 -0.29104E-10
 -0.14777E-02

 -0.13673E-03
 -0.27976E+05
 0.33948E-04
 0.59664E+09
 -0.20273E-01
 -0.14901E-07

 -0.10470E+06
 0.16144E-02
 -0.29104E-10
 -0.20273E-01
 0.28501E+08
 -0.64953E-01

 0.14346E-03
 -0.18190E-11
 -0.14777E-02
 -0.14901E-07
 -0.64953E-01
 0.27574E+08

10 PILES 3 LOAD CASES

LOAD CASE	1.	NUMBER OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD CASE	2.	NUMBER OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD CASE	3.	NUMBER OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.

PILE CAP DISPLACEMENTS

LOAD						
CASE	DX	DY	DZ	RX	RY	RZ
	IN	IN	IN	RAD	RAD	RAD
1	0.2118E-02	-0.1537E-08	0.1690E-01	-0.7192E-13	0.1864E-04	0.9388E-12
2	-0.1104E+00	-0.1213E-08	0.9354E-02	-0.9190E-13	-0.2705E-03	0.4384E-12
3	-0.1165E+00	-0.1186E-08	0.1035E-01	-0.9396E-13	-0.3248E-03	0.3958E-12
* * * * *	* * * * * * * * * * * * *	*******	* * * * * * * * * * * *	* * * * * * * * * * * * * * *	******	* * * * * * * * * * * * *
	ELAS	STIC CENTER I	NFORMATION			

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Description	CN-02 (Represents CN-01)	Computed by	JMH	Date	Dec-20	
	CN Gate Storage Monolith	-				
	CPGA Input & Output Files (Pile Analys	is) Checked by	JRA	Date	Dec-20	

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES

* INDICATES PILE FAILURE

INDICATES CBF BASED ON MOMENTS DUE TO

(F3*EMIN) FOR CONCRETE PILES

B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

PILE	Fl	F2	F3	M1	M2	M3 ALF CB	F
	K	K	K	IN-K	IN-K	IN-K	
1	0.0	0.0	34.6	0.0	2.0	0.0 0.74 0.0	6
2	0.0	0.0	34.6	0.0	2.0	0.0 0.74 0.0	6
3	0.0	0.0	34.6	0.0	2.0	0.0 0.74 0.0	6
4	0.0	0.0	34.6	0.0	2.0	0.0 0.74 0.0	6
5	0.0	0.0	34.6	0.0	2.0	0.0 0.74 0.0	6
6	-0.2	0.0	35.9	0.0	-11.4	0.0 0.77 0.0	7
7	-0.2	0.0	35.9	0.0	-11.4	0.0 0.77 0.0	7
8	-0.2	0.0	35.9	0.0	-11.4	0.0 0.77 0.0	7
9	-0.2	0.0	35.9	0.0	-11.4	0.0 0.77 0.0	7
10	-0.2	0.0	35.9	0.0	-11.4	0.0 0.77 0.0	7

LOAD CASE - 2

PILE	F1	F2	F3	M1	M2 M3	ALF CBF
	K	K	K	IN-K	IN-K IN-F	t i i i i i i i i i i i i i i i i i i i
1	-4.5	0.0	1.5	0.0	-233.4	0.0 0.03 0.18
2	-4.5	0.0	1.5	0.0	-233.4	0.0 0.03 0.18
3	-4.5	0.0	1.5	0.0	-233.4	0.0 0.03 0.18
4	-4.5	0.0	1.5	0.0	-233.4	0.0 0.03 0.18
5	-4.5	0.0	1.5	0.0	-233.4	0.0 0.03 0.18
6	4.4	0.0	37.6	0.0	228.2	0.0 0.71 0.23
7	4.4	0.0	37.6	0.0	228.2	0.0 0.71 0.23
8	4.4	0.0	37.6	0.0	228.2	0.0 0.71 0.23
9	4.4	0.0	37.6	0.0	228.2	0.0 0.71 0.23
10	4.4	0.0	37.6	0.0	228.2	0.0 0.71 0.23

Descript	ion	CN-02 (Represents	CN-01)		Compute	d by _	JMH	Date _	Dec-20
		CPGA	nput & Outp	ut Files (Pile	e Analysis)	Checke	d by _	JRA	Date	Dec-20
LOAD (CASE -	3								
PILE	F1	F2	FЗ	М1	M2	МЗ	ALF	CBF		
	K	K	K	IN-K	IN-K	IN-K				
1	-4.8	0.0	5.5	0.0	-253.3	0.0	0.10	0.20		
2	-4.8	0.0	5.5	0.0	-253.3	0.0	0.10	0.20		
3	-4.8	0.0	5.5	0.0	-253.3	0.0	0.10	0.20		
4	-4.8	0.0	5.5	0.0	-253.3	0.0	0.10	0.20		
5	-4.8	0.0	5.5	0.0	-253.3	0.0	0.10	0.20		
6	4.7	0.0	37.7	0.0	247.5	0.0	0.71	0.24		
7	4.7	0.0	37.7	0.0	247.5	0.0	0.71	0.24		
8	4.7	0.0	37.7	0.0	247.5	0.0	0.71	0.24		
9	4.7	0.0	37.7	0.0	247.5	0.0	0.71	0.24		
1.0	47	0 0	37.7	0.0	247.5	0.0	0.71	0.24		

LOAD CASE - 1

PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1	5.7	0.0	34.1	0.0	2.0	0.0
2	5.7	0.0	34.1	0.0	2.0	0.0
3	5.7	0.0	34.1	0.0	2.0	0.0
4	5.7	0.0	34.1	0.0	2.0	0.0
5	5.7	0.0	34.1	0.0	2.0	0.0
6	-5.7	0.0	35.5	0.0	11.4	0.0
7	-5.7	0.0	35.5	0.0	11.4	0.0
8	-5.7	0.0	35.5	0.0	11.4	0.0
9	-5.7	0.0	35.5	0.0	11.4	0.0
10	-5.7	0.0	35.5	0.0	11.4	0.0

Descriptio	n	CN-02 (Represer	nts CN-01)		Computed by	JMH	Date	Dec-20
		CN Gate Storage	Monolith	Bilo Analysis)	Chacked by	IDA	Data	Dec 20
		CPGA Input & O	utput Files (Plie Allalysis)	Checked by	JKA		Dec-20
LOAD CA	ASE -	2						
PILE	PX	PY	PZ	MX	MY	MZ		
	K	K	K	IN-K	IN-K	IN-K		
1	-4.2	2 0.0	2.2	0.0	-233.4	0.0		
2	-4.2	2 0.0	2.2	0.0	-233.4	0.0		
3	-4.2	2 0.0	2.2	0.0	-233.4	0.0		
4	-4.2	2 0.0	2.2	0.0	-233.4	0.0		
5	-4.2	2 0.0	2.2	0.0	-233.4	0.0		
6	-10.5	5 0.0	36.4	0.0	-228.2	0.0		
7	-10.5	5 0.0	36.4	0.0	-228.2	0.0		
8	-10.5	5 0.0	36.4	0.0	-228.2	0.0		
9	-10.5	5 0.0	36.4	0.0	-228.2	0.0		
10	-10.5	0.0	36.4	0.0	-228.2	0.0		
LOAD CA	ASE -	3						
PILE	PX	PY	PZ	MX	MY	MZ		
	K	K	K	IN-K	IN-K	IN-K		
1	-3.8	.0	6.2	0.0	-253.3	0.0		
2	-3.8	.0	6.2	0.0	-253.3	0.0		
3	-3.8	0.0	6.2	0.0	-253.3	0.0		
4	-3.8	.0	6.2	0.0	-253.3	0.0		
5	-3.8	.0	6.2	0.0	-253.3	0.0		
6	-10.8	.0	36.5	0.0	-247.5	0.0		
7	-10.8	.0	36.5	0.0	-247.5	0.0		
8	-10.8	0.0	36.5	0.0	-247.5	0.0		
9	-10.8	.0	36.5	0.0	-247.5	0.0		
10	-10.8	3 0.0	36.5	0.0	-247.5	0.0		

Descrip	tion	CN-02 (Represents CN-01)		Computed by	JMH	Date	Dec-20
		CN Gate Storage Monolith					
		CPGA Input & Output Files (Conci	ete Design)	Checked by	JRA	Date	Dec-20
Input	file:						
	100	MONOLITH, TOW EL. 16.13, TOS E	L.10.49; HE	9 14X73 PILE	ES		
	200	PROP 29000 729 261 21.4 1.7 0	ALL				
	300	SOIL ES 0.3805 TIP 40.98 0 ALL					
	400	PIN ALL					
	500	ALLOW H 40 25 492.7 535 2972.2	994.4 ALL				
	600	FOVSTR 1 1 1					
	700	FOVSTR 1 1 2 3					
	800	BATTER 6 All					
	1200) ANGLE 180 6 TO 10					
	1300) PILE 1 3 -20 0					
	1400) PILE 2 3 -10 0					
	1500) PILE 3 3 0 0					
	1600) PILE 4 3 10 0					
	1700) PILE 5 3 20 0					
	1800) PILE 6 -3 -20 0					
	1900) PILE 7 -3 -10 0					
	2000) PILE 8 -3 0 0					
	2100) PILE 9 -3 10 0					
	2200) PILE 10 -3 20 0					
	4500) LOAD 1 0 0 557.1 0 41.2 0					
	4600) LOAD 2 -117.4 0 308.3 0 513 0					
	4700) LOAD 3 -117.4 0 341.1 0 392.6	0				
	9000) FOUT 1 2 3 4 5 6 7 RR01S.DOC					
	9100 9200) PFO ALL) PLB ALL					

Description	CN-02 (Represents CN-01)	Computed by	ЈМН	Date	Dec-20
	CN Gate Storage Monolith	_			
	CPGA Input & Output Files (Concrete Des	ign) Checked by _	JRA	Date	Dec-20

CPGA RESULTS with Load Factors

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 21-DEC-20 RUN TIME: 09:20:33

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE
- NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.49; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 10 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-20.00 ,	0.00)
(3.00 ,	20.00 ,	0.00)

PILE PROPERTIES AS INPUT

E	I1	I2	A	C33	B66
KSI	IN**4	IN**4	IN**2		
0.29000E+05	0.72900E+03	0.26100E+03	0.21400E+02	0.17000E+01	0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

Project No. 60632162 CN-02 (Represents CN-01) Description Computed by JMH Date Dec-20 **CN Gate Storage Monolith** CPGA Input & Output Files (Concrete Design) JRA Checked by Date Dec-20 ****** SOIL DESCRIPTIONS AS INPUT ES ESOIL LENGTH LU L K/IN**2 FΤ FT 0.38050E+00 T 0.40980E+02 0.00000E+00 ESOIL (ORIGINAL) RGROUP RCYCLIC K/IN**2 0.38050E+00 0.1000E+01 0.1000E+01 THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -ALL ***** PILE STIFFNESSES AS CALCULATED FROM PROPERTIES 0.17968E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.23229E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.21162E+04 0.00000E+00 THIS MATRIX APPLIES TO THE FOLLOWING PILES -1

Descrip	tion	CN-02 (Re	presents CN-01)		Compu	ited by	ЈМН	Date	Dec-20
		CN Gate S	storage Monolit	h					-	
		CPGA Inp	ut & Output File	es (Concre	ete Design)	Chec	ked by	JRA	Date	Dec-20
	PILE G	EOMETRY AS	INPUT AND/OR	GENERATI	ED					
NUM	х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FT	FT	FT			FΤ				
1	3.00	-20.00	0.00	6.00	0.00	41.55	P			
2	3.00	-10.00	0.00	6.00	0.00	41.55	P			
3	3.00	0.00	0.00	6.00	0.00	41.55	P			
4	3.00	10.00	0.00	6.00	0.00	41.55	P			
5	3.00	20.00	0.00	6.00	0.00	41.55	P			
6	-3.00	-20.00	0.00	6.00	180.00	41.55	P			
7	-3.00	-10.00	0.00	6.00	180.00	41.55	P			
8	-3.00	0.00	0.00	6.00	180.00	41.55	P			
9	-3.00	10.00	0.00	6.00	180.00	41.55	P			
10	-3.00	20.00	0.00	6.00	180.00	41.55	P			
415.4	15									
*****	*******	********	**********	* * * * * * * * *	* * * * * * * * * * *	******	******	* * * * * * * * *		
		Al	PPLIED LOADS							
LOAD	PX	PY	PZ	MX	MY		MZ			
CASE	К	K	K	FT-K	FT-F	ĸ	FT-K			
1	0.0	0.0	557.1	0.0	41.	. 2	0.0			
2	-117.4	0.0	308.3	0.0	513	.0	0.0			
З	-117.4	0.0	341 1	0 0	392	6	0 0			

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.74678E+03
 -0.62602E-05
 0.79581E-12
 0.00000E+00
 -0.12249E+06
 0.22537E-03

 -0.62602E-05
 0.23229E+03
 0.41402E-04
 0.00000E+00
 0.14905E-02
 -0.55707E-11

 0.79581E-12
 0.41402E-04
 0.20595E+05
 0.58208E-10
 0.00000E+00
 -0.14905E-02

 0.00000E+00
 0.00000E+00
 0.58208E-10
 0.59314E+09
 0.00000E+00
 -0.11176E-07

 -0.12249E+06
 0.14905E-02
 0.00000E+00
 -0.37253E-08
 0.26691E+08
 -0.53657E-01

 0.22537E-03
 -0.56843E-11
 -0.14905E-02
 -0.74506E-08
 -0.53657E-01
 0.21808E+08

Project No. 60632162 CN-02 (Represents CN-01) Description Computed by JMH Date Dec-20 **CN Gate Storage Monolith** CPGA Input & Output Files (Concrete Design) JRA Checked by Date Dec-20 10 PILES 3 LOAD CASES 1. NUMBER OF FAILURES = 10. NUMBER OF PILES IN TENSION = 0. LOAD CASE LOAD CASE 2. NUMBER OF FAILURES = 5. NUMBER OF PILES IN TENSION = 0. LOAD CASE 3. NUMBER OF FAILURES = 5. NUMBER OF PILES IN TENSION = 0. ***** PILE CAP DISPLACEMENTS LOAD RZ CASE DX DY DZ RX RY IN RAD IN IN RAD RAD 1 0.1229E-01 -0.4971E-08 0.2705E-01 -0.2655E-20 0.7492E-04 0.1906E-11 2 -0.4828E+00 -0.2943E-08 0.1497E-01 -0.1469E-20 -0.1985E-02 0.1128E-11 3 -0.5188E+00 -0.2789E-08 0.1656E-01 -0.1625E-20 -0.2204E-02 0.1070E-11 ELASTIC CENTER INFORMATION ELASTIC CENTER IN PLANE X-Z Х Z FΤ FТ 0.00 0.00

Descrip	otion	CN-	02 (Represe	ents CN-01)	-		Comp	uted by	JMH	Date	Dec-20
-		CN	Gate Storag	e Monolith	-		-			_	
		CPG	A Input &	Output Files (Concrete D)esign)	Cheo	ked by	JRA	Date _	Dec-20
	PIL	E FORCES	IN LOCAL	GEOMETRY	-			•			
		M1 & M2	NOT AT PI	LE HEAD FOR	R PINNED F	PILES					
		* INDICA	ATES PILE	FAILURE							
		# INDICA	ATES CBF E	BASED ON MON	AENTS DUE	TO					
			(F3*E	MIN) FOR CO	ONCRETE PI	LES					
		B INDICA	ATES BUCKI	ING CONTROL	LS						
LOAD	case -	1									
PILE	F1	F2	F3	M1	M2	МЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	0 1	0 0	55 1	0 0	-1 1	0.0	1 30	0 1 2	*		
2	0.1	0.0	55 1	0.0	-4.4	0.0	1 38	0.12	*		
2	0.1	0.0	55 1	0.0	-4 4	0.0	1 38	0.12	*		
4	0.1	0.0	55.1	0.0	-4.4	0.0	1.38	0.12	*		
5	0.1	0.0	55.1	0.0	-4.4	0.0	1.38	0.12	*		
6	-0.3	0.0	57.8	0.0	9.3	0.0	1.45	0.13	*		
7	-0.3	0.0	57.8	0.0	9.3	0.0	1.45	0.13	*		
8	-0.3	0.0	57.8	0.0	9.3	0.0	1.45	0.13	*		
9	-0.3	0.0	57.8	0.0	9.3	0.0	1.45	0.13	*		
10	-0.3	0.0	57.8	0.0	9.3	0.0	1.45	0.13	*		
LOAD	CASE -	2									
PILE	F1	F2	F3	M1	М2	МЗ	ALF	CBF			
	К	K	K	IN-K	IN-K	IN-K					
1	-8.8	0.0	12.5	0.0	268.0	0.0	0.31	0.29			
2	-8.8	0.0	12.5	0.0	268.0	0.0	0.31	0.29			
3	-8.8	0.0	12.5	0.0	268.0	0.0	0.31	0.29			
4	-8.8	0.0	12.5	0.0	268.0	0.0	0.31	0.29			
5	-8.8	0.0	12.5	0.0	268.0	0.0	0.31	0.29			
6	8.7	0.0	50.0	0.0	-265.3	0.0	1.25	0.37	*		
7	8.7	0.0	50.0	0.0	-265.3	0.0	1.25	0.37	*		
8	8.7	0.0	50.0	0.0	-265.3	0.0	1.25	0.37	*		
9	8.7	0.0	50.0	0.0	-265.3	0.0	1.25	0.37	*		
10	8.7	0.0	50.0	0.0	-265.3	0.0	1.25	0.37	*		

Descrip	otion	CN-0	02 (Represe	ents CN-01)		(Compi	uted by	JMH	Dat	te Dec-20
		CN C	Gate Storag	ge Monolith				-		_	
		CPG	iA Input &	Output Files	(Concrete I	Design)	Chec	ked by	JRA	Dat	te Dec-20
LOAD	CASE -	3									
PILE	F1	F2	F3	Ml	M2	МЗ	ALF	CBF			
	K	К	К	IN-K	IN-K	IN-K					
1	-9.5	0.0	19.7	0.0	288.2	0.0	0.49	0.33			
2	-9.5	0.0	19.7	0.0	288.2	0.0	0.49	0.33			
3	-9.5	0.0	19.7	0.0	288.2	0.0	0.49	0.33			
4	-9.5	0.0	19.7	0.0	288.2	0.0	0.49	0.33			
5	-9.5	0.0	19.7	0.0	288.2	0.0	0.49	0.33			
6	9.4	0.0	49.4	0.0	-285.3	0.0	1.24	0.39		*	
7	9.4	0.0	49.4	0.0	-285.3	0.0	1.24	0.39		*	
8	9.4	0.0	49.4	0.0	-285.3	0.0	1.24	0.39		*	
9	9.4	0.0	49.4	0.0	-285.3	0.0	1.24	0.39		*	
10	9.4	0.0	49.4	0.0	-285.3	0.0	1.24	0.39		*	

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1	9.2	0.0	54.3	0.0	0.0	0.0
2	9.2	0.0	54.3	0.0	0.0	0.0
3	9.2	0.0	54.3	0.0	0.0	0.0
4	9.2	0.0	54.3	0.0	0.0	0.0
5	9.2	0.0	54.3	0.0	0.0	0.0
6	-9.2	0.0	57.1	0.0	0.0	0.0
7	-9.2	0.0	57.1	0.0	0.0	0.0
8	-9.2	0.0	57.1	0.0	0.0	0.0
9	-9.2	0.0	57.1	0.0	0.0	0.0
10	-9.2	0.0	57.1	0.0	0.0	0.0

Description		CN-02 (Repr	esents CN-0 ⁻	1)	(Computed by	JMH	Date	Dec-20
		CN Gate Sto	rage Monolit	th		-		_	
		CPGA Input	& Output Fil	es (Concrete	Design)	Checked by	JRA	Date	Dec-20
LOAD CA	ASE - 2	2							
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-6.6	0.0	13.7	0.0	0.0	0.0			
2	-6.6	0.0	13.7	0.0	0.0	0.0			
3	-6.6	0.0	13.7	0.0	0.0	0.0			
4	-6.6	0.0	13.7	0.0	0.0	0.0			
5	-6.6	0.0	13.7	0.0	0.0	0.0			
6	-16.8	0.0	47.9	0.0	0.0	0.0			
7	-16.8	0.0	47.9	0.0	0.0	0.0			
8	-16.8	0.0	47.9	0.0	0.0	0.0			
9	-16.8	0.0	47.9	0.0	0.0	0.0			
10	-16.8	0.0	47.9	0.0	0.0	0.0			
LOAD CA	ASE - 3	3							
PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K			
1	-6.1	0.0	21.0	0.0	0.0	0.0			
2	-6.1	0.0	21.0	0.0	0.0	0.0			
3	-6.1	0.0	21.0	0.0	0.0	0.0			
4	-6.1	0.0	21.0	0.0	0.0	0.0			
5	-6.1	0.0	21.0	0.0	0.0	0.0			
6	-17.4	0.0	47.2	0.0	0.0	0.0			
7	-17.4	0.0	47.2	0.0	0.0	0.0			
8	-17.4	0.0	47.2	0.0	0.0	0.0			
9	-17.4	0.0	47.2	0.0	0.0	0.0			
10	-17.4	0.0	47.2	0 0	0 0	0 0			

Job Maurer	oaus Swamp	Project No.	60632162			
Description	CN-02 (Represents CN-01)	Computed by	ЈМН	Date	Dec-20	
	CN Gate Storage Monolith					
Summa	ary of Shear & Moment	Checked by	JRA	Date	Dec-20	
				R	eferences	

A TOM

Load	V _{u,max}	M u,max	
Case	(kip/ft)	(kip/ft)	
LC1	0.00	0.00	*Note: LC 1 only has vertical forces, so there is no shear or moment on the wall.
LC2	0.86	1.19	
LC3	0.86	1.19	The following calculations are the max shear (Vu) and
			moment (Mu) on the wall form LC 2 and LC 3:

JOBTIME Maurepas WSLP Structures - CN Gate Mono AECOM Imagine it. Delivered. PROJECT/JOB NO. CALCULATION NO JH COMPUTED BY DATE VERIFIED BY DATE SHEET NO. 1 OF Wall Calculations: SCALE A These calculations only show the loading condition for water to TOW (12293) Assumptions: t = 1.5' = 18'' cover = 3''' = 75'' = 14.645'''Assume #6 bars b= (2" Qshear = .75 154 Qmoment = 9 EL. 16.13 $F_y = 60 \text{ hsi}$ $f_c = 4 \text{ hs}$ 4.15'=H Swater= . 0624 K 3 EL.11.98 D Shear Calculations: $\Rightarrow h_{\text{trilat}} = \frac{1}{2} \left(\log(t) \left(H^2 \right) \right) = \frac{1}{2} \left(\left(0.614 \, k_{\text{H}^2} \right) \left(4.15 \right)^2 \right)$ Vu = .54 K/ft 1.6 Vu = - 86 K/ft = Vu @ Moment Calculations: $= M_{4} = (V_{4}) (\frac{1}{3}) = (36) (\frac{4.15}{3})$ My = 1.19 K-ft ft 4x4 = 1 in

Δ COM Job Maurepaus Swamp Project No. 60632162 Description CN-02 (Represents CN-01) Computed by JMH Date Dec-20 **CN Gate Storage Monolith** Shear & Moment Check for Wall Checked by JRA Date Dec-20 References * Given Information: 1.50 ft Wall Thickness: Clear Cover: 0.25 ft Diameter Bar to Start: 0.06 ft Maximum Shear (V_u): 0.86 kips per foot Maximum Moment (M_u): 1.19 kip-ft per foot 0.75 (ACI 318) φ_{shear} = 0.9 (ACI 318) ϕ_{moment} = 60 ksi f_{y, rebar} = f'_c = 4 ksi * Shear Calculations: Design Shear Strength $(\phi V_n) \ge$ Required Shear Strength (V_u) (ACI Eq. 11-1) Shear Capacity (φV_c): $\varphi_{shear} * 2 * Jf'_c * b * d$ (ACI Eq. 11-3) 0.75 φ_{shear} = 4 ksi f'_c = 1 ft strip b = 1.22 ft d = 16649.4 lbs $\phi V_c =$ 16.65 kips ** φVc=16.6 ≥ Vu=0.9, Shear Capacity OK * Reinforcement Calculations: Limit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5)

	where ρ _b = Max Rebar =	0.0285 for f' _c = 4 0.00713 *b * d	,000psi, fy =	60,000psi	
M	aximum Reinforcement:	0.0071 * b * d =	1.25 in ²	per 1ft strip	
	A _{gross} =	1.5 ft * 12 in/ft * 12	in strip =	216.00 in ²	
Limits of M	iinimum Reinforcement:	0.005 x Agross = (3*√(f' _c) *b*d)/f _y = (200*b*d)/f _y =	1.08 in ² 0.55 in ² 0.59 in ²	(EM 1110-2-2 (ACI 318-14, 9.6.1 (ACI 318-14, 9.6.1	104, 2.9.3, temp. & shrinkage) .2, min for flexural members) .2, min for flexural members)
	Min Reinforcemer Min Reir	nt, temp & shrinkage: nforcement, flexural:	0.54 in ² 0.59 in ²	per 1ft strip, pe per 1ft strip, pe	er face er face

AECOM

Job Maure	epaus Swamp	Project No.	60632162			
Description	CN-02 (Represents CN-01)	Computed by	ЈМН	Date	Dec-20	
	CN Gate Storage Monolith					
Shear	r & Moment Check for Wall	Checked by	JRA	Date	Dec-20	
				Re	ferences	

* Moment Calculations:

* T = A_s × f_y * C = 0.85 × f'_c × a × b * Assuming Tension = Compression → A_s × f_y = 0.85 × f'_c × a × b * φMn = φ × T × (d - (a / 2)) = φ × A_s × f_y × (d - (a / 2))

* Capacity of Min Flexural Reinforcement:

φM _n =	448.4	kip-in
=	37.37	kip-ft

* Capacity of Maximum Reinforcement:

a = (A_s × f_y) / (0.85 × f'_c × b) = 1.839 in

φMn =	925.4	kip-in	
=	77.12	kip-ft	

FLOODED SIDE

T&S WALL REBAR

F.S. & P.S. WALL REBAR

4

4

44

3" CLR.

(TYP)

4

PROTECTED SIDE

GRADE

The minimum proposed reinforcement for T&S Wall Rebar is #6 @ 9" (A = 0.59 in²) and the minimum proposed reinforcement for F.S. & P.S. Wall Rebar is #6 @ 9"(A=0.59 in²).

Job Maure	paus Swamp	Project No.	60632162		
Description	CN-02 (Represents Cl	N-01) Computed by	ЈМН	Date	Dec-20
	CN Gate Storage Mon	olith			
Slab		Checked by	JRA	Date	Dec-20
				Re	eferences

iption	CN-02 (Represents C	N-01) Computed by	JMH	Date	Dec-20
•	CN Gate Storage Mor	nolith			
Slab C	Calculations	Checked by	JRA	Date	Dec-20
				Re	eferences
	*Note: The following moment (Mu) on bot calculations for the All reactions are tak	calculations represent th sides of the slab for o slab can be found in the en from the pinned or fi	the total shear all load cases. "Slab Conc Ch xed results fr	r (Vu) and Capacity eck" tab. om CPGA.	
	AECOM		Page	to	
	Job Description	Project No Computed by	JH Date	<u>_d_</u> of	
		Checked by	Date _	Deferrer	
	Slab Calculations:			Reference	
	0.				
	→ CONSTRUCTION SUP → CONC. wt. → Sucharge = . → Assume 10' of length between p	charge 25 h/4 ^a - tri) 5.35 ¹ iles - 5.35 ¹	P.S.	1	
	-> VLORC. = .15 hc	f L ^r surdr ^{z.1}	Shot Sureh.	4.15'	
	Flood Side:			. ,	
	$V_{u} \rightarrow R = \frac{32}{\omega_{s} slab} = (1)$ $sureh = \beta sureh $	1.1 hip from CP 2.4 b)(10)(5.25)(15 Ket) Sur 3. 63 hil 5/12(f)(10)(5.25) Jus 2125 hil	the Lyu		
	$V_{\rm u} = \lambda 3.63 + 13.1$	25 - 34.1 -3.45			
	$V_{u} = 2.66 hill$				
	$1.6 \text{ Vu} = \frac{4.25 \text{ / }n}{10^{10}} =$.425 n.1/ = Vy			
	$M_{\rm u} \rightarrow R = 3$	4.1 h @ 3.25 0			

	COM Maurepaus Swamp P	roject No.	60632162		
_ Descripti	on CN-02 (Represents CN-01) Cor	nputed by	JMH	Date	Dec-20
	CN Gate Storage Monolith	· · ·			
	Slab Calculations Cl	hecked by	JRA	Date	Dec-20
		· · · · ·		•	References

ECOM.		Page of
Cription	Computed by TH	Sheet 3 of
	Checked by	Date
		Reference
m = 62/2)/21	+ (121) + (121) -	(34.1) (2.15)
Mu = (43.63)(d.6	$J = (13, 10^{-3})(0.6)$	()())
$M_{\rm H} = -14.16 hip -$	ft	
1 A22.65 his -	4 -2.27 h - f = m	
10'	t = -2.21 11-14 = M	4
10	12	
Protected Sile:		
1/ > 0-2571	C CAO A	
$V_{4} \rightarrow K= 33.7 hip$	trom (PC-A	turk
= 14 (2 his	a l'isital	L'suiter.
Sureh = (15 hif) (10	1/3.35)	L ^{Constab}
- 4 13 44	(Vy)	T.
= 0.15 ruy		Luc
Vu = 14.63 + 8.13 -	35.7	-1.15
$V_{4} = -12.94$		- 1437
1.(4=-)0.7 kg	N7h - 11	
10' 2017 201	the - Vy	
[0		
$A \rightarrow R = 357 K (a)$	1.15 (=)	
1. 1/ab - 14/3 k @	$10' \oplus$	
W13140 - 11.6) 11 (0)	1.65 0	
Surch = 4.15 h @	1.63 (1)	
Au = (14.63)(1.63) +	(6.13)(1.63) - (35.7)(1.29	5)
$M_{11} = -7.53 h - P_{4}$		1
ITA INSTITUT	DANK De .	
1.6/11 = -12,04 h-17 =	-1.204 h-12 = My	
10'	1.0	

Job Maurepaus Swamp		Project No.	60632162		
Description	CN-02 (Represents CN-01) Cor	nputed by	ЈМН	Date	Dec-20
	CN Gate Storage Monolith				
Slab Calculations		necked by	JRA	Date	Dec-20
		_		Re	eferences

Slab Calculations		hecked by	JRA	Date	D
				Re	ferei
Job Description		Project No Computed by Checked by	~_2H	Page of Sheet <u>4</u> of Date Date Reference	
	to TOW (imp onc. we lat can be ignored vert lift.imp. scume shreet pile be @millife of wall) of this. length etween piles	ervious) F h.vea	2.5. 35'-~~1.5'-~	p.S. -3.15' 4.15' 1 1 2 2	
<u>Hood Side :</u> Vu -> h	R= J.J. hip from CPU w,slab=J3.63 h (see LC weft= (4.15)(5.35')(10 = 13.6 hip plift= (7.15')(6')(10') = J.6.77 hip	F.A 1 cales) 1 (cols47 mef) (.06347 mef) (.06344)	h.ve(t wsleb Tu tusleb tusleb tuu	ft,jmp.	
Vy = 2 Vy = 4 1.6Vy =	3.63 + 13.6 - 1.1 8.26 Kip 13.22 Kip = 1.312	- J1.77 Hy = Vu	3.45 ->		

AECO Job Maure	paus Swamp	Project No.	60632162
Description	CN-02 (Represents CN-01) C	computed by	ЈМН

CN Gate Storage N	lonolith			
Slab Calculations	Checked by	JRA	Date	Dec-20
			Re	eferences

Date

Dec-20

Job Description	Project No. Computed by 3.14	Page of Sheet 5 of Date
	Checked by	Date Reference
$M_{\rm U} \rightarrow R = 1.1 h @ 3$ $\psi_{\rm s}(q) = 13.63 h @ 3$	1.15' ⊖ 1.63' ⊕	
hivert = 13.6 h @ 1 Up)ift = 26.77 h @	.63' ⊕ 1,35' ⊖	
$M_{\rm u} = (13.63)(1.63) + (1)$	3.6)(2.63) - (2.8)(3.0	15) - (16.77) (1.15)
Mu = 30, 53 h-ft		
$1.6Mu = \frac{48,85}{16^{1}} = 4.8$	h-ft 2 My	
Protected Side:		
Vu -> BANA	My ASA	
Wislab = 14.63 h (see L	(I cakes)	vislab
11=1412-314	W. TR	
04-11.63 20.1	NE 18	5
$V_{u} = -21.77 h$	×1.63'7	15
$V_{u} = -31.77 h$ $V_{u} = -34.83 h = -3.483$	14 = V4	
$U_{u} = -31.77 h$ $I.6U_{u} = -\frac{34.83 h}{(0^{1})} = -3.483$ $M_{u} \longrightarrow R = 36.4 h @ 1$ $W.slat = 14.63 h @ 1$	1/4 = V4 1.15' ⊖ 1.3' ⊕	

Description	CN-02 (Represents	CN-01) Computed by	JMH	Date	Dec-20	
	CN Gate Storage M	lonolith				
Slab Calculations		Checked by	JRA	Date	Dec-20	
				Re	eferences	_

60632162

Job	Maurepaus Swamp Project No.		roject No.	60632162		
Descrip	otion	CN-02 (Represents CN-01) Cor	nputed by	ЈМН	Date	Dec-20
		CN Gate Storage Monolith				
Slab Calculations		alculations Cl	Checked by	JRA	Date	Dec-20
					Re	eferences

					Re	eferences
Slab Calculations		alculations	Checked by	JRA	Date	Dec-20
		CN Gate Storage Monolith				
Descrip	tion	CN-02 (Represents CN-01)	Computed by	ЈМН	Date	Dec-20
Job	Maure	paus Swamp	Project No.	60632162		

AECOM Job Maurepaus Swamp Project No. 60632162 Description CN-02 (Represents CN-01) Computed by JMH Date Dec-20 **CN Gate Storage Monolith** Slab Conc. Check Checked by JRA Date Dec-20 References * Given Information: 3.00 ft Slab Thickness: Slab Width: 10.00 ft Clear Cover: 0.75 ft Diameter Bar to Start: 0.09 ft 1.13 ft Diameter of Pile: Load Fact. Maximum Pile Reaction: 57.10 kips 1 57.10 kips *From Factored CPGA Results Maximum Shear: 3.88 kips 4.89 kip-ft Maximum Moment (Top): 3.89 kip-ft Maximum Moment (Bottom): 0.75 (ACI 318) φ_{shear} = 0.9 (ACI 318) ϕ_{moment} = 60 ksi f_{y, rebar} = f'_c = 4 ksi * Shear Calculations: 1- Shear Capacity: Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u) on Connecity (a)(): * 2 * [f' * b * d (ACT E. 11 2) Sh

φV _c = 30095.3 lbs 30.10 kips	** φVc=30.1 ≥ Vu	1=3.9, Shear Capacity OK
φ _{shear} = 0 f' _c = b = d = 2	4 ksi 1 ft strip .20 ft 26.44 in	
(n C	75	
Shear Capacity (φV _c): φ _{shear} ·	`Z^√f _c ^b^d	(ACI Eq. 11-3)

Maurepaus Swamp Project No. 60632162 Job Description CN-02 (Represents CN-01) Computed by JMH Date Dec-20 **CN Gate Storage Monolith** Slab Conc. Check JRA Dec-20 Checked by Date References 2- Punching Shear Capacity (ACI 318-14 Table 22.6.5.2): Vc = minimum value = Eq. a: $4 \times J(f'_c) \times b_0 \times d$ for $\beta_c < 2.0$ Eq. b: $(2 + (4 / \beta_c)) \times J(f'_c) \times b_0 \times d$ for $\beta_c > 2.0$ Eq. c: $((a_s \times d) / b_0 + 2) \times J(f'_c) \times b_0 \times d$ b₀ / d effect based on a_s (interior column: $a_s = 40$, edge column: $a_s = 30$, corner column: $a_s = 20$) d for piles = 26.203 in (Slab thickness - 9" pile embed - cover - 0.5d_{bar}) where β_c = Long side / Short side = b_0 = Perimeter of Critical Section = $\pi^*(D_{pile} + d)$ = 125.045 a_s = 20 (worst case - corner column) Vc = minimum value = Eq. a: 828.91 kips 1243.36 kips Eq. b: 1282.94 kips Eq. c: φV_c = 621.68 kips Check corner pile failure to edge of slab: $D_{pile}/2+d/2 =$ 1.66 ft /2 + d/2 Dpile Diameter of corner failure = 1.658 + 2 ft 3.66 ft 2.00 Dia. punching shear calc above = 3.32 Diameter of punching shear calculation is smaller than the diameter of this corner failure area. Therefore, no recheck of corner punching failure is required. 30.10 kips φVc used in design = ** φVc = 30.1k≥ Vu = 3.9k, Shear Capacity OK Maximum Pile Reaction = 57.10 ** φVc=622k≥ Vu=57k, Punching Shear Capacity OK

Job Mauro	epaus Swamp	Project No.	60632162	-	
Description	CN-02 (Represents C	N-01) Computed by	JMH	Date	Dec-20
	CN Gate Storage Mo	nolith			
Slab Conc. Check		Checked by	JRA	Date	Dec-20
				Re	ferences

3- Deep Beam One-Way Shear Capacity (ϕV_{c1}):

For $(w/d) \ge 1.0$, a one-way (normal) shear investigation with loads outside the critical section (located at a distance d from the face of the column, b = footing width) and

$$v_c = 1.9\sqrt{f_c'} + 2500\rho_w \left(\frac{V_u d}{M_u}\right) \ge 2\sqrt{f_c'}$$
 (ACI Eq. 11-5)

which reduces for $\rho_w \approx 0.002$ and 3,000 psi $\leq f_c' \leq 4,000$ psi to $v_c = 1.9\sqrt{f_c'} + 0.1\sqrt{f_c'} (V_u d/M_u) \geq 2\sqrt{f_c'}$.

For $(w/d) < 1.0, 1.0 > M_u/V_u d > 0; \infty > V_u d/M_u \ge 1.0$ (no limits on $M_u, V_u d$, other than above)

$$v_c = \left(\frac{d}{w}\right) \left[3.5 - 2.5\left(\frac{M_u}{V_u d}\right)\right] \left[1.9\sqrt{f_c} + 0.1\sqrt{f_c}\left(\frac{V_u d}{M_u}\right)\right]$$

$$\leq 10\sqrt{f_c'} \quad (\text{ACI Eq. 13-2})$$

* Reinforcement Calculations:

Limit of Maximum Reinforcement: ($0.25 \times \rho_b$ (Design Cr	riteria, EM 1110-2-2	2104, 3-5)
where $p_{\rm b}$ =	0.0285 for f'c = 4	,000psi, fy = 60,00	Opsi
Max Rebar =	0.00713 *b * d		
Maximum Reinforcement:	0.0071 * b * d =	2.26 in ²	per 1ft strip
A _{gross} = 3	3 ft * 12 in/ft * 12 in	strip = 432.00) in ²
Limits of Minimum Reinforcement:	0.005 x Agross =	2.16 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
	$(3*\sqrt{f'_c})*b*d)/f_y =$	1.00 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
	(200*b*d)/f _y =	1.06 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
Min Reinforcemen	t, temp & shrinkage:	1.08 in ²	per 1ft strip, per face
Min Rein	forcement, flexural:	1.06 in ²	per 1ft strip, per face

AECOM

					Re	ferences	
Slab Conc. Check		Checked by	JRA	Date	Dec-20		
		CN Gate Storage Mon	olith				
Descrip	tion	CN-02 (Represents C	N-01) Computed by	JMH	Date	Dec-20	
Job	Maure	paus Swamp	Project No.	60632162	-		

* Moment Calculations:

* Capacity of Maximum Reinforcement:

 $a = (A_s \times f_y) / (0.85 \times f'_c \times b)$ 3.324 in =

φMn =

=

3023.8	kip-in	**	φ Mn=252	Z	Mu=4.9,	Se
251.98	kip-ft	**	φMn=252	≥	Mu=3.9,	Se

The minimum proposed reinforcement for to T&S Slab Rebar is #7 @ 6"(A =1.2in2) and the minimum proposed reinforcment for Top & Bot Slab Rebar is #7 @ 6"(A =1.2in2).

** φMn=252 ≥ Mu=4.9, Section OK	ТОР
** φMn=252 ≥ Mu=3.9, Section OK	Bottom

Maurepaus Swamp

CN-03 (Represents CN-04)

CN Gate Monolith

AECOM Project : 60632162

Foundation, Wall & Slab

Computed by:	JMH	Checked by:	JRA		
Date:	Dec-20	Date:	Dec-20		

Job	Maurepaus Swamp	Project No. 60632162	_
Description	CN-03 (Represents CN-04)	Computed by JMH	Date Dec-20
	CN Gate Monolith		
	Wall Geometry	Checked by JRA	Date Dec-20
			References
WALL GEOMET		FLOOD SIDE	PROTECTED SIDE
Top of Pilaster EL	. 16.13 NAVD88	TOW EL x.xx	* X
Top of Wall EL	. 16.13 NAVD88		
100 Yr. Water El	. NAVD88		Z
10 Yr. Water El	. NAVD88	SWL y	
Top of Slab EL	. 11.98 NAVD88		
H	8.65 ft.	GRADE	
h1=	= 4.15 ft.		
h2=	4.50 ft. (Base Slab Height)		
h3=	0.00 ft. (P.S. Soil Height)	a l	GRADE
h4=	= 0.00 ft.		\ <u>ت</u> و \
h5=	0.00 ft. (F.S. Soil Height)		
B=	12.00 ft. (Base Slab Width)	4	
b1=	1.50 ft. (Wall Stem Width, top)		
b2=	6.25 ft. (F.S. Slab Width)		
b3=	1.50 ft. (Wall Stem Width, bottom)		
b4=	4.25 ft. (P.S. Slab Width)		
b5=	2.00 ft. (F.S. Pile Row Edge Space)		
b6=	7.00 ft. (Sheet Pile Edge Space)	B/2	B/2
BAT	0.00 (Wall Batter, N/A)	b2 /N b3	b4
PS Grade =	11.98 NAVD88 (Average of PS soil for all)	T-WALL CROSS-SECTION	<u>)</u>
		<u>Notes:</u> 1) positive 'Y'	axis is into page
Monolith Lenath :	= 58.92 ft	2) pile batter	s vary from those shown
		in diaaram	,
		alagi alli	

Note: In this report, white boxes are for input data and colored boxes are calculated values. Note: CN-03 and CN-04 have been deemed to be equal and opposite.

000	maarcpaas owamp		
Description	CN-03 (Represents CN-04)		
	CN Gate Monolith		
	Applied Loads in SAP Model		

Pile and Pilaster Layout:

3 of 60

Job	Maurepaus Swamp		Project No.	60632162		
Description	CN-03 (Represents CN-04)		Computed by	, JMH	Date Dec-	
	CN Gate Monolith				· · · · ·	
	Assumptions		Checked by	JRA	Date	Dec-20
					F	References
Uni	t Weight of Storm Water =	0.0624	kcf			
	Wet Unit Weight of Soil =	0.1200	kcf			
	Sat Unit Weight of Soil =	0.0576	kcf			
	Unit Weight of Concrete =	0.1500	kcf			
	Impact Load =	0.0000	k/ft			
l	FS Wind force above SWL=	0.0500	ksf			
Constru	uction Surcharge Pressure =	0.2500	ksf			
Unbalanced	Load for Stability Analysis:					
	F _{cap} (k/ft) =	0.00	(10y SWL Case; Force act	ts at bottom of s	lab)	
	F _{cap} (k/ft) =	0.00	(100y SWL Case; Force ad	cts at bottom of	slab)	
	F _{cap} (k/f†) =	0.00	(Water to TOW Case; For	rce acts at botto	m of slab)	
	K ₀ , Granular fill =	0.95	(for lateral soil forces)			
Assumed	Wall Reinforcement Cover =	0.25	ft			
	Assumed Wall $d_{bar} =$	0.06	ft			
	Gate Length =	93.12	ft			
	Gate Opening =	89.12	ft *Tributary L	ength = 44.56'		
	Gate Weight =	22.35	kip *Taken from	similar roller ga	te from Hobok	en project.

(31.03 - 22.35) / 14 piles = .62 kip/pile

By inspection, gate weight will not drastically affect the design and the new gate weight passes with the pile capacities along with the shear and moment capacities on the slab. The gate weight will be updated and analyzed for the next submittal.

AECOM

Job Maure	paus Swamp	Project No. 6	60632162		
Description	CN-03 (Represents CN-04)	Computed by	JMH	Date	Dec-20
CN Gate Monolith					
Load C	Cases	Checked by	JRA	Date	Dec-20
				Re	ferences

No. of Load Cases 3 Update

No.	DCD LC No.	Description	FS Water El.	PS Water El.	Pile Design Over Stresses
1	1	Construction Surcharge	7.48	7.48	1.17
2	2a	Water to TOW (impervious cutoff)	16.13	7.48	1.33
3	2b	Water to TOW (pervious cutoff)	16.13	7.48	1.33
4		Dead + Cooper E80	7.48	7.48	1.00

* Impact load is not applicable for this section, so it is excluded from the load combinations

* Forces induced by 10y water elevation are not applicable for this section, so they are excluded from the load combinations

*Earthquake and Wave Loads are to be determined and are excluded from these calculations

Job	Maurepaus Swamp	Project No.	60632162		
Description	CN-03 (Represents CN-04)	Computed by	ЈМН	Date	Dec-20
	CN Gate Monolith	-			
	Applied Loads in SAP Model	Checked by	JRA	Date	Dec-20

References

*The following diagrams represent the loads applied in the SAP Model; base reactions were taken from SAP to plug into CPGA to get the pile reactions of the structure.

Job	Maurepaus Swamp	Project No.	60632162		
Description	CN-03 (Represents CN-04)	Computed by	ЈМН	Date	Dec-20
	CN Gate Monolith			_	
	Applied Loads in SAP Model	Checked by	JRA	Date	Dec-20
				F	References
h,lat(of ead load d .0624	TOW) frame load applied to center ch pilaster to compensate for water on gate: 44.56' * (16.13-11.98)' * kcf = 11.54 kip/ft				
		11.54			M

SAP2000 20.1.0

Frame Span Loads (h,lat (TOW)) (GLOBAL CSys)

Kip, ft, F

AECOM

Job	Maurep	aus Swamp	Project No.	60589133		
Descr	iption	CN-03 (Represents CN-04)	Computed by	ЈМН	Date	Dec-20
		CN Gate Monolith				
Summary of Foundation Loads		Checked by	JRA	Date	Dec-20	
					R	eferences

UNFACTORED LOADS FOR CPGA							
Load	F×	Fy	Fz	M×	My	Mz	
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)	
LC1	0.00	0.00	664.46	-211.24	6.48	0.00	
LC2	-137.46	0.00	390.05	-335.30	655.25	-580.63	
LC3	-137.46	0.00	420.02	-335.31	490.45	-580.63	
LC4	0.00	0.00	1031.24	3182.52	19.69	0.00	

This table represents the base reactions taken from SAP. The moments were taken from the centroid of the structure with positive-x facing the flood side and positive-z facing downwards.

Note: Loads exported from SAP 2000 are within 5% on the conservative side of the actual loads on the monolith; OK to use for this submittal.

FACTORED LOADS FOR CPGA							
Load	Fx	Fy	Fz	M×	My	Mz	
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)	
LC1	0.00	0.00	1063.13	-337.99	10.37	0.00	
LC2	-219.94	0.00	624.09	-536.48	1048.40	-929.01	
LC3	-219.94	0.00	672.03	-536.49	784.72	-929.01	
LC4	0.00	0.00	2268.73	7001.54	43.32	0.00	

Description	CN-03 (Represents CN-04)	Computed by	JMH	Date	Dec-20
	CN Gate Monolith				
Soil & Pile Information Required for CPGA		Checked by	JRA	Date	Dec-20

References

Pile Layout: 14 HP Piles

Row	<u>1</u>		Row	<u>2</u>	
pile no.	×	у	pile no.	×	у
1	4.00	-27.00	8	-4.00	-27.00
2	4.00	-18.00	9	-4.00	-18.00
3	4.00	-9.00	10	-4.00	-9.00
4	4.00	0.00	11	-4.00	0.00
5	4.00	9.00	12	-4.00	9.00
6	4.00	18.00	13	-4.00	18.00
7	4.00	27.00	14	-4.00	27.00

 Tip Elevation:
 (For CPGA, need Tip Elevation as a function of CPGA Axis at B.O. Slab, +Z points downward)

 B.O.S. Elevation =
 7.48

 Pile Tip El. =
 -60

 NAVD89
 "TIP" in CPGA =

 67.48 ft
 61

<u>Pile Properties & Attributes</u>

E =	29000000.0	psi
A =	21.40	in ² HP14X73
I _x =	729.00	in ⁴
I _y =	261.00	in ⁴
C ₃₃ =	1.70	(factor for method of axial load transfer from pile to soil; = 1 full tip bearing, = 2 full skin friction)
S _x =	107.00	in ³
S _y =	35.80	in ³
F _y =	50.00	ksi

*Note: All soil properties and pile capacities are taken from 95% submittal for Maurepas intake structure.

Allowable Compression (AC) =	kips
Allowable Tension (AT) =) kips
ACC =	i kips
ATT =	kips
AM1 =	kip-in
AM2 =	kip-in
AM1 = AM2 =	kip-i

Madrepads Gwallip		Project No. 60652162	
otion CN-03 (F	Represents CN-04)	Computed by JMH	Date Dec-20
CN Gate	Monolith		
Soil & Pile Information	Required for CPGA	Checked by JRA	Date Dec-20
			References
ue for CPGA Run:	Monolith width = 5 $E_s = 540.4$	i9 ft 10 psi = 0.5404 ksi	
GROUP FACTORS	;		
Pile Spacing in Direction of Loading	1110-2- Group re- 16 includes (fixetv).	duction is based on distance between piles in direction of distance due to battering and is taken over the distance 1	loading. This 0 x d _{pile} (point of
D	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
3B 0.3	3	Assume a batter of 6.00	
4B 0.3	8	B = d _{pile} = 13.6 in =	1.133 ft
5B 0.4	5		
6B 0.5	6	Distance between piles at B.O. Slab =	8.00 ft
7B 0.7	1	Average distance between piles over 10*dpile =	9.89 ft
8B 1			
	Averag	ge distance between piles in terms of pile width B =	8.73 B

 Description
 CN-03 (Represents CN-04)
 Computed by
 JMH

 CN Gate Monolith
 Soil & Pile Information Required for CPGA
 Checked by
 JRA

Date Dec-20 Date Dec-20

References

Descript	tion CN-03 (F	Represents CN-04)		Computed by	ЈМН	Date	Dec-20
	CN Gate	Monolith					
	CPGA Ir	put & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20
Input	file:						
	100 MONOLITH, T	OW EL. 16.13, TO	OS EL.10.0; H	P 14X73 PILES			
	200 PROP 29000	729 261 21.4 1.7	7 0 ALL				
	300 SOIL ES 0.5	404 TIP 67.48 0	ALL				
	400 PIN ALL						
	500 ALLOW H 110	88 492.7 535 29	972.2 994.4 A	LL			
	600 FOVSTR 1.17	1.17 1					
	700 FOVSTR 1.33	1.33 2 3					
	800 FOVSTR 1 1	4					
	900 BATTER 6 Al	1					
	1200 ANGLE 180	8 TO 14					
	1300 PILE 1 4 -	27 0					
	1400 PILE 2 4 -	18 0					
	1500 PILE 3 4 -	9 0					
	1600 PILE 4 4 0	0					
	1700 PILE 5 4 9	0					
	1800 PILE 6 4 1	8 0					
	1900 PILE 7 4 2	7 0					
	2000 PILE 8 -4	-27 0					
	2100 PILE 9 -4	-18 0					
	2200 PILE 10 -4	-9 0					
	2300 PILE 11 -4	0 0					
	2400 PILE 12 -4	9 0					
	2500 PILE 13 -4	18 0					
	2600 PILE 14 -4	27 0					
	4500 LOAD 1 0 0	664.5 -211.2 6.	.5 0				
	4600 LOAD 2 -13	7.5 0 390.1 -335	5.3 655.2 -58	0.6			
	4700 LOAD 3 -13	7.5 0 420 -335.3	3 490.5 -580.	6			
	4800 LOAD 4 0 C	1031.2 3182.5 1	L9.7 0				
	9000 FOUT 1 2 3	4 5 6 7 CN01P.I	DOC				
	9100 PFO ALL						
	9200 PLB ALL						

Description	CN-03 (Represents CN-04)	Computed by	ЈМН	Date	Dec-20	
	CN Gate Monolith			-		
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20	

CPGA RESULTS without Load Factors (pinned connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 22-DEC-20 RUN TIME: 12:01:50

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.0; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 14 PILES AND 4 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

				Х	Y	Z	
WITH	DIAGONAL	COORDINATES	= (-4.00 ,	-27.00	, 0.00)
			(4.00 ,	27.00	, 0.00)

PILE PROPERTIES AS INPUT

E	I1	I2	A	C33	B66
KSI	IN**4	IN**4	IN**2		
0.29000E+05	0.72900E+03	0.26100E+03	0.21400E+02	0.17000E+01	0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

Description	CN-03 (Rep	oresents CN-04)	_	Computed	by JMH	Date _	Dec-20
	CPGA Inpu	it & Output Files	(Pile Analysis)	Checked	by JRA	Date	Dec-20
ES ES	DIL LENGI	'H L	LU				
K/II	√**2	FT	FT				
0.540	040E+00 T	0.67480E+	02 0.00000E	+00			
ESOIL(ORIGI) K/IN**2	NAL) RGROU	P RCYCLIC					
0.54040E+00	0.1000	E+01 0.1000E+	01				
THIS SOIL DES	SCRIPTION APPL	IES TO THE FO	LLOWING PILES	-			
ALL							
* * * * * * * * * * * * * *	* * * * * * * * * * * * * *	****	* * * * * * * * * * * * *	****	*****	*	
PILI	E STIFFNESSES	AS CALCULATED	FROM PROPERI	IES			
0.23377E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00		
0.00000E+00	0.30221E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00		
0.00000E+00	0.00000E+00	0.12852E+04	0.00000E+00	0.00000E+00	0.00000E+00		
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00		
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00		
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00		
THIS MATRIX A	APPLIES TO THE	FOLLOWING PI	les -				
1							

Description	ı	CN-03 (Re	presents CN-04)		Compu	ted by	JMH	Date	Dec-20
		CN Gate M	lonolith	_						
		CPGA Inp	ut & Output File	s (Pile Ar	nalysis)	Check	ked by	JRA	Date	Dec-20
	PILE G	EOMETRY AS	INPUT AND/OR	GENERAT	ED					
NUM	х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FT	FT	FT			FT				
1	4.00	-27.00	0.00	6.00	0.00	68.41	P			
2	4.00	-18.00	0.00	6.00	0.00	68.41	P			
3	4.00	-9.00	0.00	6.00	0.00	68.41	P			
4	4.00	0.00	0.00	6.00	0.00	68.41	P			
5	4.00	9.00	0.00	6.00	0.00	68.41	P			
6	4.00	18.00	0.00	6.00	0.00	68.41	P			
7	4.00	27.00	0.00	6.00	0.00	68.41	P			
8	-4.00	-27.00	0.00	6.00	180.00	68.41	P			
9	-4.00	-18.00	0.00	6.00	180.00	68.41	P			
10	-4.00	-9.00	0.00	6.00	180.00	68.41	P			
11	-4.00	0.00	0.00	6.00	180.00	68.41	P			
12	-4.00	9.00	0.00	6.00	180.00	68.41	P			
13	-4.00	18.00	0.00	6.00	180.00	68.41	P			
14	-4.00	27.00	0.00	6.00	180.00	68.41	P			

957.75

APPLIED LOADS

LOAD	PX	PY	ΡZ	MX	MY	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0.0	0.0	664.5	-211.2	6.5	0.0 1.17 1.17
2	-137.5	0.0	390.1	-335.3	655.2	-580.6 1.33 1.33
3	-137.5	0.0	420.0	-335.3	490.5	-580.6 1.33 1.33
4	0.0	0.0	1031.2	3182.5	19.7	0.0

Description	CN-03 (Represents CN-04)	Computed by	JMH	Date	Dec-20
	CN Gate Monolith	_		-	
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.80470E+03 -0.46435E-05 0.85265E-12 0.14552E-10 -0.13750E+06 0.22289E-03 -0.46435E-05 0.42309E+03 0.34856E-04 0.00000E+00 0.16731E-02 -0.52296E-11 0.85265E-12 0.34856E-04 0.17515E+05 0.00000E+00 -0.29104E-10 -0.16731E-02 0.00000E+00 0.21684E-18 0.00000E+00 0.81717E+09 0.37253E-08 -0.22352E-07 -0.13750E+06 0.16731E-02 -0.29104E-10 0.37253E-08 0.40354E+08 -0.80308E-01 0.22289E-03 -0.63665E-11 -0.16731E-02 -0.29802E-07 -0.80308E-01 0.38519E+08

14 PILES 4 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	4.	NUMBER	OF	FAILURES	=	Ο.	NUMBER	OF	PILES	IN	TENSION	=	0.

PILE CAP DISPLACEMENTS

LOAD						
CASE	DX	DY	DZ	RX	RY	RZ
	IN	IN	IN	RAD	RAD	RAD
1	0.7905E-03	-0.3135E-08	0.3794E-01	-0.3101E-05	0.4627E-05	0.1653E-11
2	-0 3293E+00	-0 17828-08	0 22278-01	-0 49248-05	-0 92728-03	-0 18098-03

 2
 -0.3293E+00
 -0.1782E-08
 0.2227E-01
 -0.4924E-05
 -0.9272E-03
 -0.1809E-03

 3
 -0.3493E+00
 -0.1679E-08
 0.2398E-01
 -0.4924E-05
 -0.1044E-02
 -0.1809E-03

 4
 0.2396E-02
 -0.4880E-08
 0.5888E-01
 0.4673E-04
 0.1402E-04
 0.2573E-11

ELASTIC CENTER INFORMATION

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Description	CN-03 (Represents CN-04)	Computed by JMH	Date Dec-20
	CN Gate Monolith		
	CPGA Input & Output Files (Pile Analysis)	Checked by JRA	Date Dec-20

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES

- * INDICATES PILE FAILURE
- # INDICATES CBF BASED ON MOMENTS DUE TO
- (F3*EMIN) FOR CONCRETE PILES

B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

PILE	F1	F2	F3	M1	M2	MЗ	ALF	CBF
	K	K	K	IN-K	IN-K	IN-K		
1	-0.1	0.0	49.3	0.0	3.6	0.0 (.38	0.09
2	-0.1	0.0	48.8	0.0	3.6	0.0 (.38	0.09
3	-0.1	0.0	48.4	0.0	3.6	0.0 (.38	0.09
4	-0.1	0.0	48.0	0.0	3.5	0.0 (0.37	0.09
5	-0.1	0.0	47.6	0.0	3.5	0.0 (0.37	0.09
6	-0.1	0.0	47.1	0.0	3.5	0.0 (0.37	0.08
7	-0.1	0.0	46.7	0.0	3.4	0.0 (0.36	0.08
8	-0.2	0.0	49.5	0.0	4.7	0.0 (.38	0.09
9	-0.2	0.0	49.1	0.0	4.7	0.0 (.38	0.09
10	-0.2	0.0	48.6	0.0	4.6	0.0 (0.38	0.09
11	-0.2	0.0	48.2	0.0	4.6	0.0 (0.37	0.09
12	-0.2	0.0	47.8	0.0	4.6	0.0 (0.37	0.09
13	-0.2	0.0	47.4	0.0	4.5	0.0 (0.37	0.09
14	-0.2	0.0	46.9	0.0	4.5	0.0 (0.36	0.09

LOAD CASE - 2

PILE	Fl	F2	F3	M1	M2	M3 A	LF	CBF
	K	K	K	IN-K	IN-K	IN-K		
1	-9.2	-0.3	4.7	-9.4	256.5	0.0 0.	03	0.20
2	-8.8	-0.3	8.2	-9.4	243.9	0.0 0.	06	0.20
3	-8.3	-0.3	11.6	-9.4	231.3	0.0 0.	08	0.20
4	-7.8	-0.3	15.1	-9.4	218.7	0.0 0.	10	0.19
5	-7.4	-0.3	18.5	-9.4	206.1	0.0 0.	13	0.19
6	-6.9	-0.3	22.0	-9.4	193.5	0.0 0.	15	0.18
7	-6.5	-0.3	25.4	-9.4	180.9	0.0 0.	17	0.18
8	9.0	-0.3	55.8	-9.4	-251.4	0.0 0.	38	0.28
9	8.6	-0.3	51.0	-9.4	-238.9	0.0 0.	35	0.26
10	8.1	-0.3	46.2	-9.4	-226.4	0.0 0.	32	0.24
11	7.7	-0.3	41.4	-9.4	-213.9	0.0 0.	28	0.23
12	7.2	-0.3	36.6	-9.4	-201.4	0.0 0.	25	0.21
13	6.8	-0.3	31.8	-9.4	-188.9	0.0 0.	22	0.19
14	6.3	-0.3	27.0	-9.4	-176.4	0.0 0.	18	0.18

Project No. 60632162 Maurepaus Swamp Description CN-03 (Represents CN-04) Computed by ЈМН Date Dec-20 **CN Gate Monolith** CPGA Input & Output Files (Pile Analysis) JRA Checked by Date Dec-20 LOAD CASE -3 PILE F1 F2 FЗ M1 М2 MЗ ALF CBF K Κ K IN-K IN-K IN-K 1 -9.7 -0.3 9.8 -9.4 270.2 0.0 0.07 0.22 -9.2 -0.3 257.5 0.0 0.09 0.22 2 13.2 -9.4 -8.8 3 -0.3 16.7 244.9 0.0 0.11 0.21 -9.4 4 -8.3 -0.3 20.1 -9.4 232.3 0.0 0.14 0.21 -7.9 -0.3 0.0 0.16 0.20 5 23.6 -9.4 219.7 6 -7.4 -0.3 27.1 -9.4 207.1 0.0 0.18 0.20 7 -7.0 -0.3 30.5 0.0 0.21 0.20 -9.4 194.5 -0.3 -264.7 0.0 0.38 0.29 9.5 55.1 8 -9.4 9 9.1 -0.3 50.3 -9.4 -252.2 0.0 0.34 0.27 0.0 0.31 0.25 10 8.6 -0.3 45.5 -9.4 -239.7 -0.3 40.7 -227.2 0.0 0.28 0.24 11 8.2 -9.4 12 7.7 -0.3 35.9 -9.4 -214.7 0.0 0.25 0.22 13 7.3 -0.3 31.1 -9.4 -202.2 0.0 0.21 0.20 14 6.8 -0.3 26.2 -9.4 -189.7 0.0 0.18 0.19 LOAD CASE -4 PILE F1 F2 FЗ M1 М2 M3 ALF CBF Κ Κ Κ IN-K IN-K IN-K -0.1 0.0 55.1 0.0 3.1 0.0 0.50 0.11 1 2 -0.1 0.0 61.5 0.0 3.6 0.0 0.56 0.13 3 -0.1 0.0 67.9 0.0 4.2 0.0 0.62 0.14 -0.2 0.0 4 0.0 74.3 4.7 0.0 0.68 0.16 0.0 0.73 0.17 -0.2 5 0.0 80.7 0.0 5.2 -0.2 0.0 0.79 0.18 0.0 87.1 0.0 5.8 6 7 -0.2 0.0 93.5 6.3 0.0 0.85 0.20 0.0 -0.2 8 0.0 55.8 0.0 6.3 0.0 0.51 0.12 -0.2 0.0 0.57 0.13 9 0.0 62.2 0.0 6.8 -0.3 7.4 0.0 0.62 0.15 10 0.0 68.6 0.0 -0.3 0.0 75.0 7.9 0.0 0.68 0.16 11 0.0 12 -0.3 0.0 81.4 0.0 8.5 0.0 0.74 0.17 -0.3 9.0 0.0 0.80 0.19 13 0.0 87.8 0.0 -0.3 0.0 94.2 9.5 0.0 0.86 0.20 14 0.0 ******

Description	CN-03 (Represents CN-04)	Computed by	JMH	Date	Dec-20
	CN Gate Monolith	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	8.0	0.0	48.6	0.0	0.0	0.0
2	7.9	0.0	48.2	0.0	0.0	0.0
3	7.8	0.0	47.8	0.0	0.0	0.0
4	7.8	0.0	47.3	0.0	0.0	0.0
5	7.7	0.0	46.9	0.0	0.0	0.0
6	7.6	0.0	46.5	0.0	0.0	0.0
7	7.6	0.0	46.1	0.0	0.0	0.0
8	-8.0	0.0	48.8	0.0	0.0	0.0
9	-7.9	0.0	48.4	0.0	0.0	0.0
10	-7.8	0.0	48.0	0.0	0.0	0.0
11	-7.8	0.0	47.6	0.0	0.0	0.0
12	-7.7	0.0	47.2	0.0	0.0	0.0
13	-7.6	0.0	46.7	0.0	0.0	0.0
14	-7.6	0.0	46.3	0.0	0.0	0.0

LOAD CASE - 2

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-8.3	-0.3	6.2	0.0	0.0	0.0
2	-7.3	-0.3	9.5	0.0	0.0	0.0
3	-6.3	-0.3	12.8	0.0	0.0	0.0
4	-5.3	-0.3	16.2	0.0	0.0	0.0
5	-4.3	-0.3	19.5	0.0	0.0	0.0
б	-3.2	-0.3	22.8	0.0	0.0	0.0
7	-2.2	-0.3	26.2	0.0	0.0	0.0
8	-18.1	0.3	53.6	0.0	0.0	0.0
9	-16.8	0.3	48.9	0.0	0.0	0.0
10	-15.6	0.3	44.2	0.0	0.0	0.0
11	-14.4	0.3	39.6	0.0	0.0	0.0
12	-13.1	0.3	34.9	0.0	0.0	0.0
13	-11.9	0.3	30.2	0.0	0.0	0.0
14	-10.7	0.3	25.6	0.0	0.0	0.0

Descripti	on	CN-03 (Repre	sents CN-04)	-	(Computed by	ЈМН	Date _	Dec-20
		CN Gate Mon	olith						
		CPGA Input 8	& Output Files	(Pile Analysi	s)	Checked by	JRA	Date _	Dec-20
TOND CI	10E 3								
LOAD CA	45E - 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-8.0	-0.3	11.2	0.0	0.0	0.0			
2	-6.9	-0.3	14.6	0.0	0.0	0.0			
3	-5.9	-0.3	17.9	0.0	0.0	0.0			
4	-4.9	-0.3	21.2	0.0	0.0	0.0			
5	-3.9	-0.3	24.6	0.0	0.0	0.0			
6	-2.9	-0.3	27.9	0.0	0.0	0.0			
7	-1.9	-0.3	31.2	0.0	0.0	0.0			
8	-18.4	0.3	52.7	0.0	0.0	0.0			
9	-17.2	0.3	48.1	0.0	0.0	0.0			
10	-16.0	0.3	43.4	0.0	0.0	0.0			
11	-14.7	0.3	38.8	0.0	0.0	0.0			
12	-13.5	0.3	34.1	0.0	0.0	0.0			
13	-12.3	0.3	29.4	0.0	0.0	0.0			
14	-11.0	0.3	24.8	0.0	0.0	0.0			
LOAD CA	ASE - 4								
DIID	DV	DV	DE	107		117			
LITE	K	K	РZ К	IN-K	IN-K	IN-K			
1	8.9	0.0	54.4	0.0	0.0	0.0			
2	10.0	0.0	60.7	0.0	0.0	0.0			
3	11.0	0.0	67.0	0.0	0.0	0.0			
4	12.0	0.0	73.3	0.0	0.0	0.0			
5	13.1	0.0	79.6	0.0	0.0	0.0			
6	14.1	0.0	85.9	0.0	0.0	0.0			
7	15.1	0.0	92.2	0.0	0.0	0.0			
8	-8.9	0.0	55.1	0.0	0.0	0.0			
9	-10.0	0.0	61.4	0.0	0.0	0.0			
10	-11.0	0.0	67.7	0.0	0.0	0.0			
11	-12 0	0.0	74.0	0.0	0.0	0.0			
12	-13 1	0.0	80 3	0.0	0.0	0.0			
13	-14.1	0.0	86.6	0.0	0.0	0.0			
14	-15 1	0.0	93.0	0.0	0.0	0.0			
		0.0	20.0	0.0	0.0	0.0			

	aus Swamp			Project No. 60632162	<u>.</u>
Description	CN-03 (Represent	s CN-04)		Computed by JMH	Date Dec-20
	CN Gate Monolith	l			
	CPGA Input & Out	tput Files (Pil	e Analysis)	Checked by JRA	Date Dec-20
CPGA RESU	JLTS withou	t Load	Factors	(FIXED connec	ction)
CPGA - CASE P	ILE GROUP ANALYSIS	PROGRAM			
RUN DATE: 22-1	DEC-20 RUN TIME	E: 12:03:30			
FOR PILES	WITH UNSUPPORTED F	HEIGHT:	OD NU TVDE	2011	
а. С. в т	HE ALLOWABLE STRESS	S CHECKS. AS	C AND AST.	ARE	
2. I.	OT FULLY DEVELOPED	FOR UNSUPPO	RTED PILES.		
W	ORK IS IN PROGRESS	TO COMPLETE	THIS ASPEC	F OF CPGA.	
ELASTIC C	ENTER LOCATION IS N	NOT COMPUTEI	FOR 3-DIME	NSIONAL PROBLEMS.	
MONOLTTH TOW	EL 16 13 TOS EL	10 0· HP 14	173 PTLES		
DATA UNKNOWN	- REJECTED.	.10.0, 11 11			
	DILEC AND				
MUEDE ADE 14	FILES AND	S RUN.			
THERE ARE 14	LOAD CASES IN THIS				
THERE ARE 14	LOAD CASES IN THIS				
THERE ARE 14 4 ALL PILE COOR	LOAD CASES IN THI: DINATES ARE CONTAIN	NED WITHIN A	A BOX		
THERE ARE 14 4 ALL PILE COOR	LOAD CASES IN THI: DINATES ARE CONTAIN	NED WITHIN # X	A BOX Y	Ζ	
THERE ARE 14 4 ALL PILE COOR	LOAD CASES IN THI: DINATES ARE CONTAIN COORDINATES = (NED WITHIN # X -4.00 ,	Y BOX Y	z 	
THERE ARE 14 4 ALL PILE COOR WITH DIAGONAL	LOAD CASES IN THI: DINATES ARE CONTAIN COORDINATES = ((NED WITHIN # X -4.00 , 4.00 ,	Y BOX -27.00 , 27.00 ,	Z 0.00) 0.00)	

Description	CN	-03 (Repr	esents CN-04)		Computed	byJMH	Date	Dec-20
	CN	Gate Mo	nolith				_	
	CP	GA Input	& Output Files	(Pile Analysis)	Checked	by JRA	Date _	Dec-20
E	PILE PROPE	RTIES AS	INPUT					
E	I	1	12	A	C33	B66		
KSI 0.29000E+	IN: 05 0.729	**4 00E+03	IN**4 0.26100E+03	IN**2 0.21400E+02	0.17000E+01	0.00000E+00		
THESE PILE	PROPERTI	ES APPLY	TO THE FOLLO	OWING PILES -				
ALL								
*******	******	* * * * * * * *	***********	*****	*******	*****		
S	OIL DESCR	IPTIONS .	AS INPUT					
ES	ESOTI.	LENGTH	т.	T.U				
R. I.	/IN**2		FT	FT				
0.	54040E+00	Т	0.67480E+0	0.00000E	+00			
ESOIL(ORI K/IN**2	GINAL)	RGROUP	RCYCLIC					
0.54040E	+00	0.1000E	+01 0.1000E+0	01				
THIS SOIL	DESCRIPTIO	ON APPLI	ES TO THE FOI	LLOWING PILES	-			
ALL								

Description	CN-03 (Represents CN-04)	Computed by	ЈМН	Date	Dec-20
	CN Gate Monolith			-	
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20

PILE STIFFNESSES AS CALCULATED FROM PROPERTIES

0.46753E+02 0.00000E+00	0.00000E+00 0.60441E+02	0.00000E+00 0.00000E+00	0.00000E+00 -0.33800E+04	0.20224E+04 0.00000E+00	0.00000E+00 0.00000E+00
0.00000E+00	0.00000E+00	0.12852E+04	0.00000E+00	0.00000E+00	0.00000E+00
0.00000E+00	-0.33800E+04	0.00000E+00	0.37804E+06	0.00000E+00	0.00000E+00
0.20224E+04	0.00000E+00	0.00000E+00	0.00000E+00	0.17497E+06	0.00000E+00
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY
	FT	FT	FT			FT	
1	4.00	-27.00	0.00	6.00	0.00	68.41	F
2	4.00	-18.00	0.00	6.00	0.00	68.41	F
3	4.00	-9.00	0.00	6.00	0.00	68.41	F
4	4.00	0.00	0.00	6.00	0.00	68.41	F
5	4.00	9.00	0.00	6.00	0.00	68.41	F
6	4.00	18.00	0.00	6.00	0.00	68.41	F
7	4.00	27.00	0.00	6.00	0.00	68.41	F
8	-4.00	-27.00	0.00	6.00	180.00	68.41	F
9	-4.00	-18.00	0.00	6.00	180.00	68.41	F
10	-4.00	-9.00	0.00	6.00	180.00	68.41	F
11	-4.00	0.00	0.00	6.00	180.00	68.41	F
12	-4.00	9.00	0.00	6.00	180.00	68.41	F
13	-4.00	18.00	0.00	6.00	180.00	68.41	F
14	-4.00	27.00	0.00	6.00	180.00	68.41	F

957.75

Descrip	cription CN-03 (Represents CN-04)			-04)	c	omputed by	JMH		Date	Dec-20
		CN Gate	Monolith			•			-	
		CPGA Inp	out & Output F	Files (Pile Anal	ysis)	Checked by	JRA		Date	Dec-20
		P	APPLIED LOAD	DS						
LOAD	PX	PY	PZ	MX	MY	MZ	OVERSI	RESS		
CASE	K	K	K	FT-K	FT-K	FT-K	COM	TEN		
1	0.0	0.0	664.5	-211.2	6.5	0.0) 1.17	1.17		
2	-137.5	0.0	390.1	-335.3	655.2	-580.0	5 1.33	1.33		
3	-137.5	0.0	420.0	-335.3	490.5	-580.0	5 1.33	1.33		
4	0.0	0.0	1031.2	3182.5	19.7	0.0)			

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.11231E+04
 -0.33699E-05
 0.39790E-12
 -0.22812E-03
 -0.10702E+06
 0.67097E-04

 -0.33699E-05
 0.84618E+03
 0.34210E-04
 -0.46677E+05
 0.18702E-02
 0.45475E-11

 0.39790E-12
 0.34210E-04
 0.17524E+05
 0.56640E-04
 0.14552E-10
 -0.16421E-02

 -0.22812E-03
 -0.46677E+05
 0.56640E-04
 0.82273E+09
 -0.30133E-01
 -0.18626E-07

 -0.10702E+06
 0.18702E-02
 0.14552E-10
 -0.30133E-01
 0.43271E+08
 -0.10021E+00

 0.67097E-04
 0.45475E-11
 -0.16421E-02
 -0.29802E-07
 -0.10021E+00
 0.55240E+08

14 PILES 4 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	4.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	Ο.

PILE CAP DISPLACEMENTS

LOAD						
CASE	DX	DY	DZ	RX	RY	RZ
	IN	IN	IN	RAD	RAD	RAD
1	0.2247E-03	-0.1705E-03	0.3792E-01	-0.3090E-05	0.2358E-05	0.1131E-11
2	-0.1375E+00	-0.2706E-03	0.2226E-01	-0.4906E-05	-0.1584E-03	-0.1261E-03
3	-0.1432E+00	-0.2706E-03	0.2397E-01	-0.4906E-05	-0.2182E-03	-0.1261E-03
4	0.6811E-03	0.2569E-02	0.5885E-01	0.4656E-04	0.7148E-05	0.1761E-11

ELASTIC CENTER INFORMATION

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Description	CN-03 (Represents CN-04)	Computed by JMH	Date Dec-20
	CN Gate Monolith		
	CPGA Input & Output Files (Pile Analysis)	Checked by JRA	Date Dec-20

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES

- * INDICATES PILE FAILURE
- # INDICATES CBF BASED ON MOMENTS DUE TO
- (F3*EMIN) FOR CONCRETE PILES

B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

PILE	F1	F2	F3	M1	M2	MЗ	ALF	CBF	
	K	K	K	IN-K	IN-K	IN-K			
1	-0.3	0.0	49.2	-0.6	-12.0	0.0	0.38	0.10	
2	-0.3	0.0	48.8	-0.6	-11.9	0.0	0.38	0.10	
3	-0.3	0.0	48.4	-0.6	-11.8	0.0	0.38	0.09	
4	-0.3	0.0	48.0	-0.6	-11.7	0.0	0.37	0.09	
5	-0.3	0.0	47.6	-0.6	-11.6	0.0	0.37	0.09	
6	-0.3	0.0	47.1	-0.6	-11.5	0.0	0.37	0.09	
7	-0.3	0.0	46.7	-0.6	-11.4	0.0	0.36	0.09	
8	-0.3	0.0	49.4	0.6	-13.8	0.0	0.38	0.10	
9	-0.3	0.0	49.0	0.6	-13.7	0.0	0.38	0.10	
10	-0.3	0.0	48.6	0.6	-13.6		0.0	0.38	0.10
11	-0.3	0.0	48.2	0.6	-13.5		0.0	0.37	0.10
12	-0.3	0.0	47.7	0.6	-13.4		0.0	0.37	0.09
13	-0.3	0.0	47.3	0.6	-13.3		0.0	0.37	0.09
14	-0.3	0.0	46.9	0.6	-13.2		0.0	0.36	0.09

LOAD CASE - 2

PILE	F1	F2	F3	M1	M2	M3 ALF CBF
	K	K	K	IN-K	IN-K	IN-K
1	-8.8	-0.4	2.2	27.4	-394.1	0.0 0.01 0.31
2	-8.2	-0.4	4.4	27.4	-366.7	0.0 0.03 0.29
3	-7.5	-0.4	6.6	27.4	-339.4	0.0 0.05 0.27
4	-6.9	-0.4	8.8	27.4	-312.0	0.0 0.06 0.26
5	-6.3	-0.4	11.0	27.4	-284.7	0.0 0.08 0.24
6	-5.6	-0.4	13.2	27.4	-257.3	0.0 0.09 0.22
7	-5.0	-0.4	15.4	27.4	-230.0	0.0 0.11 0.20
8	8.4	-0.4	58.3	29.2	378.2	0.0 0.40 0.38
9	7.8	-0.4	54.7	29.2	351.2	0.0 0.37 0.36
10	7.2	-0.4	51.2	29.2	324.2	0.0 0.35 0.33
11	6.5	-0.4	47.6	29.2	297.2	0.0 0.33 0.30
12	5.9	-0.4	44.1	29.2	270.2	0.0 0.30 0.28
13	5.3	-0.4	40.5	29.2	243.2	0.0 0.28 0.25
14	4.7	-0.4	37.0	29.2	216.2	0.0 0.25 0.23

PILE

1

2

3 4

5

6

7

8

9

10

11

12

13

14

PILE

1

2

3

4

5

6

7

8

9

74.9

81.3

87.6

94.0

-8.7

-8.7

-8.7

-8.7

-22.3

-24.0

-25.6

-27.3

0.0

0.0

0.0

0.0

10

11

12

13

14

-0.5

-0.5

-0.6

-0.6

Description CN-03 (Represents CN-04) Computed by ЈМН Date **CN Gate Monolith** CPGA Input & Output Files (Pile Analysis) JRA Checked by Date LOAD CASE -3 F1 F2 F3 M1 М2 MЗ ALF CBF IN-K Κ Κ Κ IN-K IN-K -9.2 6.8 27.4 -417.4 0.0 0.05 0.33 -0.4 -8.6 -0.4 9.0 27.4 -390.0 0.0 0.06 0.32 -7.9 -0.4 11.2 27.4 -362.7 0.0 0.08 0.30 -7.3 -0.4 13.4 27.4 -335.3 0.0 0.09 0.28 -6.7 -0.4 15.6 27.4 -308.0 0.0 0.11 0.26 -6.0 -0.4 17.8 27.4 -280.6 0.0 0.12 0.25 -5.4 -0.4 20.0 27.4 -253.3 0.0 0.14 0.23 58.0 0.0 0.40 0.40 8.8 -0.4 29.2 400.4 0.0 0.37 0.37 8.2 -0.4 54.5 29.2 373.4 0.0 0.35 0.35 7.6 -0.4 50.9 29.2 346.4 6.9 -0.4 47.4 29.2 319.4 0.0 0.32 0.32 -0.4 0.0 0.30 0.30 6.3 43.8 29.2 292.4 40.3 265.4 0.0 0.28 0.27 5.7 -0.4 29.2 5.1 -0.4 36.7 29.2 238.4 0.0 0.25 0.24 LOAD CASE -4 F1 F2 F3 M1 М2 ΜЗ ALF CBF K K K IN-K IN-K IN-K -0.3 0.0 55.2 8.7 -11.8 0.0 0.50 0.13 -0.3 61.6 -13.5 0.0 0.56 0.14 0.0 8.7 -0.4 0.0 67.9 -15.2 0.0 0.62 0.16 8.7 -0.4 0.0 74.3 8.7 -16.8 0.0 0.68 0.17 -0.4 0.0 80.7 8.7 -18.5 0.0 0.73 0.19 -0.5 0.0 87.1 8.7 -20.2 0.0 0.79 0.20 -0.5 0.0 93.4 8.7 -21.9 0.0 0.85 0.21 0.0 0.51 0.13 -0.4 0.0 55.8 -8.7 -17.3 -0.4 0.0 62.1 -8.7 -18.9 0.0 0.56 0.15 0.0 0.62 0.16 -0.5 0.0 68.5 -8.7 -20.6

Project No. 60632162

Dec-20

Dec-20

0.0 0.68 0.18

0.0 0.74 0.19

0.0 0.80 0.21 0.0 0.85 0.22

Description	CN-03 (Represents CN-04)	Computed by	JMH	Date	Dec-20
	CN Gate Monolith			_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	JRA	Date	Dec-20

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	7.8	0.0	48.6	-0.6	-12.0	0.1
2	7.7	0.0	48.2	-0.6	-11.9	0.1
3	7.7	0.0	47.8	-0.6	-11.8	0.1
4	7.6	0.0	47.4	-0.6	-11.7	0.1
5	7.5	0.0	46.9	-0.6	-11.6	0.1
6	7.5	0.0	46.5	-0.6	-11.5	0.1
7	7.4	0.0	46.1	-0.6	-11.4	0.1
8	-7.8	0.0	48.8	-0.6	13.8	-0.1
9	-7.7	0.0	48.4	-0.6	13.7	-0.1
10	-7.7	0.0	48.0	-0.6	13.6	-0.1
11	-7.6	0.0	47.6	-0.6	13.5	-0.1
12	-7.5	0.0	47.1	-0.6	13.4	-0.1
13	-7.5	0.0	46.7	-0.6	13.3	-0.1
14	-7.4	0.0	46.3	-0.6	13.2	-0.1

LOAD CASE - 2

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-8.3	-0.4	3.6	27.0	-394.1	-4.5
2	-7.3	-0.4	5.7	27.0	-366.7	-4.5
3	-6.3	-0.4	7.7	27.0	-339.4	-4.5
4	-5.4	-0.4	9.8	27.0	-312.0	-4.5
5	-4.4	-0.4	11.9	27.0	-284.7	-4.5
6	-3.4	-0.4	14.0	27.0	-257.3	-4.5
7	-2.4	-0.4	16.0	27.0	-230.0	-4.5
8	-17.9	0.4	56.1	-28.8	-378.2	-4.8
9	-16.7	0.4	52.7	-28.8	-351.2	-4.8
10	-15.5	0.4	49.3	-28.8	-324.2	-4.8
11	-14.3	0.4	45.9	-28.8	-297.2	-4.8
12	-13.1	0.4	42.5	-28.8	-270.2	-4.8
13	-11.9	0.4	39.1	-28.8	-243.2	-4.8
14	-10.7	0.4	35.7	-28.8	-216.2	-4.8

Dec-20

Dec-20

-12.8

-13.8

-14.8

12

13

14

0.0

0.0

0.0

80.2

86.5

92.8

8.6

8.6

8.6

24.0

25.6

27.3

1.4

1.4

1.4

Project No. 60632162 Maurepaus Swamp Description CN-03 (Represents CN-04) Computed by ЈМН Date **CN Gate Monolith** CPGA Input & Output Files (Pile Analysis) Checked by JRA Date LOAD CASE -3 PILE РX ΡY ΡZ MX MY ΜZ Κ K IN-K IN-K IN-K Κ -8.0 -0.4 8.2 27.0 -417.4 -4.5 1 2 -7.0 -0.4 10.3 27.0 -390.0 -4.5 3 -6.0 -0.4 12.3 27.0 -362.7 -4.5 4 -5.0 -0.4 14.4 27.0 -335.3 -4.5 5 -4.0 -0.4 16.5 27.0 -308.0 -4.5 6 -3.0 -0.4 18.6 27.0 -280.6 -4.5 7 -2.0 -0.4 20.6 27.0 -253.3 -4.5 8 -18.2 0.4 55.8 -28.8 -400.4 -4.8 -17.0 52.4 -28.8 9 0.4 -373.4 -4.8 -15.8 49.0 -28.8 -346.4 -4.8 10 0.4 11 -14.6 0.4 45.6 -28.8 -319.4 -4.8 -13.4 0.4 42.2 -28.8 -292.4 -4.8 12 38.8 -28.8 13 -12.2 0.4 -265.4 -4.8 14 -11.0 0.4 35.4 -28.8 -238.4 -4.8 LOAD CASE -4 PILE ΡX ΡY ΡZ MX MY ΜZ K K K IN-K IN-K IN-K 8.8 0.0 54.5 8.6 -11.8 -1.4 1 2 9.8 0.0 60.8 8.6 -13.5 -1.4 3 10.8 0.0 67.1 8.6 -15.2 -1.4 4 11.8 0.0 73.4 8.6 -16.8 -1.4 5 12.8 0.0 79.7 8.6 -18.5 -1.4 6 13.8 0.0 86.0 8.6 -20.2 -1.4 14.8 -21.9 7 0.0 92.2 8.6 -1.4 -8.8 55.1 17.3 8 0.0 8.6 1.4 9 -9.8 0.0 61.4 8.6 18.9 1.4 -10.8 0.0 67.7 8.6 20.6 1.4 10 -11.8 0.0 74.0 8.6 22.3 1.4 11

Description		CN-03 (Represents CN-04)		Computed by	ЈМН	Date	Dec-20
		CN Gate Monolith		_		_	
		CPGA Input & Output Files (Concrete Design)	Checked by	JRA	Date _	Dec-20
Input	file:						
	100 MON	NOLITH, TOW EL. 16.13, T	OS EL.10.49; H	P 14X73 PIL	ES		
	200 PRC	OP 29000 729 261 21.4 1.	7 0 ALL				
	300 SOI	IL ES 0.5404 TIP 67.48 0	ALL				
	400 PIN	J ALL					
	500 ALI	LOW H 110 88 492.7 535 2	972.2 994.4 AL	L			
	600 FOV	/STR 1 1 1					
	700 FOV	/STR 1 1 2 3 4					
	800 BAI	TTER 6 All					
	1200 AN	NGLE 180 8 TO 14					
	1300 PI	ILE 1 4 -27 0					
	1400 PI	ILE 2 4 -18 0					
	1500 PI	ILE 3 4 -9 0					
	1600 PI	ILE 4 4 0 0					
	1700 PI	ILE 5 4 9 0					
	1800 PI	ILE 6 4 18 0					
	1900 PI	ILE 7 4 27 0					
	2000 PI	ILE 8 -4 -27 0					
	2100 PI	ILE 9 -4 -18 0					
	2200 PI	ILE 10 -4 -9 0					
	2300 PI	ILE 11 -4 0 0					
	2400 PI	ILE 12 -4 9 0					
	2500 PI	ILE 13 -4 18 0					
	2600 PI	ILE 14 -4 27 0					
	4500 LC	DAD 1 0 0 1063.1 -338 10	.4 0				
	4600 LC	DAD 2 -219.9 0 624.1 -53	6.5 1048.4 -92	9			
	4700 LC	DAD 3 -219.9 0 672 -536.	5 784.7 -929				
	4800 LC	DAD 4 0 0 2268.7 7001.5	43.3 0				
	9000 FC	OUT 1 2 3 4 5 6 7 RR01S.	DOC				
	9100 PF 9200 PL	O ALL B ALL					

Description	CN-03 (Represents CN-04)	Computed by	JMH	Date	Dec-20
	CN Gate Monolith	_			
	CPGA Input & Output Files (Concrete Design)	Checked by	JRA	Date	Dec-20

CPGA RESULTS with Load Factors

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 22-DEC-20 RUN TIME: 12:04:49

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE
- NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.49; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 14 PILES AND 4 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-4.00 ,	-27.00 ,	0.00)
(4.00 ,	27.00 ,	0.00)

PILE PROPERTIES AS INPUT

E I1 I2 A C33 B66 KSI IN**4 IN**4 IN**2 0.29000E+05 0.72900E+03 0.26100E+03 0.21400E+02 0.17000E+01 0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

Maurepaus Swamp Project No. 60632162 CN-03 (Represents CN-04) Description Computed by JMH Date Dec-20 CN Gate Monolith CPGA Input & Output Files (Concrete Design) Checked by JRA Date Dec-20 ESOIL LENGTH LU ES L K/IN**2 \mathbf{FT} FT0.54040E+00 T 0.67480E+02 0.00000E+00 ESOIL (ORIGINAL) RGROUP RCYCLIC K/IN**2 0.54040E+00 0.1000E+01 0.1000E+01 THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -ALL ***** PILE STIFFNESSES AS CALCULATED FROM PROPERTIES 0.23377E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.30221E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.12852E+04 0.00000E+00 THIS MATRIX APPLIES TO THE FOLLOWING PILES -1

Description	ı	CN-03 (Rep	presents CN-04)		Compu	ited by	ЈМН	Date	Dec-20
		CN Gate Monolith								
		CPGA Inpu	it & Output File	s (Concr	ete Design)	Chec	ked by	JRA	Date	Dec-20
	PILE G	EOMETRY AS	INPUT AND/OR	GENERAT	ED					
NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FT	FΤ	FT			FΤ				
1	4.00	-27.00	0.00	6.00	0.00	68.41	P			
2	4.00	-18.00	0.00	6.00	0.00	68.41	P			
3	4.00	-9.00	0.00	6.00	0.00	68.41	P			
4	4.00	0.00	0.00	6.00	0.00	68.41	P			
5	4.00	9.00	0.00	6.00	0.00	68.41	P			
6	4.00	18.00	0.00	6.00	0.00	68.41	P			
7	4.00	27.00	0.00	6.00	0.00	68.41	P			
8	-4.00	-27.00	0.00	6.00	180.00	68.41	P			
9	-4.00	-18.00	0.00	6.00	180.00	68.41	P			
10	-4.00	-9.00	0.00	6.00	180.00	68.41	P			
11	-4.00	0.00	0.00	6.00	180.00	68.41	P			
12	-4.00	9.00	0.00	6.00	180.00	68.41	P			
13	-4.00	18.00	0.00	6.00	180.00	68.41	P			
14	-4.00	27.00	0.00	6.00	180.00	68.41	Ρ			

957.75

APPLIED LOADS

load Case	PX K	РY К	PZ K	MX FT-K	MY FT-K	MZ FT-K
1	0.0	0.0	1063.1	-338.0	10.4	0.0
2	-219.9	0.0	624.1	-536.5	1048.4	-929.0
3	-219.9	0.0	672.0	-536.5	784.7	-929.0
4	0.0	0.0	2268.7	7001.5	43.3	0.0

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.22289E-03	-0.13750E+06	0.14552E-10	0.85265E-12	-0.46435E-05	0.80470E+03
-0.52296E-11	0.16731E-02	0.00000E+00	0.34856E-04	0.42309E+03	-0.46435E-05
-0.16731E-02	-0.29104E-10	0.00000E+00	0.17515E+05	0.34856E-04	0.85265E-12
-0.22352E-07	0.37253E-08	0.81717E+09	0.00000E+00	0.21684E-18	0.00000E+00
-0.80308E-01	0.40354E+08	0.37253E-08	-0.29104E-10	0.16731E-02	-0.13750E+06
0.38519E+08	-0.80308E-01	-0.29802E-07	-0.16731E-02	-0.63665E-11	0.22289E-03

Job Mau	urepaus	Swamp			Proje	ct No. 6063	32162		
Description	(CN-03 (Represe	nts CN-04)		Comput	ed by JI	ИН	Date	Dec-20
	(CPGA Input & C	utput Files (C	Concrete Desi	gn) Check	ed byJ	RA	Date	Dec-20
		14 PILES	4 LOAD CAS	SES					
LOAD CASE	1. N	IUMBER OF FAI	LURES = 0.	. NUMBER OF	' PILES IN 1	TENSION =	0.		
LOAD CASE	2. N	IUMBER OF FAI	LURES = 0.	. NUMBER OF	' PILES IN 1	ENSION =	0.		
LOAD CASE	3. N	IUMBER OF FAI	LURES = 0.	. NUMBER OF	' PILES IN 1	ENSION =	0.		
LOAD CASE	4. N	IUMBER OF FAI	LURES = 14.	. NUMBER OF	' PILES IN T	ENSION =	0.		
*******	******	*****	* * * * * * * * * * * * * *	*****	******	******	*****		
PI	ILE CAP	DISPLACEMENT	S						
LOAD									
CASE	DX	DY	DZ	RX	RY	RZ			
	IN	IN	IN	RAD	RAD	RAD			
1 0.12	265E-02	-0.5016E-08	0.6070E-01	-0.4963E-05	0.7402E-0	0.2645	E-11		
2 -0.52	266E+00	-0.2852E-08	0.3563E-01	-0.7878E-05	-0.1482E-0	02 -0.2894	E-03		
3 -0.55	587E+00	-0.2688E-08	0.3837E-01	-0.7878E-05	-0.1670E-0	02 -0.2894	E-03		
4 0.52	2668-02	-0.10/4E-0/	0.12958+00	0.1028E-03	0.30828-0	14 0.5660.	2-11		
********	******	****	* * * * * * * * * * * *	* * * * * * * * * * * *	******	******	* * * * * *		
	ELAS	TIC CENTER I	NFORMATION						
ELASTIC CEN	NTER IN	PLANE X-Z	Х	Z					
			FT	FT					
			0.00	0.00					

Description	CN-0	03 (Repres	ents CN-04)	-	(Comp	uted by	JMH	Date	Dec-20	
		CN	Gate Mono	lith	-			-		_	
		CPG	A Input &	Output Files	(Concrete D)esign)	Cheo	ked by	JRA	Date	Dec-20
	PII	E FORCES	IN LOCAL	GEOMETRY							
		M1 & M2	NOT AT P	LE HEAD FO	R PINNED E	PILES					
		* INDICA	ATES PILE	FAILURE							
		# INDICA	ATES CBF H	BASED ON MO	MENTS DUE	TO					
			(F3*B	EMIN) FOR C	ONCRETE PI	LES					
		B INDICA	ATES BUCKI	LING CONTRO	LS						
LOAD	CASE -	1									
PILE	F1	F2	F3	Ml	M2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	0.0	0.0	70.0	0.0	5 0	0.0	0 70	0 17			
1	-0.2	0.0	70.1	0.0	5.8	0.0	0.72	0.17			
2	-0.2	0.0	78.1	0.0	5.8	0.0	0.71	0.16			
3	-0.2	0.0	76.9	0.0	5.6	0.0	0.70	0.16			
5	-0.2	0.0	76.1	0.0	5.6	0.0	0.70	0.16			
6	-0.2	0.0	75.4	0.0	5.5	0.0	0.05	0.16			
7	-0.2	0.0	74 7	0.0	5.5	0.0	0.68	0.16			
8	-0.3	0.0	79.2	0.0	7 5	0.0	0 72	0 17			
9	-0.3	0.0	78.5	0.0	7.5	0.0	0.71	0.17			
10	-0.3	0.0	77.8	0.0	7.4	0.0	0.71	0.17			
11	-0.3	0.0	77.1	0.0	7.3	0.0	0.70	0.16			
12	-0.3	0.0	76.4	0.0	7.3	0.0	0.69	0.16			
13	-0.3	0.0	75.8	0.0	7.2	0.0	0.69	0.16			
14	-0.3	0.0	75.1	0.0	7.2	0.0	0.68	0.16			
LOAD	CASE -	2									
DTTE	F1	F2	53	м1	м2	MS	אדבי	CPF			
LIPP	к гт	r z	к го	TN-K	TN-K	TN-K	ALL	CBF			
	10	10	10	110 10	IN It	110 10					
1	-14.7	-0.4	7.5	-15.1	410.2	0.0	0.07	0.43			
2	-14.0	-0.4	13.1	-15.1	390.0	0.0	0.12	0.42			
3	-13.3	-0.4	18.6	-15.1	369.9	0.0	0.17	0.41			
4	-12.6	-0.4	24.1	-15.1	349.7	0.0	0.22	0.41			
5	-11.8	-0.4	29.6	-15.1	329.5	0.0	0.27	0.40			
6	-11.1	-0.4	35.2	-15.1	309.4	0.0	0.32	0.39			
7	-10.4	-0.4	40.7	-15.1	289.2	0.0	0.37	0.38			
8	14.4	-0.4	89.3	-15.1	-402.0	0.0	0.81	0.59			
9	13.7	-0.4	81.6	-15.1	-382.0	0.0	0.74	0.55			
10	13.0	-0.4	73.9	-15.1	-362.0	0.0	0.67	0.52			
11	12.3	-0.4	66.2	-15.1	-342.1	0.0	0.60	0.48			
12	11.6	-0.4	58.5	-15.1	-322.1	0.0	0.53	0.45			
13	10.8	-0.4	50.9	-15.1	-302.1	0.0	0.46	0.41			
14	10.1	-0.4	43.2	-15.1	-282.1	0.0	0.39	0.38			

Job	Maure	paus Swa	amp		-		Proj	ect No.	60632162		
Descri	ption	CN-	03 (Repres	ents CN-04)	-		Comp	uted by	ЈМН	Date	Dec-20
	ĥ	CN CPC	Gate Mono	olith Output Files (_ Concrete [Desian)	Cheo	ked bv	JRA	Date	Dec-20
						.		,			
LOAD	CASE -	3									
PILE	F1	F2	F3	M1	M2	МЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-15.5	-0.4	15.7	-15.1	432.1	0.0	0.14	0.47			
2	-14.8	-0.4	21.2	-15.1	411.9	0.0	0.19	0.46			
3	-14.1	-0.4	26.7	-15.1	391.7	0.0	0.24	0.45			
4	-13.3	-0.4	32.2	-15.1	371.6	0.0	0.29	0.44			
5	-12.6	-0.4	37.8	-15.1	351.4	0.0	0.34	0.44			
6	-11.9	-0.4	43.3	-15.1	331.2	0.0	0.39	0.43			
7	-11.2	-0.4	48.8	-15.1	311.0	0.0	0.44	0.42			
8	15.2	-0.4	88.1	-15.1	-423.3	0.0	0.80	0.61			
9	14.5	-0.4	80.4	-15.1	-403.3	0.0	0.73	0.57			
10	13.8	-0.4	72.7	-15.1	-383.3	0.0	0.66	0.54			
11	13.0	-0.4	65.0	-15.1	-363.3	0.0	0.59	0.50			
12	12.3	-0.4	57.4	-15.1	-343.3	0.0	0.52	0.47			
13	11.6	-0.4	49.7	-15.1	-323.4	0.0	0.45	0.43			
14	10.9	-0.4	42.0	-15.1	-303.4	0.0	0.38	0.40			
LOAD	CASE -	4									
PILE	F1	F2	F3	M1	M2	MЗ	ALF	CBF			
	K	K	К	IN-K	IN-K	IN-K					
1	-0.2	0.0	121.2	0.0	6.8	0.0	1.10	0.25	*		
2	-0.3	0.0	135.3	0.0	7.9	0.0	1.23	0.28	*		
3	-0.3	0.0	149.4	0.0	9.1	0.0	1.36	0.31	*		
4	-0.4	0.0	163.4	0.0	10.3	0.0	1.49	0.34	*		
5	-0.4	0.0	177.5	0.0	11.5	0.0	1.61	0.37	*		
6	-0.5	0.0	191.6	0.0	12.7	0.0	1.74	0.40	*		
7	-0.5	0.0	205.7	0.0	13.9	0.0	1.87	0.43	*		
8	-0.5	0.0	122.7	0.0	13.8	0.0	1.12	0.26	*		
9	-0.5	0.0	136.8	0.0	15.0	0.0	1.24	0.29	*		
10	-0.6	0.0	150.9	0.0	16.2	0.0	1.37	0.32	*		
11	-0.6	0.0	165.0	0.0	17.4	0.0	1.50	0.35	*		
12	-0.7	0.0	179.0	0.0	18.6	0.0	1.63	0.38	*		
			102 1	0 0	10.0	0.0	1 76	0 /1	*		
13	-0.7	0.0	193.1	0.0	19.0	0.0	1.70	0.41			

Description	CN-03 (Represents CN-04)	Computed by	ЈМН	Date	Dec-20
	CN Gate Monolith	-		-	
	CPGA Input & Output Files (Concrete Design)	Checked by	JRA	Date	Dec-20

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	12.7	0.0	77.8	0.0	0.0	0.0
2	12.6	0.0	77.1	0.0	0.0	0.0
3	12.5	0.0	76.4	0.0	0.0	0.0
4	12.4	0.0	75.7	0.0	0.0	0.0
5	12.3	0.0	75.1	0.0	0.0	0.0
6	12.2	0.0	74.4	0.0	0.0	0.0
7	12.1	0.0	73.7	0.0	0.0	0.0
8	-12.7	0.0	78.1	0.0	0.0	0.0
9	-12.6	0.0	77.5	0.0	0.0	0.0
10	-12.5	0.0	76.8	0.0	0.0	0.0
11	-12.4	0.0	76.1	0.0	0.0	0.0
12	-12.3	0.0	75.5	0.0	0.0	0.0
13	-12.2	0.0	74.8	0.0	0.0	0.0
14	-12.1	0.0	74.1	0.0	0.0	0.0

LOAD CASE - 2

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-13.3	-0.4	9.9	0.0	0.0	0.0
2	-11.7	-0.4	15.2	0.0	0.0	0.0
3	-10.0	-0.4	20.5	0.0	0.0	0.0
4	-8.4	-0.4	25.9	0.0	0.0	0.0
5	-6.8	-0.4	31.2	0.0	0.0	0.0
6	-5.2	-0.4	36.5	0.0	0.0	0.0
7	-3.5	-0.4	41.9	0.0	0.0	0.0
8	-28.9	0.4	85.7	0.0	0.0	0.0
9	-26.9	0.4	78.2	0.0	0.0	0.0
10	-25.0	0.4	70.8	0.0	0.0	0.0
11	-23.0	0.4	63.3	0.0	0.0	0.0
12	-21.0	0.4	55.8	0.0	0.0	0.0
13	-19.1	0.4	48.4	0.0	0.0	0.0
14	-17.1	0.4	40.9	0.0	0.0	0.0

Descriptio	on	CN-03 (Repr	esents CN-04)	_		Computed by	ЈМН	Date	Dec-20
		CN Gate Mo	nolith	_		-		-	
		CPGA Input	& Output Files	(Concrete	Design)	Checked by	JRA	Date _	Dec-20
LOAD CA	SE - 3								
PILE	PX	PY	PZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-12.7	-0.4	18.0	0.0	0.0	0.0			
2	-11.1	-0.4	23.3	0.0	0.0	0.0			
3	-9.5	-0.4	28.7	0.0	0.0	0.0			
4	-7.9	-0.4	34.0	0.0	0.0	0.0			
5	-6.2	-0.4	39.3	0.0	0.0	0.0			
6	-4.6	-0.4	44.6	0.0	0.0	0.0			
7	-3.0	-0.4	50.0	0.0	0.0	0.0			
8	-29.5	0.4	84.4	0.0	0.0	0.0			
9	-27.5	0.4	76.9	0.0	0.0	0.0			
10	-25.5	0.4	69.5	0.0	0.0	0.0			
11	-23.6	0.4	62.0	0.0	0.0	0.0			
12	-21.6	0.4	54.6	0.0	0.0	0.0			
13	-19.6	0.4	47.1	0.0	0.0	0.0			
14	-17.6	0.4	39.6	0.0	0.0	0.0			

LOAD CASE - 4

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	19.7	0.0	119.6	0.0	0.0	0.0
2	22.0	0.0	133.5	0.0	0.0	0.0
3	24.2	0.0	147.4	0.0	0.0	0.0
4	26.5	0.0	161.3	0.0	0.0	0.0
5	28.8	0.0	175.2	0.0	0.0	0.0
6	31.0	0.0	189.1	0.0	0.0	0.0
7	33.3	0.0	203.0	0.0	0.0	0.0
8	-19.7	0.0	121.1	0.0	0.0	0.0
9	-22.0	0.0	135.0	0.0	0.0	0.0
10	-24.2	0.0	148.9	0.0	0.0	0.0
11	-26.5	0.0	162.8	0.0	0.0	0.0
12	-28.8	0.0	176.7	0.0	0.0	0.0
13	-31.0	0.0	190.6	0.0	0.0	0.0
14	-33.3	0.0	204.5	0.0	0.0	0.0

Job Maurer	oaus Swamp	Project No.	60632162	_		
Description	CN-03 (Represents CN-04)	Computed by	ЈМН	Date	Dec-20	
	CN Gate Monolith					
Summa	ary of Shear & Moment	Checked by	JRA	Date	Dec-20	
				R	eferences	

Load	V _{u,max}	M u,max
Case	(kip/ft)	(kip/ft)
LC1	0.00	0.00
LC2	0.86	1.19
LC3	0.86	1.19
LC4	0.00	0.00

A TOM

*Note: LC 1 and 4 only have vertical forces,	so there is
no shear or moment on the wall.	

The following calculations are the max shear (Vu) and moment (Mu) on the wall form LC 2 and LC 3:

AECOM Job Maurepaus Swamp Project No. 60632162 CN-03 (Represents CN-04) Computed by Description **CN Gate Monolith** Shear & Moment Check for Wall Checked by * Given Information: 1.50 ft Wall Thickness: 0.25 ft Clear Cover: 0.06 ft Diameter Bar to Start: 0.86 kips per foot Maximum Shear (V_u): Maximum Moment (M_u): 1.19 kip-ft per foot

* Shear Calculations:

φV _c = <u>16649.4</u> <u>16.65</u>	lbs kips	** φVc=16.6 ≥ Vu=0.9	, Shear Capacity OK
d =	1.22 ft		
b =	1 ft sti	rip	
f' _c =	4 ksi		
φ _{shear} =	0.75		
Shear Capacity (ϕV_c):	φ _{shear} * 2 * √f' _c	* b * d	(ACI Eq. 11-3)
Design Shear Stre	ngth (φVn)≥Rec	uired Shear Strength (V _u)	(ACI Eq. 11-1)

* Reinforcement Calculations:

Limit	of Maximum Reinforcement: $0.25 \times \rho_b$ (Design 0 where $\rho_b = 0.0285$ for f' _c = Max Rebar = 0.00713 *b * d	riteria, EM 1110-2-2 4,000psi, fy = 60,000	104, 3-5) Opsi
	Maximum Reinforcement: 0.0071 * b * d =	1.25 in ²]per 1ft strip
	A _{gross} = 1.5 ft * 12 in/ft * 12	in strip = 216.00)]in ²
Limits	of Minimum Reinforcement: 0.005 × Agross =	1.08 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
	(3*√(f' _c) *b*d)/f _y =	0.55 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
	(200*b*d)/f _y =	0.59 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
			7
	Min Reinforcement, temp & shrinkage	0.54 in ²	per 1ft strip, per face
	Min Reinforcement, flexural	0.59 in ²	per 1ft strip, per face

JMH

JRA

Date

Date

Dec-20

Dec-20 References

Job Maure	epaus Swamp	Project No.	60632162		
Description	CN-03 (Represents CN-04) Computed by	ЈМН	Date	Dec-20
	CN Gate Monolith				
Shear	· & Moment Check for Wall	Checked by	JRA	Date	Dec-20
				Re	ferences

* Moment Calculations:

* $T = A_s \times f_y$ * $C = 0.85 \times f'_c \times a \times b$ * Assuming Tension = Compression $\rightarrow A_s \times f_y = 0.85 \times f'_c \times a \times b$ * $\phi Mn = \phi \times T \times (d - (a / 2))$ $= \phi \times A_s \times f_y \times (d - (a / 2))$

* Capacity of Min Flexural Reinforcement:

φM _n =	448.4	kip-in
=	37.37	kip-ft

* Capacity of Maximum Reinforcement:

a = (A_s × f_y) / (0.85 × f'_c × b) = 1.839 in

φMn =	925.4	kip-in	
=	77.12	kip-ft	

FLOODED SIDE

T&S WALL REBAR

F.S. & P.S. WALL REBAR

4

4

44

3" CLR.

(TYP)

4

PROTECTED SIDE

GRADE

The minimum proposed reinforcement for T&S Wall Rebar is #6 @ 9" (A = 0.59 in²) and the minimum proposed reinforcement for F.S. & P.S. Wall Rebar is #6 @ 9"(A=0.59 in²).

Job Maure	paus Swamp	Project No.	60632162		
Description	CN-03 (Represents C	N-04) Computed by	ЈМН	Date	Dec-20
	CN Gate Monolith				
Slab		Checked by	JRA	Date	Dec-20
				Re	eferences

Description	CN-03 (Represents	CN-04) Comp	uted by	ЈМН	Date	e Dec-20
	CN Gate Monolith	<u> </u>				
Slab C	alculations	Chec	ked by	JRA	Date	e Dec-20
						References
	*Note: The followi moment (Mu) on b calculations for th All reactions are to	ng calculations both sides of th le slab can be f aken from the p	represent t e slab for a ound in the binned or fix	he total sl Il load cas "Slab Conc ked result:	hear (Vu) and es. Capacity c Check" tab. s from CPGA.	
		JOB TITLE				2
	AECOM Delivered.	PROJECT/JOB NO.		CALCULATION NO.		
		VERIFIED BY		DATE		
	Slab Calculations	SCALE		SHEET NO.	OF	
					1	
	() Construction Su -> conc. wt -> Surpharac = .	rcharge 15 hsf				
	-7 Assume 9 of length between	trib. piles	F.s.	P.S. 15	-	
	-> Xcore = 151	ic f	Surda. 7. 10f		4.15	
			+ + +	* *	4. <u>5'</u>	
	Flood Side :		surch.	E Mu		
	$V_{u} \longrightarrow R = 4$ $w_{slab} = 4$	8.6 h for UBA .5'(9')(6.35')(.15hd) justab	Vu	*	
	6.slab=[Surek=[Surek= Surek=	37.97 hip .15 hsf)((,15')(9) 14.0(hip	K <u>∕-</u> 3,454 ∕-4,454⁄			
	$V_{4} = 37.97$	+ 14.06 - 48.6	j			
	$V_{\rm U} = 3.43$ h	8				
	$\frac{1.6V_{\rm L}}{9}$	lif61 hip	fe = Vy			

Descrip	tion	CN 02 /Pontoconto CN 0	() Computed by	IML	Data	Dec 20
Descrip	otion	CN-03 (Represents CN-0	4) Computed by	JMH	Date	Dec-20
		CN Gate Monolith				
	Slab C	alculations	Checked by	JRA	Date	Dec-20
					Re	eferences

AECOM Imagine it. Delivered.			CALCULATION NO.	
	COMPUTED BY JH		DATE	
	VERIFIED BY		DATE	
	SCALE		SHEET NO. 3	OF
				TT
$M \rightarrow R =$	48.6 kin 0 4.	25 0		
		10		
wislab =	37.97 kip @ 3.	as O	1	
Surch.=	14.06 kip @ 3.1	45 Đ		
$M_{\rm u} = (37.97)($	3.45) + (14.66) (3	5.125) -	48.6 (4.25)	
$M_{\rm H} = -43.96 h - 100$	re-			_
11 1	K ()			
1.6 ///y/0.33	n-++ = -7.81	h-#= My		
	3 trip length	fe		
Protected Side:	1	In Surth		
	/	1		
		Jusia)	0	
$V_{\rm u} \Rightarrow R = 48.8/$	op from CPGA	1		
w.slab = (4.15)4.5'(9')(.15 hef)	- 18		
C dab = 25.8	2 kil	Ka.115-		-
(uph - /)C	4. 0/435/ 41	1-225-1		++-
Sulan - (.ds/				++
Surch. = 9.56	Kip			++
$V_{1} = 25.82 +$	9.56 - 48.8			
$V_{y} = -13.42$				-
1 (11 = -21.47 k:0	= -2.39 100 =1	4		
1.6 VU 4'	14			
1 >th	e, length			
-	Ing he A LIT	A		
$M_{\rm W} \rightarrow R$	= 48.8 10 0 2.25	X		
tu ela	h = 25.82 Kip (a) 1.115	(T)		

ş

					Re	eferences	
	Slab C	alculations	Checked by	JRA	Date	Dec-20	
		CN Gate Monolith					
Descri	ption	CN-03 (Represents CN-04	4) Computed by	ЈМН	Date	Dec-20	
Job	Maure	paus Swamp	Project No.	60632162			

Job Maure	paus Swamp	Project No.	60632162		
Description	CN-03 (Represents CN-04) C	omputed by	ЈМН	Date	Dec-20
	CN Gate Monolith				
Slab C	alculations	Checked by	JRA	Date	Dec-20
		_		Re	eferences

Deli	PROJECT/JOB NO.			_ CALCULATION NO.	
	COMPUTED BY	24		DATE	_
	VERIFIED BY			SHEET NO	5 ,
	SCALE	1 1 1 1		June 1 Mo.	
		1 10 5-			
$V_{y} = -3.6$	+ 37.97 + d. (0 + 14.51	- 34		_
V					
Vu = 1/	.1 /				
161 = 27	36 K	1111			
1.000 - 27.	30 1 = 3.04	Ne -h	(
	9	16		32.	
	Photos				
	ichigith				
			-		
My ->	R = 3.6 kip (a)	4.15	(-)		
41	1- 27 07 Hu (D)	2115	A		
44	11 57 10 0	2.10	0		
hive	r = 14.5 / kip @	3.145	Ð		
w.go	k = 1.16 kip (9)	2	Ð		
111	A - Las his A	175'	0		
uph	rt - 34 Kup (0)	d.13	Θ		
My = -3.6/1	+15) + (37.97)	3115) + (1)	457/21	5 + (211)	11
- M - A		- C	1. 1	1 (a.16)	
- 1	34) () 75)				
Au = 597	$h - f \neq$				
/u - [55./					
6My = 9	5.53 $h - f = 1$	0.61 Kip-H	$= \Lambda_{i}$		
1 7		Ft	4		
	9				
0					
Protected S.	de:	My		1	
11 - > 0-	EGI KO Par (D)	M (w,sl	ay	
Vy K	- JO.I MIP Tron UI		V	-	
Wislab	= 25.82 Kip (see LCI	cales) V	4	R	
		1	K1.115'7		
Vu = 25.82	2 - 56.1 = -30.	25 Kp	x-1.25-1		
	A Ku			-	
	MAN C 70				
$1.6V_{u} = -49$		Vu Vu			
$1.6V_{u} = -49$	9-79 trib.	At 4			

-

Job	Maure	baus Swamp	Project No.	60632162		
Descript	tion	CN-03 (Represents CN-04) C	Computed by	ЈМН	Date	Dec-20
		CN Gate Monolith				
Slab Calculations		alculations	Checked by	JRA	Date	Dec-20
					Re	eferences

ECO/VI Delivered.	PROJECT/JOB NO.		CALCULATION NO.	
	COMPUTED BY	h	DATE	
	VERIFIED BY		DATE	1
	SCALE		SHEET NO	6OF
A		10' 0		
/nu -> K-	56.1 A (0) d			
wislab =	25.82 K 🕢 J.	125 E		
$M_{\rm H} = (25.82)(1)$	1.125) - (56.1) (J.	45)		
Mu71.36	<u>h+14</u>			
$1.6 M_{\rm W} = -114.17$	h-ft = -12.69	k-ft = My		
9'.	~> trib	12		
	iength			
		E ()5' _ EI	5-6435-	
>. Water to TOW	(pervious)	And		1
-> lone. wt				11.16
\rightarrow h.lat can	be ignored			7.13
-> hiver+		VVV		
-> Uplift, pervic		-		4.5'
-> Assume 9.0	f trib.			
rengin benaci		A T	1	1
- gaic ac .		1	Sudiff. per	ious
		Kwelt-	1. 11.	1
Flood Side !		y vigot		
1 -> 0- 82	k fan (DAA			
w.clab = 37.97	k (see 1 () calce)	P On	635	
Wigate = 2.16	Kip	62115-1	4 86	2.33
hiver = 14.5	7 hip (see LC2 cales)	1-35-		
Upliff 2 4.86	+ 2.33 615 2 22.47 K	p / 425'-1		

Job	Maurep	baus Swamp	Project No.	60632162		
Descript	ion	CN-03 (Represents CN-0	4) Computed by	ЈМН	Date	Dec-20
		CN Gate Monolith				
Slab Calculations		Checked by	JRA	Date	Dec-20	
					Re	eferences

LCOM	Delivered.	PROJECT/JC	B NO.					CALCULA	TION NO.		
		COMPUTED	BY	J	ł			_	DATE		
		VERIFIED BY							DATE	-	
		SCALE	-		_	_	_	Sł	EET NO.	7	_ OF
			-								
11 =	37.97	+ 2.16	+	14 5	7 -	8.2	1-1	22.47			
vų -		1 0.10	+	- 1-	1		-				
11	24.03 K.		-								
Vų –	- noo Mit		-								
114 =	38.45			1 K					++		
1.0 04 -		FL	4.27	Y	20	u			++		
	9 st	1 1	-	14				++	+		
	710	e length	-		+ +		++	++	++		
			-		+++	-	++-	++	++		
M	0 -	82	k.	0	11.15	1A			-		
1.10	K-	0.2	MP	(0)	T.0-3	4					
	Wislab=	37.97	hio	6	2110	A					
	1	11. 57	Inter	0	5.105	A					
	hivert -	- 14.57	Kip	0	3.125	Ø			++	++	
	Ligate =	2.16 1	tip	0	2	Ð	-		+ +		
	1101:61 -	22.47	r'n (2	2 -1	6	-	-			
	Mrint -	22.47	MP 6		3,5	9		-	-		
	+++		-				-				
M (37.97	2110) 4	- (11	(7)	13/1	F) 1	111	Vit	1		14.15
/"y - u		1(25) 1	19	- 1	12.14	21	2.16	1-1	ΤG	<u>5.2</u>	T.ds
	<u> </u>	12-1					-	-	-		
	22 47										
	- 22.47	(3.5)		-						-	
	22.47	(3.5)									
Ma = [55	(3.5) h-ft									
Ma = [55	(3.5) h-ft				0					
Mu = [1.6Mu =	22.47 55 88	(3.5) h-ft h-ft		9.7	78 h	-ft	= M				
- Ma = [1:6Ma =	22.47 55 88 9	(3.5) h-ft h-ft		9.7	78 h	-PE PE	= M	4			
Mu = [1.6 Mu =	22.47 55 88 q	(3.5) h-ft h-ft V trib, len	= gth	9.7	78 h	- fé P é	= M	4			
Mu = [6Mu =	22.47 55 88 4	(3.5) h-ft h-ft 9 tnib, len	= gth	9.7	78_h	-ft Ft	= M	4			
Ma = [1.6 Mu == Pintocion	22.47	(3.5) h-ft h-ft V trib, len	= gth	9.7	78 h	ft	= M My	4			
Ma = [].C.My == Protected	22.47 55 88 9'-	(5.5) h-ft h-ft >trib.len	= gth	9.7	78_h	-ft Pt	= M My	4		46	
Ma = [1.6 Mu == Protected	22.47 55 88 9 51 6	(3.5) h-ft h-ft >trib.len	gth	9.7	78 h	ft Pt	= M My	4	L unist	46	
Ma = [.6 My = Protectes Vy	22.47 55 88 9'-	(3 . 5) h - ft h · ft >> trib, len 55.8]	= gth kip fi	9.7 9.7	78 h	-fe Fe	= M Mu	4	Just Te	ab	F #JK
Ma = [.6Mu == Protected Vu	$\begin{array}{c} 22.47\\ 55\\ 88\\ 9\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(3.5) h-ft h-ft > trib.len 55.8 [55.8]	gth hip fi	9. 9.	28_h 0A 1 calcs	- f {	= M My	4	1 u.sl	ab	F #720 (
Ma = [1.6 Mu = Protected Vu	- 22.47 55 88 9 - - - - - - - - - - - - -	(3.5) h-ft h-ft > trib.len 55.8 [25.82] 1 (1.72)	tip fi tip (se (4.25)	9.: om (1 e L(28 h	- f E FE	= M Mg		Ju.sl Tr	4b	+ ++ JAC

					R	eferences
Slab Calculations		alculations	Checked by	JRA	Date	Dec-20
		CN Gate Monolith				
Descript	tion	CN-03 (Represents CN-04)	Computed by	ЈМН	Date	Dec-20
Job	Maure	paus Swamp	Project No.	60632162		

AECO/M	Delivered.	PROJECT/JOB NO.			CALCULAT	ION NO			
		COMPUTED BY	JH			_DATE_	_		_
		VERIFIED BY				DATE_	MI A		-
		SCALE			SHE	ET NO	698	_ OF	-
$V_{u} =$	25.82	- 55.8 -	3.66						
Vy =	-33.64	kip							
1.64 -	-53.82	1-10							_
r evu -	55.02		-5.98 Kip	ZVy					-
	- 9	Dit long	14	6			++		-
	-	STID. LENGTH							-
									1
Mu ->	R=	55.8 Kp @	2.25	θ					
	1. dala	25.82 10 0	1 1151	A					
	wisian -	23.02 11	01.100				-		
		1. 0	1 1 1 1						
	Uplift =	3.66 Kip 🔘	1.42' E	Ð				-	_
	Uplift =	3.66 Kip Ø	1.42' E	Ð					
<i>M</i> –	Up]ift =	3.66 Kip @	1.42' E		W(4))				
Mu =	Up <i>lift</i> = [25.82](J	3.66 Kip @	1.4J` E .8])(J.J.5)	- (3.66)(1.42)				
$M_{\rm H} =$ $M_{\rm H} =$	Up <i>iff</i> = (25.82)()	3.66 Kip @ .145) - (55 h-17	1.42' E .8)(2.25)	- ([3.66)(1.42)				
Mu = Mu =	Up iff = [25.82](J -75.88	3.66 Kip @ .145) - (55 h-ft	1.42' (.8])(2.45)	- ([3.66)(1.4.)				
$M_{\rm H} =$ $M_{\rm H} =$ $1.6 M_{\rm H} =$	Up <i>if4 =</i> (25.82)(() -75.88 -121.41	3.66 Kip @ .145) - (55 h-ft h-ft -	1.42' (.8)(2.25) -13.49 H-f) - (3.66)(1.4))				
$M_{\rm u} = 1.6 M_{\rm u} = 1.6 $	Up/iff = (25.82)() -75.88 -121.41	3.66 Kip @ .145) - (55 h-fz h-fz =	1.41' (.8)(J.15) -13.49 H-f) - ([3.66 6 = My)(1.4.)				
$M_{\rm U} =$ $M_{\rm U} =$ $1.6 M_{\rm U} =$	Up]if4 = (25.82)(() -75.88 -121.41	3.66 Kip @ .145) - (55 h-ft h-ft -	1.41' (8)(2.05) -13.49 h-f) - ([3.66 6 = My)(1.4.)				
Mu = Mu = I.(L)Mu =	Up <i>iff</i> = (25.82)() -75.88 -121.41	3.66 Kip @ .145) - (55 h-ft h-ft = length	1.41' (.8)(2.25) -13.49 h-f	- ([3.66)(1.42)				
My = My = 1.4 My =	Up iff = (25.82)() -75.88 -121.41	3.66 Kip @ .125) - (55 h-ft h-ft = [> tnb. length	1.41' (.8)(2.45) -13.49 h-f	- ([3.66)(1.42)				
Mu = Mu = 1.4 Mu =	Up <i>iff</i> = (25.82)() -75.88 -121.41 Q	3.66 Kip @ .125) - (55 h-ft h-ft -> trib. length	1.41' (.8)(J.45) -13.49 h-f	- ([3.66)(1.4))				
Mu = Mu = 1.6 Mu =	Up <i>iff</i> = (25.82)(J -75.88 -121.41 q	3.66 Kip @ .145) - (55 h - ft h-ft -	1.41' (8)(2.45) -13.49 h-f	- ([3.66)(1.4.)				
$M_{u} =$ $M_{u} =$ $I \cdot (u M_{u} =$	Up iff = (25.82)() -75.88 -121.41	3.66 Kip @ .145) - (55 h - ft h-ft = [> trib. length	1.41' (.8)(2.25) -13.49 h-f	- ([3.66)(1.42)				
$M_{\rm u} =$ $M_{\rm u} =$ $1.6 M_{\rm u} =$	Up iff = (25.82)() -75.88 -121.41 -121.41	3.66 Kip @ .1d5) - (55 h-ft h-ft = [-> trib. length	1.41' (.8])(2.25) -13.49 h-f	- ([3.66)(1.4.)				
$M_{\rm u} =$ $M_{\rm u} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Up iff = (25.82)() -75.88 -121.41 q	3.66 Kip @ .125) - (55 h-ft h-ft length length	1.41' (.8)(2.45) -13.49 h-f	- ([3.66)(1.4)				
$M_{\rm U} =$ $M_{\rm U} =$ $1.6 M_{\rm U} =$	Up iff = (25.82) (J -75.88 -121.41	3.66 Kip @ .125) - (55 h-ft h-ft -> trib. length	1.41 ' (8) (2.05) -13.49 H-f	- ([3.66)(1.4))				
$M_{u} =$ $M_{u} =$ $I.UM_{u} =$	Up iff = (25.82) (J -75.88 -121.41 -121.41	3.66 Kip Ø .145) - (55 h - ft h-ft = [→ trib. length	1.41 ' (.8) (J.45) -13.49 h-f	- ([3.66)(1.4))				
$M_{u} =$ $M_{u} =$ $I \cdot (u M_{u} =$	Up iff = (25.82)() -75.88 -121.41 Q	3.66 Kip Ø .145) - (55 h - ft h - ft trib. tength	1.41 ' (.8) (J.25) -13.49 h-f	- ([3.66)(1.4.)				

Description	CN-03 (Represents CN-04)	Computed by	JMH	Date	Dec-20
	CN Gate Monolith				
Slab C	alculations	Checked by	JRA	Date	Dec-20
				Re	eferences

60632162

AECOM of Page . Job Project No. Sheet of JH Description Computed by Date Checked by Date Reference Deal + Cooper E80 *NOTE: The shear and moment capacities shown in this report \rightarrow assume 6' span between piles with a simple beam analysis are for b=1' of slab; the calcs on this page show the loading for b=4.71' of slab, so the \rightarrow assume b = 4.71' = with of railcapacities are multiplied by 4.71'. -> assume t= 4.5' -> wt. of concrete -> wt of one axle of Cooper EGO (50 kip) -> Load Factor = L.2 for Usual Case -> wt. of rails (.2 k/fe) . 10 hill - concrete = (4.5')(4.71')(.15kcf) = 3.18 k/ft- rails = .2 k/ft > Dead wit = .2 k/ft Total uniform load = 3.38 k/ft $V_{x} \rightarrow \text{Nead wt} \rightarrow \text{(onarete} = (4.5')(4.71')(6')(.15 \text{ hcf})$ = 19.08 kip $\rightarrow \text{Rails} = (J \text{ k/}\text{Fe})(6')$ = 1.2 kip -> Cooper ESO Axle = 80 hip $V_{y} = 40 + 19.08 + 1.2 = 100.3 \text{ kip}$ $2.1 V_{y} = 220.62 \text{ kip} = V_{y}$ < ϕ Vc = 4.71*50.6 =238.33 kip -- OK M,train = P*L/4 = (80*6)/4 = 120 k-ft M,uniform = wL^2/8 = (3.38*6^2)/8 = 15.21 k-ft M,total = 2.2*135.21 k-ft = 297.45 k -ft < φMn = 4.71*344.97 =1624.81 kip-ft -- OK

AECOM Job Maurepaus Swamp Project No. 60632162 Description CN-03 (Represents CN-04) Computed by JMH **CN Gate Monolith** Slab Conc. Check Checked by JRA * Given Information: 4.50 ft Slab Thickness: Slab Width: 12.00 ft Clear Cover: 0.75 ft 0.09 ft Diameter Bar to Start: 1.13 ft Diameter of Pile: Load Fact.

Maximum Pile Reaction: 204.50 kips 1 204.50 kips *From Factored CPGA Results Maximum Shear: 5.98 kips 10.61 kip-ft Maximum Moment (Top): 13.49 kip-ft Maximum Moment (Bottom): 0.75 (ACI 318) φ_{shear} = 0.9 (ACI 318) ϕ_{moment} = 60 ksi f_{y, rebar} =

Date

Date

Dec-20

Dec-20

References

* Shear Calculations:

1- Shear Capacity:

Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u)

f'_c =

4 ksi

Maurepaus Swamp Project No. 60632162 Job Description CN-03 (Represents CN-04) Computed by JMH Date Dec-20 **CN Gate Monolith** Slab Conc. Check Checked by JRA Dec-20 Date References 2- Punching Shear Capacity (ACI 318-14 Table 22.6.5.2): Vc = minimum value = Eq. a: $4 \times J(f'_c) \times b_0 \times d$ for $\beta_c < 2.0$ Eq. b: $(2 + (4 / \beta_c)) \times J(f'_c) \times b_0 \times d$ for $\beta_c > 2.0$ Eq. c: $((a_s \times d) / b_0 + 2) \times J(f'_c) \times b_0 \times d$ b₀ / d effect based on a_s (interior column: $a_s = 40$, edge column: $a_s = 30$, corner column: $a_s = 20$) d for piles = 44.203 in (Slab thickness - 9" pile embed - cover - 0.5d_{bar}) where β_c = Long side / Short side = b_0 = Perimeter of Critical Section = $\pi^*(D_{pile} + d)$ = 181.593 a_s = 20 (worst case - corner column) Vc = minimum value = Eq. a: 2030.68 kips 3046.02 kips Eq. b: 3486.86 kips Eq. c: φV_c = 1523.01 kips Check corner pile failure to edge of slab: $D_{pile}/2+d/2 =$ 2.41 ft /2 + d/2 D_{pile} Diameter of corner failure = 2.408 + 2 ft 4.41 ft 2.00 Dia. punching shear calc above = 4.82 Diameter of punching shear calculation is smaller than the diameter of this corner failure area. Therefore, no recheck of corner punching failure is required. φ Vc used in design = 50.59 kips ** φVc = 50.6k≥Vu = 6k, Shear Capacity OK Maximum Pile Reaction = 204.50 ** φVc=1523k≥ Vu=205k, Punching Shear Capacity OK

Job Mauro	epaus Swamp	Project No.	60632162	-	
Description	CN-03 (Represents C	N-04) Computed by	JMH	Date	Dec-20
	CN Gate Monolith				
Slab Conc. Check		Checked by	JRA	Date	Dec-20
				Re	ferences

3- Deep Beam One-Way Shear Capacity (ϕV_{c1}):

For $(w/d) \ge 1.0$, a one-way (normal) shear investigation with loads outside the critical section (located at a distance d from the face of the column, b = footing width) and

$$v_c = 1.9\sqrt{f'_c} + 2500\rho_w \left(\frac{V_u d}{M_u}\right) \ge 2\sqrt{f'_c}$$
 (ACI Eq. 11-5)

which reduces for $\rho_w \approx 0.002$ and 3,000 psi $\leq f_c' \leq 4,000$ psi to $v_c = 1.9\sqrt{f_c'} + 0.1\sqrt{f_c'} (V_u d/M_u) \geq 2\sqrt{f_c'}$.

For (w/d) < 1.0, $1.0 > M_u/V_u d > 0$; $\infty > V_u d/M_u \ge 1.0$ (no limits on $M_u, V_u d$, other than above)

$$v_c = \left(\frac{d}{w}\right) \left[3.5 - 2.5\left(\frac{M_u}{V_u d}\right)\right] \left[1.9\sqrt{f_c} + 0.1\sqrt{f_c}\left(\frac{V_u d}{M_u}\right)\right]$$

$$\leq 10\sqrt{f_c} \quad (\text{ACI Eq. 13-2})$$

* Reinforcement Calculations:

Limit of Maximum Reinforcement: 0.2	25 x ρ _b (Design Cr	iteria, EM 1110-2-2	104, 3-5)
where $\rho_{\rm b}$ =	0.0285 for f'c = 4	,000psi, fy = 60,000	Dpsi
Max Rebar =	0.00713 *b * d		
Maximum Reinforcement:	0.0071 * b * d =	3.80 in ²	per 1ft strip
A _{gross} = 4.	5 ft * 12 in/ft * 12 i	in strip = 648.00	lin ²
Limits of Minimum Reinforcement:	0.005 x Agross =	3.24 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
(3	3*√(f' _c) *b*d)/f _y =	1.69 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
	(200*b*d)/f _y =	1.78 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
			_
Min Reinforcement,	temp & shrinkage:	1.62 in ²	per 1ft strip, per face
Min Reinfo	rcement, flexural:	1.78 in ²	per 1ft strip, per face

					Re	ferences
Slab Conc. Check		Checked by	JRA	Date	Dec-20	
		CN Gate Monolith				
Descrip	tion	CN-03 (Represents CN	-04) Computed by	JMH	Date	Dec-20
Job	Maure	paus Swamp	Project No	60632162	-	

* Moment Calculations:

* T = $A_s \times f_y$ * C = 0.85 x f'_c x a x b * Assuming Tension = Compression \longrightarrow A_s x f_y = 0.85 x f'_c x a x b * ϕ Mn = $\phi \times T \times (d - (a / 2))$ = $\varphi \times A_s \times f_y \times (d - (a / 2))$ PROTECTED SIDE FLOODED SIDE * Capacity of Min Flexural Reinforcement: 40 1.777 in² A_s = 4 60 ksi f_y = 4 ksi f'_c = ₫ ⊿ b = 1 ft strip 4 3.703 d = 4 4 0.9 $\varphi_{moment} =$ T&S SLAB REBAR TOP & BOT $a = (A_s \times f_y) / (0.85 \times f'_c \times b)$ SLAB REBAR 2.614 in = GRADE 4 4139.6 kip-in HOOK BARS FULL $\phi M_n =$ DEPTH OF SLAB 344.97 kip-ft = 4" CLR. (TYP) * Capacity of Maximum Reinforcement:

3.799 in²

3.70

0.9

60 ksi

4 ksi

1 ft strip

A_s = f_y =

f'_c =

b =

d =

 $a = (A_s \times f_y) / (0.85 \times f'_c \times b)$ 5.587 in

 ϕ_{moment} =

=

=

φMn =

The minimum proposed reinforcement for to T&S Slab Rebar is #9 @ 6"(A = 2.0 in2) and the minimum proposed reinforcment for Top & Bot Slab Rebar is #9 @ 6"(A =2.0 in2).

scription	CN-03 (Represents CN-04) Computed by	ЈМН	Date	Dec-20
	CN Gate Monolith			
Slab C	alculations Checked by	JRA	Date	Dec-20
				References
	*Note: The following calculations represent the moment (Mu) on both sides of the slab for all calculations for the slab can be found in the "s	e total shear (V load cases. Cap 51ab Conc Check	'u) and acity K" tab.	
		CALCULATION NO.		
	COMPUTED BY / /	DATEDATE		
	SCALE	SHEET NO. 9	OF	
	• Shear 4 Moment on Pilaster			
	> Accurate spening is so 13 will (this	10math - 416 51')		
	Assume guice of comparis y to be control of the	10.971 11.007		
	Pilaster are 4 x 4			
	\rightarrow Wall step height = $7.13 - 11$			
	(i) $V_{i} \rightarrow V_{i} (X_{i}) (H^{2}) (trip length)$			
	$= \frac{1}{2} \left(.0614 \text{ hcf} \right) \left(44.56 \right)$			
	=(23.94hip)1.6			
	$V_{\rm u} = 38.31 hip$			
	$(D_{M_{4}} \rightarrow V_{u}(H_{3}) = \beta 8.3(\kappa)(4.15)$			
	M - 51 00 H-ft			
	<u> </u>			

Job <u>M</u>	aurepaus Swamp	Project No	. 60632162		
Description	n GATE SUPPORT STRU	ICTURES Computed by	yJMH	Date	Dec-20
	CN Gate Monolith				
S, M & T C	heck for Pilaster River Road G	ate Checked by	/JRA	Date	Dec-20
				Refe	rences
* Given In	<u>formation:</u>				
	Pilaster Width:	4.00 ft			
	Pilaster Thickness:	4.00 ft			
	Clear Cover:	0.33 ft =	4.00 in		
	Diameter Bar to Start:	0.08 ft =	1.00 in		
	Stirup Bar Dia:	0.05 ft =	0.625 in		
	Maximum Shear (V _u):	38.31 kips per	foot		
	Maximum Moment (M _u):	52.99 kip-ft pe	r foot		
Gate	Wt. Induced Moment (Mugate):	N/A kip-ft pe	r foot		
	Maximum Torsion (T _u):	0 kip-ft	*Center line of la	tches are at cente	er of pilaster, so Tu =
	Φshoon =	0 75 (ACT 318	3)		
	(D	0.9 (ACT 318			
		0 75 (ACT 318			
	f	60 ksi			
	'y, rebar f' =	4 ksi			
	1 c -				
* Shear Co	alculations:				
D	esign Shear Strength (φV _n)≥F	equired Shear Strength	(V _u)	(ACI Eq. 11-1)	
S	hear Capacity (φV _c): φ _{shear} * 2	*√f' _c * b * d		(ACI Eq. 11-3)	
	$ \phi_{shear} = 0.75 $ $ f'_c = 4 $ b = 4 d = 3.63	ksi ft strip ft 43.50) in		
Г	φV _c = 198085.1 lbs				
	198.09 kips	** φVc=	198.1 ≥ Vu=38.3,	Shear Capacity	ок

A=	COM

Maurepa	aus Swamp	Project No.	60632162		
tion	GATE SUPPORT STRUCTUR	RES Computed by	JMH	Date	Dec-20
	CN Gate Monolith				
r Check fo	or Pilaster River Road Gate	Checked by	JRA	Date	Dec-20
				Refer	ences
orcement	<u>Calculations:</u>				
imit of M	aximum Deinforcement: 0.25	x o. (Decion Crit	eria EM 1110-2	2-2104 3-5)	
	where a -	0.0285 for f' = 4.0	00nai fy - 60 (-2107, 5-5) 200nai	
	where p _b -	0.0205 for f c = 4,0	oopsi, ty = 60,0	Joopsi	
	Max Rebar =	0.00713 ^b ^ d			
Μ	aximum Reinforcement:	0.0071 * b * d =	14.88 in ²	per 2ft strip	
	Across = 4 ft *	12 in/ft * 48 in strip	= 2304	.00 in ²	
	yi 033				
imits of N	linimum Reinforcement:	0.003 × Agross =	6.91 in ²	(EM 1110-2-2	104, 2.9.3, temp. & shrinkage)
	((3*√(f' _c) *b*d)/f _y =	6.60 in ²	(ACI 318-14, 9.6.1	.2, min for flexural members)
		(200*b*d)/f _y =	6.96 in ²	(ACI 318-14, 9.6.1	.2, min for flexural members)
	Min Reinforcement	r, temp & shrinkage:	3.46 in ²	per 2ft strip, pe	er face
	Min Reinf	orcement, flexural:	6.96 in ²	per 2ft strip, pe	er face
	Maurepa tion Check for prcement imit of M	Maurepaus Swamp tion GATE SUPPORT STRUCTUR CN Gate Monolith Check for Pilaster River Road Gate orcement Calculations: imit of Maximum Reinforcement: 0.25 : where ρ_b = Max Rebar = Maximum Reinforcement: Agross = 4 ft * mits of Minimum Reinforcement: Min Reinforcement:	Maurepaus SwampProject No.tionGATE SUPPORT STRUCTURESComputed by CN Gate MonolithCheck for Pilaster River Road GateChecked byorcement Calculations:imit of Maximum Reinforcement: $0.25 \times \rho_b$ 0.0285(Design Critic (Design Critic) where $\rho_b =$ imit of Maximum Reinforcement: 0.0285 0.00713for $f'_c = 4,0$ (Design Critic) where $\rho_b =$ 0.00713 * b * dMaximum Reinforcement: 0.0071 * b * d = $b \times d =$ $A_{gross} = 4$ ft * 12 in/ft * 48 in stripmits of Minimum Reinforcement: $0.003 \times Agross =$ $(3*J(f'_c) * b*d)/f_y =$ $(200*b*d)/f_y =$ Min Reinforcement, temp & shrinkage: Min Reinforcement, flexural:	Maurepaus SwampProject No.60632162tionGATE SUPPORT STRUCTURESComputed byJMHCN Gate MonolithChecked byJRACheck for Pilaster River Road GateChecked byJRAorcement Calculations:imit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2where ρ_b = 0.0285 for f'_c = 4,000psi, fy = 60,0000000000000000000000000000000000	Maurepaus SwampProject No.60632162tionGATE SUPPORT STRUCTURESComputed byJMHDateCN Gate MonolithChecked byJRADateCheck for Pilaster River Road GateChecked byJRADateprecement Calculations:imit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5)Where $\rho_b = 0.0285$ for $f'_c = 4,000$ psi, fy = 60,000psiMax Rebar = 0.00713 *b * dMaximum Reinforcement: 0.00713 *b * dMaximum Reinforcement: 0.0071 * b * d =14.88 in ² per 2ft strip $A_{gross} = 4$ ft * 12 in/ft * 48 in strip =2304.00 in ² (EM 1110-2-2mits of Minimum Reinforcement: $0.003 \times Agross = 6.91$ in ² (ACI 318-14, 9.6.1 (200*b*d)/fy =6.600 in ² Min Reinforcement, temp & shrinkage: 3.46 in ² per 2ft strip, pa per 2ft strip, pa per 2ft strip, pa per 2ft strip, paPer 2ft strip, pa per 2ft strip, pa per 2ft strip, pa

* Moment Calculations:

* T =
$$A_s \times f_y$$

- * Assuming Tension = Compression \longrightarrow $A_s \times f_y = 0.85 \times f'_c \times a \times b$
- * φ Mn = $\varphi \times T \times (d (a / 2))$
- = $\varphi \times A_s \times f_y \times (d (a / 2))$

Job Mauro	A spaus Swamp	Project No.	60632162	-		
Description	GATE SUPPORT STRUCTURES	Computed by	JMH	Date	Dec-20	
	CN Gate Monolith					
S, M & T Chec	for Pilaster River Road Gate	Checked by	JRA	Date	Dec-20	
				Refe	rences	

* Capacity of Min Flexural Reinforcement:

Min reinforcement is sufficient.

* Capacity of Maximum Reinforcement:

φMn =	32749.1	kip-in
=	2729.09	kip-ft

** φMn=2729.1 ≥ Mu=53, Section OK

Maurepas Swamp

PI-WALL SECTIONS

KCS-1

AECOM Project: 60632162

Foundation, Wall & Slab

Computed by:	AML	Checked by:	JMH
Date:	Dec-20	Date:	Dec-20

AECO	Μ					
Job	Maurepas	Swamp	Project No.	60632162		
Description	PI-WALL S	ECTIONS	Computed by	AML	Date	Dec-20
	KCS-1		-			
	Wall Geme	etry	Checked by	JMH	Date	Dec-20
					R	eferences
WALL GEOME	TRY:			FLOOD SIDE	Ē	PROTECTED SIDE
Top of Wall Fl	16.13			TOW EL		×
100 Yr. Water El.		NAVD88			h4	z
10 Yr. Water El.		NAVD88		SWL 💆		×
Top of Slab EL.	. 12.89	NAVD88				
H=	6.24	ft.		GRADE		
h1=	3.24	ft.		표		$\langle -$
h2=	3.00	ft. (Base Slab Height)		6		GRADE
h3=	3.24	ft. (P.S. Soil Height)		Ĕ		<u>د</u>
h4=	0.00	ft.		*		
h5=	3.24	ft. (F.S. Soil Height)		얻		
B=	10.00	ft. (Base Slab Width)				
b1=	1.50	ft. (Wall Stem Width, top)		b5		
b2=	5.75	ft. (F.S. Slab Width)				
b3=	1.50	ft. (Wall Stem Width, bottom)				
b4=	2.75	ft. (P.S. Slab Width)		B	2 12 17 12 12 12 12 12 12 12 12 12 12 12 12 12	B/2 b4
b5=	2.00	ft. (F.S. Pile Row Edge Space)		K	В	X
b6=	6.50	ft. (Sheet Pile Edge Space)				
BAT=	0.00	(Wall Batter, N/A)				
PS Grade =	16.13	NAVD88 (Average of PS soil for all)	PI-WALL CRO	SS-SECTION		
		1	<u>Notes:</u> 1	l) positive 'Y' axi	s is into page	
Monolith Length =	20.3]ft	2	2) pile batters vai	ry from those	shown
		1		in diagram		
Bottom Of Slab =	9.89	NAVD88				

In this report, white boxes are for input data, and colored boxes are calculated values.

KCS-1.xlsm

Job	Maurepas Swamp	Project No. 60632162		
Description	PI-WALL SECTIONS	Computed by AML	Date	Dec-20
	KCS-1			
	Assumptions	Checked by JMH	Date	Dec-20
				References
Ur	nit Weight of Storm Water =	0.0624 kcf		
	Wet Unit Weight of Soil =	0.1200 kcf		
	Sat Unit Weight of Soil =	0.0576 kcf		
	Unit Weight of Concrete =	0.1500 kcf		
	Impact Load =	0.0000 k/ft		
	FS Wind force above SWL=	0.0500 ksf		
Constr	ruction Surcharge Pressure =	0.2500 ksf		
Unbalanced	d Load for Stability Analysis:			
	F _{cap} (k/ft) =	0.00 (100y SWL Case; Force acts at bottom of slab)		
	F _{cap} (k/ft) =	0.00 (Water to TOW Case; Force acts at bottom of s	slab)	
	K _o , Granular fill =	0.95 (for lateral soil forces)		
Ass	umed Reinforcement Cover =	0.33 ft		
	Assumed Wall $d_{bar} =$	0.08 ft		

Job Maure	epas Swamp	Project No. 6063216	2	
Description	PI-WALL SECTIONS	Computed by AML	Date	Dec-20
KCS-1	1			
Load	Cases	Checked by JMH	Date	Dec-20
			R	eferences

No. of Load Cases 3 Update

No.	DCD LC No.	Description	FS Water El.	PS Water El.	Pile design Over Stresses
1	1a	Construction Surcharge	9.89	9.89	1.17
2	2a	Water to TOW(impervious cutoff)	16.13	9.89	1.33
3	2b	Water to TOW(pervious cutoff)	16.13	9.89	1.33

Note: Impact load is not applicable for this section, so it is excluded from the load combinations.

Note: Forces induced by 10y water elevation are not applicable for this section, so they are excluded from the load combinations.

Note: After inspection, it is discovered that OBE does not govern and can be eliminated from load combinations

Job Maurer	bas Swamp	Project No.	60632162	-	
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
KCS-1				-	
Founda	ation Load Calculation	Checked by	JMH	Date	Dec-20
				F	References

PI Areas & Lengths

* Input all areas, lengths & coordinates from the CAD file for the specific PI wall section. The center of the coordinate system is the corner of the flood side wall. Positive angle's direction is CCW.

	A (ft ²)	X_{cen}	Y_{cen}
Wall	30.59	1.41	-3.83
Slab	197.14	2.70	-3.53
FS Slab	107.85	4.90	-3.04
PS Slab	58.71	-0.68	-4.30
Imp. Uplift	123.10	4.51	-3.12
Per. Uplift	197.14	4.47	-3.13

F.S.

	L (f†)	X_{cen}	Y_{cen}
Leg A-FS	5.88	0.00	2.94
Leg A-PS	6.22	-1.50	2.77
Leg B-FS	14.17	3.04	-6.40
Leg B-PS	14.51	1.61	-6.89

Weight:

Wall stem weight = $A_{Wall} \times H_{Wall} \times \gamma_{conc.}$ Wall stem weight = 14.86 (kips)

X_{cen} =	1.41
Y _{cen} =	-3.83

Base slab weight = $A_{Slab} \times H_{Slab} \times \gamma_{conc.}$ Base slab weight = 88.71 (kips)

TOW

-6.26

2.94

Job	Maurepa	as Swamp		. Р	roject No.	6063	2162			
Desc	ription	PI-WALL SECTIONS			Cor	nputed by	AN	۸L	Date	Dec-20
	KCS-1									
	Founda	tion Load Calculation			. CI	hecked by	JN	1H	Date	Dec-20
			C .: 1 . F.	() ()	<u> </u>					References
			<u>5011 FC</u>	brce (Dry a	<u>Sat.):</u>	1				
					PS Soil					
			Water EL.	FS Soil EL.	EL.	-				
		Dry	9.89	16.13	16.13	-				
		Top of Wall EL.	16.13	16.13	16.13					
		F.S. soil weight	= A _{FS,Slab} x	$H_{FS,Soil} \times \gamma_{soil}$	1					
		F.S. s	oil weight =	41.93	(kips)	Dry				
				20.13	(kips)	TOW				
					1					
			X _{cen} =	4.90		Dry		Y _{cen} =	-3.04	
				4.90		тоw			-3.04	
		P.S. soil weight	= A _{PS,Slab} x	$H_{PS,Soil} imes \gamma_{soil}$						
		P.S. s	oil weight =	22.83	(kips)	Dry				
				22.83	(kips)	тоw				
			X _{cen} =	-0.68		Dry		Y _{cen} =	-4.30	
				-0.68		тоw			-4.30	
					•					
		F.S. soil lat. for	rce/ft = 0.5	$K_0 \gamma_{soil} H_{Soil}^2$	_					
		F.S. soil lat.	force/ft =	-2.22	(kip/ft)	Dry				
				-1.07		тоw				
					-					
		Side A		Side	в		Both			
	F _x side A	A Side A V	F _x side B	F _y side B	Side B	Side B	sides Z.	M×	My	Mz
	(kips)	Side riv _{cen}	(kips)	(kips)	X _{cen}	Y _{cen}				
Dr	y -13.05	2.94	-28.50	-13.29	3.04	-6.40	-2.08	-27.65	86.43	-184.46

P.S. soil lat. force/ft = 0.5 $K_0 \gamma_{soil} H_{Soil}^2$ P.S. soil lat. force/ft = 2.22 (kip/ft) Dry 2.22 (kip/ft) TOW

-6.38

-13.68

		Side A		Side	B		Both			
	F _x side A	Side A V	F_x side B	F _y side B	Side B	Side B	cidor 7	M×	My	Mz
	(kips)	Side A 7 _{cen}	(kips)	(kips)	X_{cen}	Y_{cen}	Sides Z _{cen}			
Dry	13.80	2.77	29.19	13.61	1.61	-6.89	-2.08	28.31	-89.42	184.77
тоw	13.80	2.77	29.19	13.61	1.61	-6.89	-2.08	28.31	-89.42	184.77

3.04

-6.40

-2.08

-13.27

41.49

-88.54

Job	b Maurepas Swamp					roject No.	6063	2162		
Descri	ption	PI-WALL SECTIONS			Computed by		AML		Date	Dec-20
	KCS-1									
	Foundati	on Load Calculation			С	hecked by	JN	н	Date	Dec-20
										References
			X _{cen} =	0.00		10y & 100	у	Y _{cen} =	-3.04	
	4.90					TOW			-3.04	
	F.S. water lat. force = $0.5 \gamma_{water} H_w$									
					(kip/ft)	10y				
		F.S. water	lat. force =	0.00	(kip/ft)	100y				
				-1.21	(kip/ft)	TOW				
		Side A		Side	B		Poth			
	F _x side A	Side A V	F_x side B	F _y side B	Side B	Side B	sides 7	M×	My	Mz
	(kips) (kips) (kips)			X _{cen}	Y _{cen}	Sides Z _{cen}				
10y	10y									
100y	100y 0.00 2.94 0.00 0.00		3.04	-6.40	3.30	0.00	0.00	0.00		
тоw	-7.14	2.94	-15.60	-7.28	3.04	-6.40	-2.08	-15.13	47.31	-100.97

Wind Force:

	Wind force = 0.05 ksf x monolith height											
		Side A		Side	B		Both					
	F _x side A	Side A V	F_x side B	F _y side B	Side B	Side B		My	Mz			
	(kips)	Side A 7 _{cen}	(kips)	(kips)	X_{cen}	Y_{cen}	Sides Z _{cen}					
Const.	1.94	2.77	4.10	1.91	1.61	-6.89	-3.12	5.97	-18.86	25.97		
Dry	0.00	2.94	0.00	0.00	3.04	-6.40	-6.24	0.00	0.00	0.00		
100y	-4.74	2.94	-10.36	-4.83	3.04	-6.40	1.83	8.81	-27.56	-67.03		
10y												

			7	Vave Force:						
	Side A Side B						Both			
	F_x side A	Side A V	F_x side B	F _y side B	Side B	Side B	cidor 7	M×	Μ _y	Mz
	(kips)	Side A 7 _{cen}	(kips)	(kips)	X_{cen}	Y_{cen}	Sides Z _{cen}			
10y										
100y	-0.69	2.94	-1.51	-0.70	3.04	-6.40	-0.35	-0.25	0.77	-9.77
тоw	-0.77	2.94	-1.68	-0.78	3.04	-6.40	-1.44	-1.13	3.54	-10.88

Job	Maurep	as Swamp	Project No.	60632162	-	
Desc	ription	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1					
	Founda	tion Load Calculation	Checked by	JMH	Date	Dec-20
					1	References

Surcharge Force:

	Surcharge force = 0.25 ksf * F.S./P.S. area									
	F _z (kips)	X_{cen}	\mathbf{y}_{cen}	M×	My					
F.S.	26.96	4.90	-3.04	-81.96	-132.11					
P.S.	14.68	-0.68	-4.30	-63.11	9.98					

			<u>Unb</u>	alanced For	<u>ce:</u>					
	Side A Side B									
	F_x side A	Side A V	F _x side B	F _y side B	Side B	Side B	aidea 7	M×	My	Mz
	(kips)	Side A 7 _{cen}	(kips)	(kips)	X_{cen}	Y_{cen}	Sides Z _{cen}			
10y										
100y	0.00	0.00	0.00	0.00	3.04	-6.40		0.00	0.00	0.00
тоw	0.00	0.00	0.00	0.00	3.04	-6.40		0.00	0.00	0.00

Impact Force:

Impact force =	0	ksf	x	monolith	length
----------------	---	-----	---	----------	--------

	Side A		Side	B		Both			
F _x side A	Side A V	F_x side B	F _y side B	Side B	Side B		M×	My	Mz
(kips)	Side A 7 _{cen}	(kips)	(kips)	X_{cen}	Y_{cen}	Sides Z _{cen}			
0.00	2.94	0.00	0.00	3.04	-6.40	-6.24	0.00	0.00	0.00

Uplift Force:

Impervious

	Uplift force = $A_{uplift} \times H_w \times \gamma_{water}$											
	Fz (kips) X _{cen} Y _{cen} M _x M _y											
10y	y la											
100y	75.97	4.51	-3.12	-237.03	-342.63							
тоw	TOW -47.93 4.51 -3.12 149.55 216.18											
	Pervious											

Uplift force = $A_{uplift} \times H_w \times \gamma_{water}$

	F _z (kips)	X_{cen}	\mathbf{y}_{cen}	M×	My
10y					
100y	60.83	4.47	-3.13	-190.40	-271.91
тоw	-38.38	4.47	-3.13	120.13	171.56

Job Maurepas Swamp					Project No. 60632162				
Description	Description PI-WALL SECTIONS			Comp	uted by	AML	Date	Dec-20	
	KCS-1								
Shear &	Moment Calculatio	n on Wall		. Chee	cked by	JMH	Date	Dec-20	
Note: Shear is	calculated at distan	ce d from	the bottom	of the wo	all		Ref	<u>erenc</u> es	
	d = wall thicknes	ss - cover	- (1/2)d _{bar} =	1.13	f†				
	Ele	vation of	distance d =	14.02	NAVD	88			
		<u>Soil F</u>	orce (Dry & s	5at.):	-				
		Water		PS Soil					
		EL.	FS Soil EL.	EL.					
	Dry	9.89	16.13	16.13					
	Top of Wall EL.	16.13	16.13	16.13					
F.S. soil lat.	F.S. soil lat. fo	rce at d = the wall = M = F M =	-0.25 -0.12 -0.60 -0.29 5 _{soil} × H _{5oil} /3 0.65 0.31	(kip/ft) (kip/ft) (kip/ft) (kip/ft) (k-ft/ft) (k-ft/ft)	Dry <u>FL</u> TOW Dry TOW Dry TOW	<u>GRADE</u>	BAT	<u>ROTECTED SIDE</u>	
	P.S. soil lat. for P.S. soil lat. for	rce = 0.5 k rce at d =	C ₀ γ _{soil} (H _{Soil}) ² 0.25 0.25	(kip/ft) (kip/ft)	Dry TOW	K₀ x W₅	Soil X H _{soil}	<u>``</u>	
P.S. soil lat.	force at bottom of	the wall = M = F	0.60 0.60	(kip/f†) (kip/f†)	Dry TOW				
		M =	-0.65 -0.65	(k-ft/ft) (k-ft/ft)	Dry TOW				

ob Maurep	as Swamp			Pro	ject No.	60632162		
Description	PI-WALL SECTIO	NS		Comp	uted by	AML	Date	Dec-20
	KCS-1							
Shear 8	Moment Calculatio	n on Wall		Che	cked by	ЈМН	Date	Dec-20
				-			Re	<u>ferenc</u> es
		<u>Soi</u>	I Force (SWl	<u>.):</u>	-			
		Water		PS Soil				
		EL.	FS Soil EL.	EL.				
	100 Yr. Water El.	0	16.13	16.13				
	10 Yr. Water El.	0	16.13	16.13				<u>FROTEOTED SIDI</u>
F.S. soil lat.	F.S. soil lat. fo force at bottom of	rce at d = the wall =	-0.25 -0.25 -0.60	(kip/ft) (kip/ft) (kip/ft)	100y 10y 100y	GRADE	BAT	1'
		M = F M =	-0.60 5 _{soil} x H _{Soil} /3 0.65 0.65	(kip/f†) (k-f†/f†) (k-f†/f†)	10y 100y 10y			GRADE XXX
	P.S. soil lat. for	ce = 0.5 K	$(H_{soil})^2$			K ₀ x W _{Soil}	x H _{soil}	
	P.S. soil lat. fo	rce at d =	0.25	(kip/ft)	100y			
P.S. soil lat.	force at bottom of	the wall =	0.25 0.60	(k-f†/f†) (kip/f†)	10y 100y			
		M - E](K-11/11)	10y			
		/v\ = 1 ^^ =		(1/ f+/f+)	100.4			
		/v\ =	-0.05	(K-TT/TT)	100y			
			C0.0-](K-TT/fT)	109			

ATCC						13 of 59
Job	Maurepas St	wamp		Project No. 60	0632162	
Description	PI-WALL SE	CTIONS		Computed by	AML Date	Dec-20
	KCS-1					
	LC1			Checked by	JMH Date	Dec-20
			LC1: Const	ruction Surcharge	Г	References
Loads						
<u>Dead Loads:</u>				Deselect All		
		<mark>⊮ Wall Stem Wt.</mark>	<mark>▼</mark> Base Slab Wt.			
<u>Soil Forces:</u>	Dry	F.S. Soil Wt.	P.S. Soil Wt.	🔲 F.S. Lat. Soil Force	P.S. Lat. Soil Force	
10	Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil Force	🗖 P.S. Lat. Soil Force	
100	Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Force	P.S. Lat. Soil Force	2
Те	op of Wall EL.	F.S. Soil Wt.	P.S. Soil Wt.	🗏 F.S. Lat. Soil Force	P.S. Lat. Soil Force	
Water Forces	<u>:</u>					
10	Yr. Water El.	F.S. Water	🗖 F.S. Lat. Water			
100	Yr. Water El.	🗖 F.S. Water	🖻 F.S. Lat. Water			
Т	op of Wall EL.	F.S. Water	🗖 F.S. Lat. Water			フ
<u>Wind Force:</u>	Construction	P.S. Lat. Wind F	orce			
	No Water	F.S. Lat. Wind				
100	Yr. Water El.	F.S. Lat. Wind				
10	Yr. Water El.	F.S. Lat. Wind				フ

Job	Maurepas Swamp	Project No.	60632162		
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1			-	
	LC1	Checked by	JMH	Date	Dec-20
					References

Fx	Fy	Fz	'X' Centroid	'Y' Centroid	'Z' Centroid	M×	Му	Mz	NOTES:	
(kips)	(kips)	(kips)	(f†)	(f†)	(f†)	(kip-ft)	(kip-ft)	(kip-ft)		
0.00	0.00	14.86	1.41	-3.83	0.00	-56.93	-20.96	0.00	Wall stem weight	
0.00	0.00	88.71	2.70	-3.53	0.00	-313.16	-239.53	0.00	Base slab weight	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	F.S. soil weight	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	P.S. soil weight	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	F.S. lateral soil force	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	P.S. lateral soil force	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vertical water force	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Lateral water force	
						0.00	0.00	0.00	Wind load	
						0.00	0.00	0.00	FS wave load	
						0.00	0.00	0.00	Soil Vertical EQ force	
						0.00	0.00	0.00	Soil Lateral EQ force	
						0.00	0.00	0.00	Con. Vertical EQ force	
						0.00	0.00	0.00	Con. Lateral EQ force	
0.00	0.00	26.96		0.00	0.00	-81.96	-132.11	0.00	F.S. Surcharge load	
0.00	0.00	14.68		0.00	0.00	-63.11	9.98	0.00	P.S. Surcharge load	
						0.00	0.00	0.00	Unbalanced load	
						0.00	0.00	0.00	Impact load	
						0.00	0.00	0.00	Hydrostatic uplift	
0.000	0.000	145.217				-515.167	-382.616	0.000	SUM.	

Checked by

Factored V & M

V_u =

Update

Computed by AML Date

JMH

Vu

Mu

(kips/ft)

Date Dec-20

0.00

0.00

Dec-20

References

(kips/ft)

(kips-ft/ft)

Shear and Moment on the Wall

LC1

Note: enter load factors

Soil Force: Load Factor Unfact. V Unfact. M FS 1.6

1.6

Water	Force:

PS

Load Factor		Unfact. V	Unfact. M	
FS	1.6			

Wind Force:

Load Factor		Unfact. V	Unfact. M
FS	1.6		

Wave Force:

Load Factor		Unfact. V	Unfact. M
FS	1.6		

Earthquake Force:

Load Fact	or	Unfact. V	Unfact. M
PS	1.6		

Impact Force:

Load Fact	or	Unfact. V	Unfact. M
FS	1.6		

M _u =	0.000	(kips-ft/ft)		
		-		
V _u =	0.000	(kips/ft)		
M _u =	0.000	(kips-ft/ft)		

0.000

		-
V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

ATCO	M							17	of 59
Job	Maurepas S	wamp		Project No.	60632162				
Description	PI-WALL SE	CTIONS		Computed by	AML	Date	Dec	:-20	
	KCS-1 LC2			Checked by	ЈМН	Date	Dec	:-20	
						R	eferen	ces	
Loads			LC2: Waler to	Deselect All					
<u>Dead Loads:</u>		₩ Wall Stem Wt.	✓ Base Slab Wt						
<u>Soil Forces:</u>	Dry	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil For	rce 🔽 P.S. L	at. Soil Force			
10) Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil For	rce 🛛 🗖 P.S. L	at. Soil Force			
100) Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil For	rce 🔽 P.S. L	.at. Soil Force			
r	op of Wall EL.	F.S. Soil Wt.	P.S. Soil Wt.	🛛 F.S. Lat. Soil For	rce 🔽 P.S. L	at. Soil Force	J		

Water Forces: 🗏 F.S. Water 📑 F.S. Lat. Water 10 Yr. Water El. 🖾 F.S. Water 🖾 F.S. Lat. Water 100 Yr. Water El. Top of Wall EL. 🔽 F.S. Water 🗹 F.S. Lat. Water Wind Force: P.S. Lat. Wind Force Construction No Water 🔚 F.S. Lat. Wind 🔚 F.S. Lat. Wind

100 Yr. Water El.

10 Yr. Water El.

🔄 F.S. Lat. Wind

Job	Maurepas Swamp	Project No.	60632162		
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1			-	
	LC2	Checked by	JMH	Date	Dec-20
		_		-	References

'Y' Centroid 'Z' Centroid NOTES: Fx Fy Fz 'X' Centroid М× Мy Mz (kips) (kips) (kips) (f†) (f†) (f†) (kip-ft) (kip-ft) (kip-ft) 0.00 14.86 1.41 -3.83 0.00 -20.96 0.00 0.00 -56.93 Wall stem weight 88.71 2.70 -3.53 0.00 -313.16 -239.53 0.00 0.00 0.00 Base slab weight 0.00 0.00 20.13 4.90 -3.04 0.00 -61.19 -98.62 0.00 F.S. soil weight P.S. soil weight 0.00 0.00 22.83 -0.68 -4.30 0.00 -98.15 15.52 0.00 0.00 41.49 -88.54 -19.95 -6.38 -13.27 F.S. lateral soil force 0.00 -89.42 42.99 13.61 184.77 28.31 P.S. lateral soil force 0.00 0.00 21.80 4.90 -3.04 0.00 -106.84 0.00 -66.28 Vertical water force -22.74 -7.28 0.00 -15.13 47.31 -100.97 Lateral water force 0.00 0.00 0.00 Wind load 0.00 0.00 0.00 FS wave load 0.00 0.00 0.00 Soil Vertical EQ force 0.00 0.00 0.00 Soil Lateral EQ force 0.00 0.00 0.00 Con. Vertical EQ force 0.00 0.00 0.00 Con. Lateral EQ force 0.00 0.00 0.00 F.S. Surcharge load 0.00 0.00 0.00 P.S. Surcharge load 0.00 0.00 0.00 Unbalanced load 0.00 0.00 0.00 Impact load 0.00 0.00 -47.93 0.00 0.00 149.55 216.18 0.00 Hydrostatic uplift 0.301 -0.045 120.402 -446.253 -234.869 -4.734 SUM.

Description	PI-WALL SECTIONS	
	KCS-1	
	LC2	

Checked by

Factored V & M

Update

Computed by AML Date

JMH

Vu

Mu

Date Dec-20 References

-0.01

0.03

(kips/ft)

(kips-ft/ft)

Dec-20

Shear and Moment on the Wall

Note: enter load factors

Soil Forc	e:		
Load Factor		Unfact. V	Unfact. M
FS	1.6	-0.122	0.310
PS	1.6	0.254	-0.646

Water Force:

Load Factor		Unfact. V	Unfact. M
FS	1.6	-0.139	0.354

Wind Force:

Load Fact	or	Unfact. V	Unfact. M
FS			

Wave Force:

Load Factor		Unfact. V	Unfact. M
FS	0		

Earthquake Force:

Load Fact	or	Unfact. V	Unfact. M
PS			

Impact Force:

Load Fact	or	Unfact. V	Unfact. M
FS			

V _u =	0.211	(kips/ft)
M _u =	-0.538	(kips-ft/ft)
		-
V _u =	-0.223	(kips/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

AECO								21 of 5
Job	Maurepas Sv	wamp		Project No	60632162			
Description	PI-WALL SE	CTIONS		Computed by	AML	Date	Dec-20	
	LC3			Checked by	ЈМН	Date	Dec-20	
			LC3: Water to	TOW(pervious cutoff)		Re	eferences	
Loads				4				
Dead Loads:				Deselect All				
		Wall Stem Wt.	🔽 Base Slab Wt.					
<u>Soil Forces:</u>	Drv	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Force	P.S. L	at. Soil Force		
10) Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Force	P.S. L	at. Soil Force		
100) Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil Force	P.S. L	.at. Soil Force		
т	op of Wall EL.	F.S. Soil Wt.	P.S. Soil Wt.	🛛 F.S. Lat. Soil Force	P.S. L	.at. Soil Force	\Box	
Water Forces	<u>s:</u>) Yr Water Fl	F.S. Water	🗖 F.S. Lat. Water					
100) Yr. Water El.	🗖 F.S. Water	🗖 F.S. Lat. Water					
Т	op of Wall EL.	F.S. Water	🛛 F.S. Lat. Water				フ	
Wind Force:	Construction	P.S. Lat. Wind F	orce					
	No Water	F.S. Lat. Wind						

No Water 100 Yr. Water El.

🔚 F.S. Lat. Wind

🖾 F.S. Lat. Wind

10 Yr. Water El.

Job	Maurepas Swamp	Project No.	60632162		
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1			_	
	LC3	Checked by	JMH	Date	Dec-20
				F	References

'Y' Centroid 'Z' Centroid NOTES: Fx Fy Fz 'X' Centroid М× Мy Mz (f†) (kip-ft) (kip-ft) (kip-ft) (kips) (kips) (kips) (f†) (f†) 0.00 0.00 14.86 1.41 -3.83 0.00 -56.93 -20.96 0.00 Wall stem weight 0.00 0.00 88.71 2.70 -3.53 0.00 -313.16 -239.53 0.00 Base slab weight 0.00 0.00 0.00 20.13 4.90 -3.04 0.00 -61.19 -98.62 F.S. soil weight P.S. soil weight 0.00 0.00 22.83 -0.68 -4.30 0.00 -98.15 15.52 0.00 -6.38 0.00 -13.27 41.49 -88.54 -19.95 F.S. lateral soil force 42.99 0.00 -89.42 184.77 13.61 28.31 P.S. lateral soil force 0.00 0.00 21.80 4.90 -3.04 0.00 -66.28 -106.84 0.00 Vertical water force -22.74 -7.28 0.00 -15.13 47.31 -100.97 Lateral water force 0.00 0.00 0.00 Wind load 0.00 0.00 0.00 FS wave load 0.00 0.00 0.00 Soil Vertical EQ force 0.00 0.00 0.00 Soil Lateral EQ force 0.00 0.00 0.00 Con. Vertical EQ force 0.00 0.00 0.00 Con. Lateral EQ force 0.00 0.00 0.00 F.S. Surcharge load 0.00 0.00 0.00 P.S. Surcharge load 0.00 0.00 0.00 Unbalanced load 0.00 0.00 0.00 Impact load 0.00 0.00 -38.38 0.00 0.00 120.13 171.56 0.00 Hydrostatic uplift 0.301 -0.045 129.955 -475.675 -279.488 -4.734 SUM.

KCS-1
LC3

Checked by

Factored V & M

Update

Computed by AML Date

JMH

Vu

Mu

Date Dec-20 References

-0.01

0.03

(kips/ft)

(kips-ft/ft)

Dec-20

Shear and Moment on the Wall

Note: enter load factors

Soil Forc	e:		
Load Fact	or	Unfact. V	Unfact. M
FS	1.6	-0.122	0.310
PS	1.6	0.254	-0.646

Water Force:

Load Factor		Unfact. V	Unfact. M
FS	1.6	-0.139	0.354

Wind Force:

Load Factor		Unfact. V	Unfact. M
FS			

Wave Force:

Load Factor		Unfact. V	Unfact. M
FS			

Earthquake Force:

Load Factor		Unfact. V	Unfact. M
PS			

Impact Force:

Load Factor		Unfact. V	Unfact. M
FS			

V _u =	0.211	(kips/ft)
M _u =	-0.538	(kips-ft/ft)
		-
		_
V _u =	-0.223	(kips/ft)
M _u =	0.566	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

V _u =	0.000	(kips/ft)
M _u =	0.000	(kips-ft/ft)

AECOM

Job	Maurep	bas Swamp	Project No.	60560480		
Desc	ription	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
		KCS-1				
	Summa	ary of Foundation Loads	Checked by	JMH	Date	Dec-20
					R	eferences

Load	F×	Fy	Fz	M×	My	Mz
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)
LC1	0.00	0.00	145.22	-515.17	-382.62	0.00
LC2	0.30	-0.04	120.40	-446.25	-234.87	-4.73
LC3	0.30	-0.04	129.95	-475.68	-279.49	-4.73

Job Maure	pas Swamp	Project No. 6	0632162		
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1			-	
Soil &	Pile Information Required for CPGA	Checked by	ЈМН	Date	Dec-20
				F	References

Pile Layout: 6 HP Piles

pile no.	x	у	pile no.	×	У
1	8.2	-8.5	4	2.78	-11.05
2	5.6	-3.05	5	0.2	-5.63
3	3.75	2.88	6	-2.25	2.88

<u>Tip Elevation:</u> (For CPGA, need Tip Elevation as a function of CPGA Axis at B.O. Slab, +Z points downward)

"TIP" in CPGA = 39.89 ft

Pile Properties & Attributes

Job Maure	pas Swamp	Project No. 60632	162	
Description	PI-WALL SECTIONS	Computed by AM	L Date	Dec-20
	KCS-1			
Soil &	Pile Information Required for CPGA	Checked by JMI	Date	Dec-20
			F	References

*NOTE: All soil properties and pile capacities are taken from the 95% submittal for Maurepas Intake Structure

Es Value for CPGA Run:

GROUI	GROUP FACTORS				
Pile					
Spacing in	From EM1110				
Direction	2-2906				
of Loading					
	D				
3B	0.33				
4B	0.38				
5B	0.45				
6B	0.56				
7B	0.71				
8B	1				

Group reduction is based on distance between piles in direction of loading. This includes distance due to battering and is taken over the distance 10 x d_{pile} (point of fixety).

Description	PI-WALL SECTIONS	-	Computed by	AML	Date	Dec-20
	KCS-1	_	-		_	
	CPGA Input & Output Files	-	Checked by	JMH	Date	Dec-20
Input file	to pile analysis (Unfactor	ed Loads):				
100	MONOLITH, TOW EL. 16.13, 1	TOS EL. 12.89;	HP14x73 PILE	lS		
200	PROP 29000 729 261 21.4 1.	.7 0 ALL				
300	SOIL ES 0.3805 TIP 39.89 () ALL				
400	PIN ALL					
500	ALLOW H 35 20 492.7 535 29	972.2 994.4 ALL				
600	FOVSTR 1.17 1.17 1					
700	FOVSTR 1.33 1.33 2 TO 3					
900	BATTER 6 1 TO 6					
120	0 ANGLE 25 1 TO 2					
130	0 ANGLE 180 6					
140	0 ANGLE 205 4 TO 5					
140	0 PILE 1 8.2 -8.5 0					
150	0 PILE 2 5.6 -3.05 0					
160	0 PILE 3 3.75 2.88 0					
170	0 PILE 4 2.78 -11.05 0					
180	0 PILE 5 0.2 -5.63 0					
190	0 PILE 6 -2.25 2.88 0					
450	0 LOAD 1 0 0 145.2 -515.2 -	-382.6 0				
460	0 LOAD 2 0.3 0 120.4 -446.3	3 -234.9 -4.7				
470	0 LOAD 3 0.3 0 130 -475.7 -	-279.5 -4.7				
900	0 FOUT 1 2 3 4 5 6 7 KCS1P.	DOC				
910	0 PFO ALL					
920	0 PLB ALL					

Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1	-		•	
	CPGA Input & Output Files	Checked by	JMH	Date	Dec-20

Input file to concrete design (Factored Loads): 100 MONOLITH, TOW EL. 16.13, TOS EL. 12.89; HP14x73 PILES 200 PROP 29000 729 261 21.4 1.7 0 ALL 300 SOIL ES 0.3805 TIP 39.89 0 ALL 400 PIN ALL 500 ALLOW H 35 20 492.7 535 2972.2 994.4 ALL 600 FOVSTR 1 1 1 700 FOVSTR 1 1 2 TO 3 900 BATTER 6 1 TO 6 1200 ANGLE 25 1 TO 2 1300 ANGLE 180 6 1400 ANGLE 205 4 TO 5 1400 PILE 1 8.2 -8.5 0 1500 PILE 2 5.6 -3.05 0 1600 PILE 3 3.75 2.88 0 1700 PILE 4 2.78 -11.05 0 1800 PILE 5 0.2 -5.63 0 1900 PILE 6 -2.25 2.88 0 4500 LOAD 1 0.00 0.00 232.35 -824.27 -612.19 0.00 4600 LOAD 2 0.48 -0.07 192.64 -714.01 -375.79 -7.57 4700 LOAD 3 0.48 -0.07 207.93 -761.08 -447.18 -7.57 9000 FOUT 1 2 3 4 5 6 7 KCS1SC.DOC 9100 PFO ALL 9200 PLB ALL

Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1	-			
	CPGA Input & Output Files	Checked by	JMH	Date	Dec-20
				-	

CPGA RESULTS (Unfactored Loads) (PIN CONNECTIONS)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 15-DEC-20 RUN TIME: 15:28:39

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL. 12.89; HP14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 6 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-2.25 ,	-11.05	, 0.00)
(8.20 ,	2.88	, 0.00)

PILE PROPERTIES AS INPUT

E I1 I2 A C33 B66 KSI IN**4 IN**4 IN**2 0.29000E+05 0.72900E+03 0.26100E+03 0.21400E+02 0.17000E+01 0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

ES C ESOIL (OF	CPGA	A Input & Ou	tput Files						
ES C ESOIL (OF					Cł	necked by	JMH	Date _	Dec-20
ESOIL (OF	ESO L.	LENGTH	T.		T.II				
(ESOIL (OF	K/TN**2	DINGIN	FT		FT				
ESOIL (OF	0.38050E+00	Т	0.39890E	+02 0.0	0000E+0	0 0			
B / I N / /	RIGINAL)	RGROUP	RCYCLI	С					
0.38050)E+00	0.1000E+	01 0.1000E	+01					
THIS SOII	L DESCRIPTI	ON APPLIE	S TO THE FO	OLLOWING	PILES -	-			
ALL									
* * * * * * * * *	*****	******	* * * * * * * * * *	******	*****	* * * * * * * * * *	******	******	r
	PILE STIFF	NESSES AS	CALCULATE	D FROM PF	OPERTII	ES			
0.17968E	E+02 0.000	00E+00 0	.00000E+00	0.00000	E+00 ().00000E+0	0 0.000	00E+00	
0.0000E	E+00 0.232	29E+02 0	.00000E+00	0.00000	E+00 (0.00000E+0	0 0.000	00E+00	
0.0000E	E+00 0.000	00E+00 0	.21740E+04	0.00000	E+00 (0.00000E+0	0 0.000	00E+00	
0.0000E	E+00 0.000	00E+00 0	.00000E+00	0.00000	E+00 (0.00000E+0	0 0.000	00E+00	
0.0000E	E+00 0.000	00E+00 0	.00000E+00	0.00000	E+00 (0.0000E+0	0 0.000	00E+00	
0.00000E	E+00 0.000	00E+00 0	.00000E+00	0.00000	E+00 (0.00000E+0	0 0.000	00E+00	
THIS MATE	RIX APPLIES	TO THE F	OLLOWING P	iles -					
1									
* * * * * * * * *	*******	******	*******	*******	*****	*******	******	******	
	PILE GEOME	TRY AS IN	PUT AND/OR	GENERATE	D				
NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY		
	FT	FT	FT			FT			
1	8.20	-8.50	0.00	6.00	25.00	0 40.44	P		
2	5.60	-3.05	0.00	6.00	25.00	0 40.44	P		
3	3.75	2.88	0.00	6.00	0.00	0 40.44	P		
4	2.78	-11.05	0.00	6.00	205.00	0 40.44	P		
5	0.20	-5.63	0.00	6.00	205.00) 40.44	Р		
-	-2.25	2.88	0 00	6 00	180.00) 40 44	P		
0	2.29	2.00	0.00	0.00	100.00		-		

Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1	-		. –	
	CPGA Input & Output Files	Checked by	JMH	Date	Dec-20

APPLIED	LOADS
	201100

LOAD	PX	PY	PZ	MX	MY	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0.0	0.0	145.2	-515.2	-382.6	0.0 1.17 1.17
2	0.3	0.0	120.4	-446.3	-234.9	-4.7 1.33 1.33
3	0.3	0.0	130.0	-475.7	-279.5	-4.7 1.33 1.33

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.41957E+03	0.81218E+02	-0.71918E-05	0.19507E+05	-0.66316E+05	0.21439E+05
0.81218E+02	0.17725E+03	0.23931E-04	0.90962E+04	-0.19185E+05	0.13880E+05
-0.71918E-05	0.23931E-04	0.12695E+05	-0.57049E+06	-0.46411E+06	-0.32151E+03
0.19507E+05	0.90962E+04	-0.57049E+06	0.76759E+08	0.34825E+08	0.21277E+07
-0.66316E+05	-0.19185E+05	-0.46411E+06	0.34825E+08	0.38234E+08	-0.35694E+07
0.21439E+05	0.13880E+05	-0.32151E+03	0.21277E+07	-0.35694E+07	0.37036E+07

6 PILES 3 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
* * * * *	* * * * * * * *	***	******	. * * *	*****	****	****	******	****	*****	***	******	****	****

Description PI-WALL SEC				3	с	omputed by	/ AMI	L Date	Dec-20
		KCS	-1						
		CPG	A Input & Outp	ut Files		Checked by	/JMł	H Date	Dec-20
	PILE	CAP I	DISPLACEMENT	ſS					
TOND									
CASE	עת		DY	קת	PY	D.	v	D7	
CASE	TN	1	TN	TN	RAD	RAI	I D	RAD	
							-		
1	0.2104	E-01	0.6127E-02	0.1450E-01	-0.3836E-0	4 0.130	9E-03	0.4635E-05	
2	0.5925	E-01	0.1851E-01	0.1694E-01	-0.1202E-0	3 0.351	8E-03 -	-0.1794E-04	
3	0.5169	E-01	0.1626E-01	0.1680E-01	-0.1027E-0	3 0.305	7E-03 -	-0.2039E-04	
****	******	*****	******	*****	*****	******	*****	*****	ŀ
		ELASI	FIC CENTER 1	INFORMATION					
ELAST:	IC CENTE	RINI	PLANE X-Z	Х	Z				
				FT	FT				
				0.00	0.00				
****	******	*****	******	*****	*****	******	*****	*****	F
	PILE	FORCE	ES IN LOCAL	GEOMETRY					
		M1 & M	42 NOT AT PI	ILE HEAD FOR	PINNED PIL	ES			
		* INDI	ICATES PILE	FAILURE					
		# IND]	ICATES CBF E	BASED ON MOM	ENTS DUE TO)			
		B INDI	CATES BUCKI	ING CONTROL	NCREIE FILE S	.5			
LOAD (CASE -	1							
PILE	Fl	F2	F3	M1	M2	M3 A	LF CBI	r	
	K	K	K	IN-K	IN-K	IN-K			
1	0.4	0.1	10.0	0.0	11 5	0 0 0	40 0 01	-	
1	0.4	-0.1	L 19.8	-2.9	-11.5	0.0 0.	48 0.03 56 0 05	5	
3	0.4	0.1	23.1	5.8	-10 6	0.0 0.	56 0 05	5	
4	-0.4	0.1	L 24.7	3.2	13.4	0.0 0.	60 0.00	5	
5	-0.4	0.1	L 28.1	3.2	13.3	0.0 0.	69 0.00	ô	
6	-0.4	-0.1	L 28.4	-5.5	12.8	0.0 0.	69 0.00	ô	
	~ ~ ~ ~ ~	â							
LOAD (CASE -	2							
PILE	F1 K	F2 r	F3	M1 IN-K	M2	M3 A	LF CBI	7	
1	1 1	_0 ^		_0 3	-32 /	0 0 0	20 0 04	1	
2	1 1	-0.2	- 9.0 2 16.7	-0.3	-32.4	0.00.	∠∪ U.U4 36 0 0º	т 5	
ے م	±•± 1 1	0.2	1 12 9	16.2	-32.5	0 0 0 0	32 0 01	5	
4	-1.1	0.2	2 24.2	7.1	33.8	0.0 0	52 0.00	5	
5	-1.1	0.2	2 30.4	7.1	34.7	0.0 0.	65 0.07	7	
6	-1.1	-0.4	26.4	-17.3	34.3	0.0 0.	57 0.07	7	

Description		PI-WAL	L SECTION	S		Compute	d by	AML	Date	Dec-20
		KCS-1								
		CPGA li	nput & Outp	ut Files		Checke	d by	JMH	Date _	Dec-20
LOAD C	ASE -	3								
PILE	Fl	F2	F3	Ml	М2	МЗ	ALF	CBF		
	K	K	K	IN-K	IN-K	IN-K				
1	0.9	-0.2	12.2	-7.3	-27.7	0.0	0.26	0.04		
2	0.9	-0.2	18.8	-7.3	-28.3	0.0	0.40	0.05		
3	0.9	0.4	17.7	14.0	-28.3	0.0	0.38	0.05		
4	-1.0	0.2	25.1	6.0	29.3	0.0	0.54	0.06		
5	-1.0	0.2	30.6	6.0	30.3	0.0	0.66	0.07		
6	-1.0	-0.4	27.4	-15.4	30.2	0.0	0.59	0.07		

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	3.3	1.5	19.5	0.0	0.0	0.0
2	3.8	1.7	22.7	0.0	0.0	0.0
3	4.1	0.1	22.1	0.0	0.0	0.0
4	-3.2	-1.6	24.4	0.0	0.0	0.0
5	-3.8	-1.8	27.8	0.0	0.0	0.0
6	-4.2	0.1	28.0	0.0	0.0	0.0
	.					
LUAD CA	.SE = 2					
PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	2.5	0.9	9.2	0.0	0.0	0.0
2	3.5	1.4	16.3	0.0	0.0	0.0
3	3.5	0.4	14.5	0.0	0.0	0.0
4	-2.5	-1.4	24.1	0.0	0.0	0.0
5	-3.4	-1.8	30.1	0.0	0.0	0.0
6	-3.2	0.4	26.2	0.0	0.0	0.0
LOAD CA	.SE - 3					
DTTE	DV	DV	D7	MY	MV	M7
1100	K I V	ĸ	K	TN-K	TN-K	TN-K
	IV.	11	11	IN IC	IN IC	TIN IV
1	2.7	1.1	11.9	0.0	0.0	0.0
2	3.7	1.5	18.4	0.0	0.0	0.0
3	3.8	0.4	17.3	0.0	0.0	0.0
4	-2.8	-1.5	25.0	0.0	0.0	0.0
5	-3.6	-1.8	30.3	0.0	0.0	0.0
6	-3.5	0.4	27.2	0.0	0.0	0.0

lob Mai	urepas Swamp		Project No. 60632162							
Description	PI-WALL SECTI	ONS	Computed by AML Date Dec-20							
-	KCS-1			· · ·						
	CPGA Input & C	output Files	Ch	ecked by JMH	Date _	Dec-20				
CPGA RE	ESULTS (Un	factored Loads) <u>(</u>	FIX CONNECTION	<u>IS)</u>					
CPGA - CA	SE PILE GROUP ANAI	YSIS PROGRAM								
RUN DATE:	15-DEC-20 RUN	I TIME: 15:29:1	.5							
FOR P	ILES WITH UNSUPPOF	TED HEIGHT:								
	A. CPGA CANNOT CAI B. THE ALLOWABLE S NOT FULLY DEVEI WORK IS IN PROG	CULATE PMAXMOM TRESS CHECKS, OPED FOR UNSUE RESS TO COMPLE	I FOR NH TYPE ASC AND AST, PORTED PILES. TE THIS ASPEC	SOIL ARE T OF CPGA.						
ELAST	IC CENTER LOCATION	I IS NOT COMPUT	ED FOR 3-DIME	NSIONAL PROBLE	EMS.					
MONOLITH, DATA UNKN	TOW EL. 16.13, TC OWN - REJECTED.	DS EL. 12.89; H	P14X73 PILES							
THERE ARE	6 PILES AND 3 LOAD CASES IN	I THIS RUN.								
ALL PILE	COORDINATES ARE CC	NTAINED WITHIN X	I A BOX Y	Z						
WITH DIAG	ONAL COORDINATES =	(-2.25 , (8.20 ,	-11.05 , 2.88 ,	0.00)						
* * * * * * * * *	*****	****	****	* * * * * * * * * * * * * * *	* * * * * * * * * * *	*				
	PILE PROPERTIES AS	INPUT								
E	т 1	т2	Δ	C33	B66					
KSI 0 20000F	IN**4	IN**4	IN**2	170005+01 0	000005+00					
0.29000£	+05 0.72900±+03	0.201002+03 (.214008+02 0	.17000E+01 0.	.000008+00					
THESE PIL	E PROPERTIES APPLY	TO THE FOLLOW	NING PILES -							
ALL										
* * * * * * * * *	*****	****	****	* * * * * * * * * * * * * * *	******	*				
	SOIL DESCRIPTIONS	AS INPUT								
ES	ESOIL LENGTH	I L	LU							
0	K/1N**2 .38050E+00 T	FT 0.39890E+02	FT 0.00000E+0	0						
ESOIL(OR K/IN**	IGINAL) RGROUP 2	RCYCLIC								
0.38050	E+00 0.1000E	+01 0.1000E+01								
muta cott	DESCRIPTION APPLI	ES TO THE FOLI	OWING PILES -							

ALL

Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1	-		_	
	CPGA Input & Output Files	Checked by	JMH	Date _	Dec-20

PILE STIFFNESSES AS CALCULATED FROM PROPERTIES

 0.35937E+02
 0.00000E+00
 0.00000E+00
 0.16971E+04
 0.00000E+00

 0.00000E+00
 0.46458E+02
 0.0000E+00
 -0.28362E+04
 0.00000E+00
 0.00000E+00

 0.00000E+00
 0.00000E+00
 0.21740E+04
 0.00000E+00
 0.00000E+00
 0.00000E+00

 0.00000E+00
 -0.28362E+04
 0.00000E+00
 0.34630E+06
 0.00000E+00
 0.00000E+00

 0.16971E+04
 0.00000E+00
 0.00000E+00
 0.34630E+06
 0.00000E+00
 0.00000E+00

 0.16971E+04
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00

 0.16971E+04
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY
	FΤ	FT	FT			FT	
1	8.20	-8.50	0.00	6.00	25.00	40.44	F
2	5.60	-3.05	0.00	6.00	25.00	40.44	F
3	3.75	2.88	0.00	6.00	0.00	40.44	F
4	2.78	-11.05	0.00	6.00	205.00	40.44	F
5	0.20	-5.63	0.00	6.00	205.00	40.44	F
6	-2.25	2.88	0.00	6.00	180.00	40.44	F

242.64

APPLIED LOADS

LOAD CASE	PX K	PY K	PZ K	MX FT-K	MY FT-K	MZ OVERSTRESS FT-K COM TEN
1	0.0	0.0	145.2	-515.2	-382.6	0.0 1.17 1.17
2	0.3	0.0	120.4	-446.3	-234.9	-4.7 1.33 1.33
3	0.3	0.0	130.0	-475.7	-279.5	-4.7 1.33 1.33

Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20	
	KCS-1	_		- ·		
	CPGA Input & Output Files	Checked by	JMH	Date	Dec-20	

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.52857E+03	0.72414E+02	-0.71319E-05	0.21066E+05	-0.54917E+05	0.26057E+05
0.72414E+02	0.31252E+03	0.23732E-04	-0.69627E+04	-0.20747E+05	0.18024E+05
-0.71319E-05	0.23732E-04	0.12697E+05	-0.57062E+06	-0.46422E+06	-0.31883E+03
0.21066E+05	-0.69627E+04	-0.57062E+06	0.78686E+08	0.35073E+08	0.16825E+07
-0.54917E+05	-0.20747E+05	-0.46422E+06	0.35073E+08	0.39436E+08	-0.31069E+07
0.26057E+05	0.18024E+05	-0.31883E+03	0.16825E+07	-0.31069E+07	0.49588E+07

6 PILES 3 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAIL	URES	5 =	0.	NUMBER	OF	PILES	IN	TEN	SION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAIL	URES	5 =	0.	NUMBER	OF	PILES	IN	TEN	SION	=	0.
LOAD	CASE	3.	NUMBER	OF	FAIL	URES	5 =	0.	NUMBER	OF	PILES	IN	TEN	SION	=	Ο.
* * * * *	* * * * * * * *	****	* * * * * * *	* * * *	* * * * *	****	****	* * * *	*****	***	* * * * * * *	***	* * * *	****	* * * * *	****
	PII	LE CA	P DISPL	ACEI	4ENTS											
LOAD																
CASE	Г	X	1	DY			DZ		RX		I	RY			RZ	
	I	EN		IN			IN		RAD		Rž	AD		1	RAD	
1	0.572	26E-0	2 0.19	99E-	-02	0.12	97E-	01 -	0.1013E	-04	0.543	31E-	-04	0.9	461E·	-06
2	0.170	08E-0	1 0.54	90E-	-02	0.12	76E-	01 -	0.4248E	-04	0.142	L8E-	-03	-0.1	700E-	-04
3	0.150)0E-0	1 0.49	75E·	-02	0.13	16E-	01 -	0.3524E	-04	0.123	33E-	-03	-0.1	822E-	-04
* * * * *	******	****	* * * * * * * *	* * * *	****	* * * *	****	* * * *	*****	* * * *	* * * * * * *	***;	* * * *	* * * *	* * * * *	****
		EL.	ASTIC CI	ENTI	ER IN	FORM	IATIO	N								
ELAS	FIC CENT	FER I	N PLANE	X-2	Z		X		_	Z						
						0	FT		F	T						
						U	.00		υ.	00						
* * * * *	* * * * * * * *	****	* * * * * * *	* * * :	* * * * *	* * * *	****	* * * *	******	***	* * * * * * *	***	* * * *	* * * *	* * * * *	****
	PII	LE FO	RCES IN	LO	CAL G	EOME	TRY									
		M1	& M2 NO'	T A	r pil	E HE	AD F	OR P	INNED P	ILES	S					

- * INDICATES PILE FAILURE
- # INDICATES CBF BASED ON MOMENTS DUE TO
 (F3*EMIN) FOR CONCRETE PILES
- B INDICATES BUCKLING CONTROLS

Description		PI-WAL	L SECTION	<u>s</u>		Compute	d bv	AML	Date	Dec-20
		KCS-1		-						
		CPGA	nput & Outp	out Files		Checke	d by _	JMH	Date	Dec-20
LOAD	CASE -	1								
PILE	F1	F2	F3	Ml	M2	MЗ	ALF	CBF		
	K	K	K	IN-K	IN-K	IN-K				
1	0.3	-0.1	20.8	6.3	16.5	0.0	0.51	0.05		
2	0.2	-0.1	23.0	6.3	16.1	0.0	0.56	0.06		
3	0.2	0.1	23.8	-9.3	15.4	0.0	0.58	0.06		
4	-0.4	0.1	24.6	-6.6	-22.4	0.0	0.60	0.06		
5	-0.4	0.1	26.8	-6.6	-22.5	0.0	0.65	0.07		
6	-0.4	-0.1	28.2	9.0	-22.2	0.0	0.69	0.07		
LOAD	CASE -	2								
PILE	F1	F2	F3	Ml	M2	MЗ	ALF	CBF		
	K	K	K	IN-K	IN-K	IN-K				
1	0.8	-0.2	12.3	16.9	48.6	0.0	0.26	0.06		
2	0.8	-0.2	16.2	16.8	50.2	0.0	0.35	0.07		
3	0.8	0.3	16.8	-26.9	50.9	0.0	0.36	0.07		
4	-0.9	0.1	23.7	-11.5	-53.3	0.0	0.51	0.08		
5	-0.9	0.1	26.8	-11.4	-55.8	0.0	0.58	0.09		
6	-1.0	-0.4	26.1	32.4	-56.5	0.0	0.56	0.09		
LOAD	case -	3								
PILE	F1	F2	F3	Ml	M2	MЗ	ALF	CBF		
	K	K	K	IN-K	IN-K	IN-K				
1	0.7	-0.2	14.7	15.5	41.2	0.0	0.31	0.06		
2	0.7	-0.2	18.4	15.5	43.0	0.0	0.40	0.06		
3	0.7	0.3	19.3	-22.8	44.1	0.0	0.41	0.07		
4	-0.8	0.1	24.7	-9.7	-46.3	0.0	0.53	0.08		
5	-0.8	0.1	27.5	-9.7	-48.9	0.0	0.59	0.08		
6	-0.9	-0.4	27.2	28.6	-50.2	0.0	0.58	0.09		

PILE FORCES IN GLOBAL GEOMETRY

Descrip	otion	PI-WALL SECTIONS				Computed by	AML	Date	Dec-20	
-		KCS-1				· · · -		-		
		CPGA Inp	out & Outp	ut Files		Checked by	JMH	Date	Dec-20	
LOAD	CASE -	1								
PILE	PX		PY	ΡZ	MX	MY	MZ			
	K		K	K	IN-K	IN-K	IN-K			
1	3.	4	1.5	20.4	-1.4	17.5	-1.0			
2	3.	7	1.6	22.6	-1.2	17.2	-1.0			
3	4.	2	0.1	23.5	-9.2	15.4	1.5			
4	-3.	3 –	1.6	24.3	-3.6	23.0	1.1			
5	-3.	6 –	1.8	26.5	-3.7	23.2	1.1			
6	-4.	3	0.1	27.8	-8.9	22.2	-1.5			
LOAD	CASE -	2								
PILE	PX		PY	PZ	MX	MY	MZ			
	K		K	K	IN-K	IN-K	IN-K			
1	2.	6	1.0	12.0	-5.5	51.1	-2.8			
2	3.	2	1.3	15.9	-6.2	52.5	-2.8			
3	3.	6	0.3	16.5	-26.6	50.9	4.4			
4	-2.	7 -	1.4	23.6	-12.3	53.1	1.9			
5	-3.	1 -	1.6	26.6	-13.3	55.3	1.9			
6	-3.	3	0.4	25.9	-31.9	56.5	-5.3			
LOAD	CASE -	3								
PILE	PX		PY	ΡZ	MX	MY	MZ			
	K		K	K	IN-K	IN-K	IN-K			
1	2.	9	1.1	14.3	-3.6	43.8	-2.5			
2	3.	4	1.4	18.1	-4.3	45.4	-2.5			
3	3.	9	0.3	18.9	-22.5	44.1	3.7			
4	-2.	9 –	1.5	24.5	-10.9	46.0	1.6			
5	-3.	3 –	1.7	27.3	-12.0	48.4	1.6			
6	-3.	6	0.4	26.9	-28.2	50.2	-4.7			

JOD Maure	pas Swamp		Proje	CT NO. 6	00632162		
escription	PI-WALL SECTI	ONS	Comput	ed by	AML	Date	Dec-20
	KCS-1						
	CPGA Input & C	output Files	Check	ed by	JMH	Date	Dec-20
CPGA RES	ULTS (Fa	ctored Loads)	<u>(SL</u> 2	B CHEC	<u>CK)</u>		
CPGA - CASE RUN DATE: 1	PILE GROUP ANAL 5-DEC-20 RUN	YSIS PROGRAM TIME: 15:30:26					
FOR PILI A. B.	ES WITH UNSUPPOR CPGA CANNOT CAL THE ALLOWABLE S NOT FULLY DEVEL WORK IS IN PROG	TED HEIGHT: CULATE PMAXMOM TRESS CHECKS, A OPED FOR UNSUPP RESS TO COMPLET	FOR NH TYPE SO SC AND AST, ARI ORTED PILES. E THIS ASPECT (IL E DF CPG#	Δ.		
ELASTIC	CENTER LOCATION	IS NOT COMPUTE	D FOR 3-DIMENS	IONAL F	ROBLEMS.		
MONOLITH, TO DATA UNKNOW	OW EL. 16.13, TC N - REJECTED.	S EL. 12.89; HP	14X73 PILES				
THERE ARE	6 PILES AND 3 LOAD CASES IN	THIS RUN.					
ALL PILE CO	ORDINATES ARE CC	NTAINED WITHIN X	A BOX Y	Ζ			
WITH DIAGON	AL COORDINATES =	-2.25, (8.20,	-11.05 , 2.88 ,	0.00)			
* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * *	*****	******	******	
PI	LE PROPERTIES AS	INPUT					
E KSI	I1 IN**4	I2 IN**4	A IN**2	C33	E	366	
0.29000E+0	5 0.72900E+03	0.26100E+03 0.	21400E+02 0.1	7000E+C	01 0.000	000E+00	
THESE PILE :	PROPERTIES APPLY	TO THE FOLLOWI	NG PILES -				
ALL							
* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * *	*****	******	*******	
SO	IL DESCRIPTIONS	AS INPUT					
ES E	SOIL LENGTH IN**2	L FT	LU FT				
0.3	8050E+00 T	0.39890E+02	0.00000E+00				
ESOIL(ORIG K/IN**2	INAL) RGROUP	RCYCLIC					
0.38050E+	00 0.1000E	+01 0.1000E+01					

Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1	-		_	
	CPGA Input & Output Files	Checked by	JMH	Date _	Dec-20

THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -

AT.T.

PILE STIFFNESSES AS CALCULATED FROM PROPERTIES

```
0.17968E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.23229E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.21740E+04 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
```

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY
	FT	FT	FT			FT	
1	8.20	-8.50	0.00	6.00	25.00	40.44	P
2	5.60	-3.05	0.00	6.00	25.00	40.44	P
3	3.75	2.88	0.00	6.00	0.00	40.44	P
4	2.78	-11.05	0.00	6.00	205.00	40.44	P
5	0.20	-5.63	0.00	6.00	205.00	40.44	P
6	-2.25	2.88	0.00	6.00	180.00	40.44	P

242.64

LOAD

CASE

PX

K

PY	ΡZ	MX	MY
K	K	FT-K	FT-K

APPLIED LOADS

1	0.0	0.0	232.3	-824.3	-612.2	0.0
2	0.5	-0.1	192.6	-714.0	-375.8	-7.6
3	0.5	-0.1	207.9	-761.1	-447.2	-7.6

MZ

FT-K

Description	PI-WALL SECTIONS	Computed by AML	Date Dec-20
	KCS-1		
	CPGA Input & Output Files	Checked by JMH	Date Dec-20

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.41957E+03
 0.81218E+02
 -0.71918E-05
 0.19507E+05
 -0.66316E+05
 0.21439E+05

 0.81218E+02
 0.17725E+03
 0.23931E-04
 0.90962E+04
 -0.19185E+05
 0.13880E+05

 -0.71918E-05
 0.23931E-04
 0.12695E+05
 -0.57049E+06
 -0.46411E+06
 -0.32151E+03

 0.19507E+05
 0.90962E+04
 -0.57049E+06
 0.76759E+08
 0.34825E+08
 0.21277E+07

 -0.66316E+05
 -0.19185E+05
 -0.46411E+06
 0.34825E+08
 0.38234E+08
 -0.35694E+07

 0.21439E+05
 0.13880E+05
 -0.32151E+03
 0.21277E+07
 -0.35694E+07
 0.37036E+07

6 PILES 3 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAII	URES	=	5.	NUMBER	OF	PILES	IN	TENS	ION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAII	JURES	=	3.	NUMBER	OF	PILES	IN	TENS	ION	=	0.
LOAD	CASE	3.	NUMBER	OF	FAII	URES	=	3.	NUMBER	OF	PILES	IN	TENS	ION	=	0.
* * * * *	******	* * * * *	* * * * * *	***	* * * * *	****	****	* * * *	*****	* * * 1	*****	****	****	***;	****	* * * * *
	PIL	E CAI	P DISPI	ACEI	MENTS	3										
LOAD				DV			DØ		DY			2.17			DZ	
CASE	D. II	N		IN			IN		RAD		R	AD		I	RAD	
1 2 3	0.336 0.9470 0.825	7E-0: 0E-0: 5E-0:	1 0.98 1 0.29 1 0.25	03E 04E 43E	-02 -01 -01	0.23 0.27 0.26	20E-(10E-(85E-(01 - 01 - 01 -	0.6134E: 0.1921E: 0.1640E:	-04 -03 -03	0.209 0.562 0.488	94E- 23E- 30E-	-03 -03 - -03 -	0.74 0.20 0.30	101E- 596E-)87E-	-05 -04 -04
* * * * *	******	****	******	***	*****	****	****	* * * *	* * * * * * * *	* * * 1	*****	****	****	* * * ;	****	* * * * *
		617	ASTIC C	. ב וא ב ו	SK IN	FORM	AIIO	N								
ELASI	FIC CENTI	ER II	N PLANE	X-1	Z	0	X FT .00		F 0.0	z r DO						
* * * * *	******	* * * * *	* * * * * * *	***	* * * * *	****	****	* * * *	* * * * * * * *	* * * 1	*****	****	****	* * * *	****	* * * * *
	PIL	e foi	RCES IN	LO	CAL G	GEOME	TRY									
		M1 a * II # II B II	& M2 NC NDICATE NDICATE NDICATE	NT A S P S CI (I S BI	F PII ILE F BF BA F3*EM JCKLI	LE HE TAILU ASED MIN) ING C	AD F RE ON M FOR (ONTRO	OR P OMEN CONC OLS	INNED P: IS DUE ' RETE PII	ILES FO LES	5					

		KCS-1							
			KCS-1						
-		CPGA li	nput & Outp	out Files		Checked by	JMH	Date	Dec-20
LOAD C	CASE -	1							
PILE	F1	F2	F3	M1	M2	M3 ALI	F CBF		
	K	K	K	IN-K	IN-K	IN-K			
1	0.6	-0.1	31.7	-4.6	-18.4	0.0 0.93	1 0.08		
2	0.6	-0.1	36.9	-4.6	-17.9	0.0 1.0	6 0.09	*	
3	0.6	0.2	36.9	9.3	-17.0	0.0 1.0	6 0.10	*	
4	-0.7	0.1	39.5	5.1	21.4	0.0 1.1	3 0.10	*	
5	-0.7	0.1	45.0	5.1	21.3	0.0 1.2	9 0.11	*	
6	-0.7	-0.2	45.4	-8.8	20.4	0.0 1.3	0.12	*	
LOAD C	CASE -	2							
PILE	F1	F2	F3	Ml	М2	M3 ALI	F CBF		
	K	K	K	IN-K	IN-K	IN-K			
1	1.7	-0.3	15.3	-13.6	-51.7	0.0 0.4	4 0.09		
2	1.7	-0.3	26.6	-13.6	-52.3	0.0 0.7	6 0.11		
3	1.7	0.6	23.8	25.4	-52.0	0.0 0.6	8 0.11		
4	-1.8	0.3	38.7	11.9	54.0	0.0 1.1	1 0.14	*	
5	-1.8	0.3	48.6	11.9	55.5	0.0 1.3	9 0.16	*	
6	-1.8	-0.7	42.3	-27.2	54.8	0.0 1.2	1 0.15	*	
LOAD C	CASE -	3							
PILE	F1	F2	F3	Ml	М2	M3 ALI	F CBF		
	K	K	K	IN-K	IN-K	IN-K			
1	1.5	-0.3	19.6	-12.1	-44.3	0.0 0.5	6 0.09		
2	1.5	-0.3	30.0	-12.1	-45.1	0.0 0.8	6 0.11		
3	1.5	0.6	28.2	22.0	-45.1	0.0 0.8	1 0.11		
4	-1.5	0.3	40.2	10.1	46.8	0.0 1.1	5 0.13	*	
5	-1.6	0.3	48.9	10.1	48.4	0.0 1.4	0.15	*	
6	-1.6	-0.6	43.8	-24.0	48.2	0.0 1.2	5 0.15	*	

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1	5.3	2.4	31.2	0.0	0.0	0.0
2	6.1	2.7	36.3	0.0	0.0	0.0
3	6.6	0.2	36.4	0.0	0.0	0.0
4	-5.2	-2.6	39.1	0.0	0.0	0.0
5	-6.0	-3.0	44.5	0.0	0.0	0.0
6	-6.8	0.2	44.9	0.0	0.0	0.0

Description	PI	-WALL SECT				Computed by	ΔΜΙ	Date	Dec-20
Description	<u></u>	KCS-1 CPGA Input & Output Files				- computed by	Ame	-	D00-20
	CI					Checked by	ЈМН	Date	Dec-20
LOAD CAS	E – 2								
PILE	PX	PY	ΡZ	MX		MY	MZ		
	K	K	К	IN-K		IN-K	IN-K		
1	3.9	1.5	14.8	0.0		0.0	0.0		
2	5.7	2.3	26.0	0.0	0.0	0.0			
3	5.6	0.6	23.2	0.0	0.0	0.0			
4	-4.1	-2.2	38.5	0.0		0.0	0.0		
5	-5.5	-2.9	48.2	0.0		0.0	0.0		
6	-5.2	0.7	42.0	0.0		0.0	0.0		
LOAD CAS	E – 3								
PILE	PX	PY	PZ	MX		MY	MZ		
	К	K	K	IN-K		IN-K	IN-K		
1	4.3	1.7	19.1	0.0		0.0	0.0		
2	5.9	2.4	29.4	0.0		0.0	0.0		
3	6.1	0.6	27.6	0.0		0.0	0.0		
4	-4.5	-2.4	39.9	0.0		0.0	0.0		
5	-5.8	-3.0	48.5	0.0		0.0	0.0		
6	-5.6	0.6	43.5	0.0		0.0	0.0		

Job Maure	epas Swamp	Project No.	60632162			
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20	
	KCS-1			_		
Sumn	nary of Shear & Moment	Checked by	JMH	Date	Dec-20	
				R	eferences	

Load	V _{u,max}	M u,max
Case	(kip/ft)	(kip/ft)
LC1	0.00	0.00
LC2	-0.01	0.03
LC3	-0.01	0.03

AECOM

lob	Maurep	as Swamp	Project No.	60632162	_	
Descript	tion	PI-WALL SECTIONS C	computed by	AML	Date	Dec-20
		KCS-1				
	Shear &	Moment Check for Wall	Checked by	JMH	Date	Dec-20
					Ref	erences
Given	Informa	tion:				
		Wall Thickness: 1.	50 ft			
		Clear Cover: 0,	25 ft			
	Die	ameter Bar to Start: 0.06	25 ft			
		Maximum Shear (V _u): 0.	01 kip per foot			
	Ma	ximum Moment (M _u): 0.0	03 kip-ft per fo	ot		
		φ _{shear} = 0.	75 (ACI 318)			
		φ _{moment} = C).9 (ACI 318)			
		f _{y, rebar} =	60 ksi			
		f' _c =	4 ksi			
Shear	Calculat	ions:				
	Design :	Shear Strength (φVn)≥Requir	ed Shear Streng	gth (V _u)	(ACI Eq. 11-1)	1
Sł	near Capo	acity (φV _c): φ _{shear} * 2 * √f' _c * b	• * d		(ACI Eq. 11-3))
		0.75				
		$\psi_{shear} = 0.75$ f' = 4 ksi				
		b = 1 ft strip				
		d = 1,22 ft	14.625			
	<u> </u>					
	φV _c =	16649.4 lbs				
	1	16.65 Kips	** φVc=16.6	o≥Vu=0, Shea	ar Capacity OK	

Limit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5) where $\rho_b = 0.0285$ for f'_c = 4,000psi, fy = 60,000psi Max Rebar = 0.00713 *b * d 1.25 in² Maximum Reinforcement: 0.0071 * b * d = per 1ft strip 216.00 in² A_{gross} = 1.5 ft * 12 in/ft * 12 in strip = 0.65 in² Limits of Minimum Reinforcement: 0.003 x Agross = (EM 1110-2-2104, 2.9.3, temp. & shrinkage) $(3*J(f'_{c})*b*d)/f_{y} =$ 0.55 in² ACI 318-14, 9.6.1.2, min for flexural members) (200*b*d)/f_y= 0.59 in² ACI 318-14, 9.6.1.2, min for flexural members) 0.32 in² Min Reinforcement, temp & shrinkage: per 1ft strip, per face Min Reinforcement, flexural: 0.59 in² per 1ft strip, per face

ob Maure	epas Swamp	Project No.	60632162		
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1			-	
Shear	& Moment Check for Wall	Checked by	ЈМН	Date	Dec-20
				Re	ferences

* Moment Calculations:

* T = $A_s \times f_y$

 $\phi M_n =$

- * C = 0.85 x f'_c x a x b
- * Assuming Tension = Compression \longrightarrow A_s x f_v = 0.85 x f'_c x a x b
- * φ Mn = $\varphi \times T \times (d (a / 2))$

=
$$\phi \times A_s \times f_v \times (d - (a / 2))$$

= 37.37 kip-ft

448.4 kip-in

* Capacity of Maximum Reinforcement: * #6 rebar is used for flexural reinforcement for wall, spacing varies

* #6 rebar is used for temp. & shrinkage reinforcement for wall, spacing varies

Proposed flexural reinforcement: #6@9 (A= 0.59 in^2) Proposed temp. & shrinkage reinforcement: #6@9 (A= 0.59 in^2)

** φMn=77.1 ≥ Mu=0, Section OK

Job Maure	pas Swamp	Project No	60632162		
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20
	KCS-1				
Slab		Checked by	JMH	Date	Dec-20
				Re	eferences

Job Maure	epas Swamp		Project No.	60632162	_		
Description	PI-WALL SECTION	NS	Computed by	AML	Date	Dec-20	_
Slab C	KCS-1 Calculation		Checked by	ЈМН	Date	Dec-20	_
						References	
Load Case:	3		ES WI =	16 13		Ţ	$\overline{\downarrow}$
Analysis of P	Protected Side of S	5lab:	1.0. WE -[
* Here the she slab are preser cantilever bear	ar and moment diagran ated. The protected si n fixed at the face of	ms for the protected de of the slab is con: the wall in protected	d side of the sidered as a d side.				
Allowab	ole Overstress:	%		P2 (kips)	= 48.5	P2 (+) Compre (-) Tension	ssion
Self Weight:		$\gamma_{concrete} \times H_{sl}$	ab × Width = 2.70 ×	1.6 4.3	2 kips/ft	x 2.75 ft = 11.88	16.34
Soil Load:		$\gamma_{soil} imes H_s$	_{ioil} x Width = 2.33 x	1.6 3.7	'3 kips/ft 🛛	x 2.75 ft = 10.26	14.11
Const. Surchar	ge Load:	Surcharge pressur	re x Width = 1.50 x	0 0.0	00 kips/ft o	x 2.75 ft = 0.00	0.00
Uplift: 🔽 Per	rvious pervious	$\gamma_{water} \times H_{water w/sl}$	_{ab} × Width = 0.32 ×	1.6 0.8	51 kips/ft >	x 2.75 ft = 1.41	1.29
			Equivalent Uniform Pressu	4 4 4 4 4 re	a •	\$ 4 4 - 4 - 4 -	
		Pervious	Sheet Pile	Un Imp	iform Pressure ervious Sheet	Pile	
Conc. Earthqua	ke Load:	EQ area pressur	re x Width = 1.85 x	0.0	0 kips/ft	x 2.75 ft = 0.00	0.00
0.1 0.0			P - 48 50 v	1 48 F	0 kins	48 50	36.38

 $M_{y} = -7.22$ kips-ft

Shear and Moment Calculations:

1) Sign Convention:

 Find Equations for each loading to use in shear and moment calculations: (Moving a distance "X" from the protected side to the wall stem across the slab)

w _{weight} =	-4.32 kips/ft		
V _{weight} =	-4.32 X		
M _{weight} =	-4.32 X² / 2		
w _{soil} =	-3.73 kips/ft		
V _{soil} =	-3.73 X		
M _{soil} =	-3.73 X² / 2		
w _{EQ} =	-0 kips/ft		
V _{EQ} =	-0 X		
M _{EQ} =	-0 X² / 2		
w _{uplift} =	0.37 X Kips/ft		
V _{uplift} =	0.37 X² / 2		
M _{uplift} =	0.37 X^3 / 6		
w _{EQ} =	-0 kips/ft		
V _{EQ} =	-0 X		
M _{EQ} =	-0 X² / 2		
V _{pile} =	48.5 Kips	(after x = 2	2ft)
M _{pile} =	48.5 (X - 2 ft)		
	$w_{weight} = v_{weight} = v_{weight} = v_{weight} = v_{soil} = v_{soil} = v_{soil} = v_{soil} = v_{EQ} = v_{E$	$ \begin{split} & w_{weight} = -4.32 \ kips/ft \\ & V_{weight} = -4.32 \ X \\ & M_{weight} = -4.32 \ X^2 \ / \ 2 \\ \\ & w_{soil} = -3.73 \ kips/ft \\ & V_{soil} = -3.73 \ X \\ & M_{soil} = -3.73 \ X^2 \ / \ 2 \\ \\ & w_{EQ} = -0 \ kips/ft \\ & V_{EQ} = -0 \ X \\ & M_{EQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{uplift} = 0.37 \ X^2 \ / \ 2 \\ \\ & M_{uplift} = 0.37 \ X^3 \ / \ 6 \\ \\ & w_{EQ} = -0 \ X \\ & M_{EQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{EQ} = -0 \ X \\ & M_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^3 \ / \ 6 \\ \\ & w_{EQ} = -0 \ X \\ & M_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^3 \ / \ 6 \\ \\ & w_{eQ} = -0 \ X \ X^3 \ / \ 6 \\ \\ & w_{eQ} = -0 \ X \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X^2 \ / \ 2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X^2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ /$	$ \begin{split} & w_{weight} = -4.32 \ kips/ft \\ & V_{weight} = -4.32 \ X \\ & M_{weight} = -4.32 \ X^2 \ / \ 2 \\ \\ & w_{soil} = -3.73 \ kips/ft \\ & V_{soil} = -3.73 \ X^2 \ / \ 2 \\ \\ & w_{EQ} = -0 \ kips/ft \\ & V_{EQ} = -0 \ X \\ & M_{EQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{uplift} = 0.37 \ X^{2} \ / \ 2 \\ \\ & w_{uplift} = 0.37 \ X^{3} \ / \ 6 \\ \\ & w_{EQ} = -0 \ kips/ft \\ & V_{eQ} = -0 \ X \\ & M_{eQ} = -0 \ X \\ & M_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{EQ} = -0 \ X \\ & M_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \\ & M_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \\ & M_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \\ & M_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X \\ & M_{eQ} = -0 \ X^2 \ / \ 2 \\ \\ & w_{eQ} = -0 \ X^2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ / \ 2 \ $

Job Maurepas Swamp			Project No. 60632162		32162			
Description	PI-WALL SECTIONS	c	omputed by	A	ML C	Date	Dec-20	_
	KCS-1		0 1				D 00	
Slab C	alculation		Checked by	J		Jate	Dec-20 References	-
							References	_
Load Case:	1							
Analysis of P	rotected Side of Slab:		F.S. WL =[9.89	.	≡ ,7		
* Here the she	ar and moment diagrams for t	the flood side of the slat	2				' L	
are presentea. cantilever beam	fixed at the face of the wa	considered as a Il in flood side.					(+) Compression	2
Allowab	le Overstress: 0 %				/1 (kips) =	36.4	(-) Tension	
Self Weight:		v v U. v Width	- 270 v	Load Fac	4 32 kine/4	£+	L F (kips)	F x a = M (k-ft)
Self Weight.		Yconcrete A Fislab A WIGHT	^	1.0	4.52 (1937)			>)) M
Soil Load:		$\gamma_{soil} imes H_{soil} imes Width$	= 2.33 ×	0	0.00 kips/1	f†	x 5.75 ft = 0.00	0.00
Const. Surcharg	ge Load: Surc	harge pressure x Width :	= 1.50 ×	1.6	2.40 kips/1	ft	x 5.75 ft = 13.80	39.68
Uplift: Uplift: Imp	vious ervious	_{ter} x H _{water w/slab} x Width :	= 0.00 ×	1.6	0.00 kips/1	ft	x 5.75 ft = 0.00	0.00
		Imperviou	a a a a a a a a a a a a a a a a a a a	4	Equivalent Unit	form	eet Pile	
<mark>Conc. Earthqual</mark>	<mark>ke Load:</mark> EG	area pressure x Width :	= <u>1.85</u> ×		0.00 kips/1	ft	x 5.75 ft = 0.00	0.00
Pile P1		P	= 36.40 x	1	36.40 kips		36.40	136.50
Water Weight:		γ _{water} × H _{water} × Width	= -1.12 ×	0	0.00 kips/1	ft	x 5.75 ft = 0.00	0.00

Rz = Self Weight + Soil Load + Surch. - Pile Reaction 1 - Uplift

R_z = 2.24 kips

My = 25.41 kips-ft

Shear and Moment Calculations:

1) Sign Convention:

 Find Equations for each loading to use in shear and moment calculations: (Moving a distance "X" from the flood side to the wall stem across the slab)

Self Weight:	W _{weight} = V _{weight} = M _{weight} =	-4.32 kips/ft -4.32 X -4.32 X² / 2					
Soil Load:	w _{soil} = V _{soil} = M _{soil} =	-0 kips/ft -0 X -0 X² / 2					
Const. Surcharge:	w _{EQ} = V _{EQ} = M _{EQ} =	-2.4 kips/ft -2.4 X -2.4 X² / 2					
Uplift Load:	w _{uplift} =	0		Water Load:	w _{uplift} =	-0 kips/ft	
	V _{uplift} =	0			V _{uplift} =	-0 X	
	M_{uplift} =	0			M_{uplift} =	-0 X² / 2	
Conc. EQ:	w _{EQ} = V _{EQ} = M _{EQ} =	-0 kips/ft -0 X -0 X² / 2					
Pile P2:	V _{pile} = M _{pile} =	36.4 Kips 36.4 (X - 2 ft)	(after x = 2ft)				

Accomposition PI-WALL SECTIONS Computed by Description PI-WALL SECTIONS Computed by KCS-1 Slab Conc. Check Checked by * Given Information: Slab Thickness: 3.00 ft Slab Width: 10.00 ft

60632162

AML

JMH

Date

Date

Dec-20

Dec-20

References

* Shear Calculations:

1- Shear Capacity:

Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u)

Shear Capacity (ϕV_c):	φ _{shear} * 2 * √f' _c * b *	r d (ACI Eq. 11-3)
φ _{shear} = f' _c = b = d =	0.75 4 ksi 1 ft strip 2.20 ft	
φV _c = 30095.3 30.10	lbs kips	** φVc=30.1 ≥ Vu=5.4, Shear Capacity OK

Maurepas Swamp Project No. 60632162 Job **PI-WALL SECTIONS** Description Computed by AML Date Dec-20 KCS-1 Slab Conc. Check Checked by ЈМН Date Dec-20 References 2- Punching Shear Capacity (ACI 318-14 Table 22.6.5.2): Vc = minimum value = Eq. a: $4 \times J(f'_c) \times b_0 \times d$ for $\beta_c < 2.0$ Eq. b: $(2 + (4 / \beta_c)) \times \sqrt{(f'_c)} \times b_0 \times d$ for $\beta_c > 2.0$ Eq. c: $((a_s \times d) / b_0 + 2) \times J(f'_c) \times b_0 \times d$ b₀ / d effect based on a_s (interior column: $a_s = 40$, edge column: $a_s = 30$, corner column: $a_s = 20$) d for piles = 26.203 in (Slab thickness - 9" pile embed - cover - 0.5dbar) where β_c = Long side / Short side = b_0 = Perimeter of Critical Section = $\pi^*(D_{pile} + d)$ = 125.673 a_s = 20 (worst case - corner column) * For HP piles this b0 gives a conservative results Vc = minimum value = Eq. a: 833.07 kips 1249.61 kips Eq. b: 1285.02 kips Eq. c: φV_c = 624.81 kips Check corner pile failure to edge of slab: $D_{pile}/2+d/2 =$ 1.67 ft /2 + d/2 D_{pile} Diameter of corner failure = 1.667 + 2 ft 3.67 ft 2.00 Dia. punching shear calc above = 3.33 Diameter of punching shear calculation is smaller than the diameter of this corner failure area. Therefore, no re-check of corner punching failure is required. 30.10 kips φVc used in design = ** φVc = 30.1k≥ Vu = 5.4k, Shear Capacity OK Maximum Pile Reaction = 48.50

** φVc=625k≥ Vu=49k, Punching Shear Capacity OK

Job Maure	A spas Swamp	Project No.	60632162	-		
Description	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20	
	KCS-1					
Slab	Conc. Check	Checked by	ЈМН	Date	Dec-20	
				Re	ferences	

3- Deep Beam One-Way Shear Capacity (ϕV_{c1}):

For $(w/d) \ge 1.0$, a one-way (normal) shear investigation with loads outside the critical section (located at a distance d from the face of the column, b = footing width) and

$$v_c = 1.9\sqrt{f'_c} + 2500\rho_w \left(\frac{V_u d}{M_u}\right) \ge 2\sqrt{f'_c}$$
 (ACI Eq. 11-5)

which reduces for $\rho_w \approx 0.002$ and 3,000 psi $\leq f_c' \leq 4,000$ psi to $v_c = 1.9\sqrt{f_c'} + 0.1\sqrt{f_c'} (V_u d/M_u) \geq 2\sqrt{f_c'}$.

$$v_{c} = \left(\frac{d}{w}\right) \left[3.5 - 2.5\left(\frac{M_{u}}{V_{u}d}\right)\right] \left[1.9\sqrt{f_{c}'} + 0.1\sqrt{f_{c}'}\left(\frac{V_{u}d}{M_{u}}\right)\right] \\ \leq 10\sqrt{f_{c}'} \quad (\text{ACI Eq. 13-2})$$

For $(w/d) < 1.0, 1.0 > M_u/V_u d > 0; \infty > V_u d/M_u \ge 1.0$ (no limits on $M_u, V_u d$, other than above)

* Reinforcement Calculations:

Limit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5)							
where $p_b = 0.0285$ for f' _c = 4	1,000psi, fy = 60,000	psi					
Max Rebar = 0.00713 *b * d							
Maximum Reinforcement: 0.0071 * b * d =	2.26 in ²	per 1ft strip					
A _{gross} = 3 ft * 12 in/ft * 12 ir	1 30 jin ²	in ² (FM 1110-2-2104 293 temp & shrinkage)					
(3*[(f') *h*d)/f -	1.00 in ²	(ACT 318-14 9612 min for flexural members)					
	1.00 11						
(200^b^d)/t _y =	1.06 in-	(ACL 318-14, 9.6.1.2, min for flexural members)					
Min Reinforcement, temp & shrinkage:	0.65 in ²	per 1ft strip, per face					
Min Reinforcement, flexural:	1.06 in ²	per 1ft strip, per face					

					Re	ferences	
	Slab C	Conc. Check	Checked by	JMH	Date	Dec-20	
		KCS-1					
Descrip	tion	PI-WALL SECTIONS	Computed by	AML	Date	Dec-20	
Job	Maure	pas Swamp	Project No.	60632162	-		

* Moment Calculations:

* Capacity of Maximum Reinforcement: * #7 rebar is used for flexural reinforcement for slab, spacing varies

* #7 rebar is used for temp. & shrinkage reinforcement for slab, spacing varies A_s = 2.260 in² f_y = 60 ksi f'_c = 4 ksi b = 1 ft strip 2.20 d =

0.9

Proposed flexural reinforcement: #6@6 (A=0.88 in^2) Proposed temp. & shrinkage reinforcement: #7@6 (A= 1.20 in^2)

a =	$(A_s \times f_y) /$	' (0.85 x f	' _c x b)
=	3.324	in	
φMn =	3023.8	kip-in	
=	251.98	kip-ft	

 ϕ_{moment} =

** φMn=252 ≥ Mu=2.7, Section OK	ТОР
** φMn=252 ≥ Mu=4.9, Section OK	Bottom

Maurepaus Swamp

T-WALL SECTION

KCS-2 (Represents KCS-4)

AECOM Project : 60632162

Foundation, Wall & Slab

Computed by:	AML	Checked by:	JMH
Date:	Dec-20	Date:	Dec-20

Note: In this report, white boxes are for input data and colored boxes are calculated values.

KCS-2 and KCS-4 have been deemed to be equal and opposite.

KCS-2&4.xlsm

Job	Maurepaus Swamp		Project No.	60632162		
Description	T-WALL SECTION		Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4))	•		-	
	Assumptions		Checked by	JMH	Date	Dec-20
					F	References
Unit	t Weight of Storm Water =	0.0624	kcf			
	Wet Unit Weight of Soil =	0.1200	kcf			
	Sat Unit Weight of Soil =	0.0576	kcf			
	Unit Weight of Concrete =	0.1500	kcf			
	Impact Load =	0.0000	k/ft			
I	FS Wind force above SWL=	0.0500	ksf			
Constru	uction Surcharge Pressure =	0.2500	ksf			
Unbalanced	Load for Stability Analysis:					
	F _{cap} (k/f†) =	0.00	(10y SWL Case; Force acts	at bottom of sla	b)	
	F _{cap} (k/ft) =	0.00	(100y SWL Case; Force ac	ts at bottom of s	lab)	
	F _{cap} (k/ft) =	0.00	(Water to TOW Case; Ford	ce acts at bottom	of slab)	
	K _o , Granular fill =	0.95	(for lateral soil forces)			
Assu	med Reinforcement Cover =	0.25	ft			
	Assumed Wall d _{bar =}	0.08	ft			

Job	Maurepaus Swamp	Project No. 60632162
Descri	ption T-WALL SECTION	Computed by AML Date Dec-20
	KCS-2 (Represents KCS-4)	
	Load Cases	Checked by JMH Date Dec-20
		References

No. of Load Cases 3 Update

No.	DCD LC No.	Description	FS Water El.	PS Water El.	Pile Design Over Stresses
1	1	Construction Surcharge	7.89	7.89	1.17
2	2a	Water to TOW (impervious cutoff)	16.13	7.89	1.33
3	2b	Water to TOW (pervious cutoff)	16.13	7.89	1.33

* Impact load is not applicable for this section, so it is excluded from the load combinations

* Forces induced by 10y water elevation are not applicable for this section, so they are excluded from the load combinations

*Earthquake and Wave Loads are to be determined and are excluded from these calculations

	- '	Project NC	60632162		
Description T-WALL SECTION	- Co	mputed b	yAML	Date	Dec-20
KCS-2 (Represents KCS-4)					
Foundation Load Calculation	c	hecked b	у <u> ЈМН</u>	Date	Dec-20
				R	eferences
\ 4 /-:			FI OOD SIDE	1 1	PROTECTED SIDE
				★ b1 →	
Wall stem weight = $[(b_1 \times h_1) + 0.5(h_1-h_4)(b_3-b_1)] \gamma_{conc.}$				7	z
Wall Stem weight = 1.18	(кір/тт)		SWL Z		 AT
$X_{1} = [(A_1 \times X_{1} + A_2) + (A_2 \times X_{1} + A_2)]/(A_1 + A_2)$)		ODADE	-	1'
$X_{\text{cen}} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$	1		E KRADE		
Ncen - 1.5	1				GRADE
Base slab weight = $h_2 \times B \times \gamma_{conc.}$ =				A,	
Base slab weight = 4.5	(kip/ft)			<u>е X вз</u>	× b4
	-		E .		
X _{cen} = 0					
	-		В	^{/2} B	
<u>Soil Force (Dry &</u>	<u>Sat.):</u>	_			
FS Soil	PS Soil				
Water EL. EL.	EL.				
Dry 7.89 12.79	12.79				
Top of Wall EL. 16.13 12.79	12.79				
F.S. soll weight = $(D_2 \times N_5) \gamma_{soil}$] (kin (£+)	Danie			
F.S. soli weight = 1.31	(kip/11)		FLOOD SI	DE	PROTECTED SIDE
0.03		10.00		_ b1	J
$X = B/2 - b_0/2$,				, x
$X_{\rm con} = 2.13$	1	Drv			Z
2 13		TOW	0.5		
2,20	1			ADE	
P.S. soil weight = $[(b_4 \times h_3) + (BAT \times h_3^2)/21 v_{coll}]$			اي (CRADE
P.S. soil weight = 0.63	(kip/ft)	Dry			
0.63	(kip/ft)	TOW		oil Wt.	Soil Wt.
			<u>ר</u> ק צ		
$X_{cen} = [(A_r \times X_{cen-Ar}) + (A_t \times X_{cen-At})]/(A_r + A_t)$)	<i>L</i>			
X _{con} = -3.63	1	K _o Dry	x vV _{Soil} x H _{soil}	b2	b3 b4
-363	1	, TOW	K	<u> </u>	

paus Swamp	Project No. <u>60632162</u>			
T-WALL SECTION	Computed by	AML	Date	Dec-20
(Represents KCS-4)				
ation Load Calculation	Checked by	JMH	Date	Dec-20
			Re	eferences
	T-WALL SECTION (Represents KCS-4) ation Load Calculation	Daus Swamp Project No. T-WALL SECTION Computed by (Represents KCS-4) Checked by	Daus Swamp Project No. 60632162 T-WALL SECTION Computed by AML (Represents KCS-4) Checked by JMH	Daus Swamp Project No. 60632162 T-WALL SECTION Computed by AML Date (Represents KCS-4) Checked by JMH Date ation Load Calculation Checked by JMH Date

Job	Maurepaus Swamp	Project No.	60632162	_	
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)	-			
	Foundation Loads	Checked by	JMH	Date	Dec-20
		-		Reference	s

Foundation Loads

				 X-Cent.
<u>Dead Loads:</u>	Wall stem weight =	1.18	(kip/ft)	-1.50
	Base slab weight =	4.5	(kip/ft)	0.00

<u>Soil Forces:</u>	Water EL.	FS Soil EL.	PS Soil EL.	Wt. of FS Soil (k/ft)	X-Cent.	Wt. of PS Soil (k/ft)	X-Cent.	FS Soil Lateral Force (k/ft)	Z-Cent.	PS Soil Lateral Force (k/ft)	Z-Cent.
Dry	7.89	12.79	12.79	1.311	2.13	0.627	-3.63	-1.369	-1.63	1.369	-1.63
100 Yr. Water El.	0.0	12.79	12.79	1.311	2.13	0.627	-3.63	-1.369	-1.63	1.369	-1.63
Top of Wall EL.	16.1	12.79	12.79	0.629	2.13	0.627	-3.63	-0.657	-1.63	1.369	-1.63
10 Yr. Water El.	0.0	12.79	12.79	1.311	2.13	0.627	-3.63	-1.369	-1.63	1.369	-1.63

<u>Water Forces:</u>	Water EL.	Wt. of FS Water (k/ft)	X-Cent.	FS Water Lateral Force (k/ft)	Z-Cent.
100 Yr. Water El.	0.0	0.000	0.00	0.000	2.63
Top of Wall EL.	16.1	1.880	2.13	-2.118	-2.75
10 Yr. Water El.	0.0	0.000	0.00	0.000	2.63

Wind Force:

0.05 ksf × monolith height =

ght =	0.412	k/ft	Construction
	-0.167	k/ft	No Water
	-0.807	k/ft	100y SWL
	-0.807	k/ft	10y SWL

(Apply to PS)

Job	Maurepaus Swamp	Project No.	60632162	_	
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)				
	Foundation Loads	Checked by	JMH	Date	Dec-20
				Refer	ences

Surcharge Forces:	0.25 ksf * F.S. width =	1.438	k/ft	X _{Cen} =	2.13
	0.25 ksf * P.S. width =	0.688	k/ft	X _{Cen} =	-3.63
	-			-	

Unbalanced Load:

100y SWL	0.00	k/ft in (+) X Direction, acting at bottom of slab (Z-coordinate = 0)
TOW	0.00	k/ft in (+) X Direction, acting at bottom of slab (Z-coordinate = 0)
10y SWL	0.00	k/ft in (+) X Direction, acting at bottom of slab (Z-coordinate = 0)

-8.24

Impact Load:

<u>Uplift Loads:</u>

Impervious:

T.O.W. :	-3.34	k/ft
100 Yr. Water El. :	3.20	k/ft
10 Yr. Water El. :	3.20	k/ft

0.00

k/ft in (-) X Direction, acting at top of wall (Z-coordinate = TOW)

AECO	M					11 6
Job	Maurepaus Swamp	Project No.	60632162			
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20	
	KCS-2 (Represents KCS-4)					
	Foundation Loads	Checked by	JMH	Date	Dec-20	
				Reference	s	

Pervious:

T.O.W.	-2.57	k/ft
100 Yr. Water El.	2.46	k/ft
10 Yr. Water El. :	2.46	k/ft

Job Maurer	paus Swamp			Proj	ject No	o. <u>60632162</u>		
Description	T-WALL SECTION			Comp	uted b	y AML	Date	Dec-20
	KCS-2 (Represent	s KCS-4)						
Shear	& Moment Calculation	n on Wall		Chee	cked b	y <u>JMH</u>	Date	Dec-20
							R	eferences
Note: Shear is	s calculated at distan	ce d from	the bottom	of the w	all			
	d = wall thickness	s - cover ·	- (1/2)d _{bar} =	1.21	f†			
	Elev	vation of c	distance d =	12.10		88		
		<u>Soil Fa</u>	orce (Dry & S	<u>Sat.):</u>	_			
		Water	FS Soil	PS Soil				
		EL.	EL.	EL.				
	Dry	7.89	12.79	12.79	1			
	Top of Wall EL.	16.13	12.79	12.79	1			
F.S. soil lat	r.s. soil lat. for	the wall =	-0.03 -0.01 -0.21 -0.10	(kip/ft) (kip/ft) (kip/ft) (kip/ft)	Dry TOW Dry TOW	FLOOD SIDE		PROTECTED SID
		M = F	sail X Hsail/3					×
		M =	0.13	(k-f†/f†)	Dry		B	
			0.06	(k-f†/f†)	TOW	GRADE		1'
				1			7 \	
	P.S. soil lat. forc	e = 0.5 K	$\gamma_{soil} (H_{Soil})^2$			/	A	GRADE
	P.S. soil lat. for	rce at d =	0.03	(kip/ft)	Dry			
			0.03	(kip/f†)	TOW	ту / К ₀ х W ₅	Soil X H _{soil}	-k/
P.S. soil lat	. force at bottom of t	the wall =	0.21	(kip/ft)	Dry			
			0.21	(kip/ft)	TOW			
		M = F	_{Soil} x H _{Soil} /3					
		M =	-0.13	(k-ft/ft)	Dry			
			-0.13	(k-ft/ft)	TOW			

Wind Force:

Job	Maurepaus S	Swamp		Project No.	60632162	-	
escription	T-WALL SEC	CTION		Computed by	AML	Date	Dec-20
	KCS-2 (Repr	resents KCS-4)		Checked by	IML	Data	Dec 20
	201			Checked by	JIMIT	- Date Ref	erences
			LC1: Constr	ruction Surcharge			
Loads							
Dead Loads:				Deselect All			
		✓ Wall Stem Wt.	🗹 Base Slab Wt.				
<u>oil Forces:</u>							_
	Dry	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil Force	e 🗖 P.S.	Lat. Soil Force	
10 Y	'r. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil Force	e 🗖 P.S.	Lat. Soil Force	
100 እ	/r. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Forc	e 🗖 P.S.	Lat. Soil Force	
Τομ	p of Wall EL.	F.S. Soil Wt.	P.S. Soil Wt.	E F.S. Lat. Soil Force	e 🗖 P.S.	Lat. Soil Force)
<u>/ater Forces:</u>		E S Watan					5
10 እ	/r. Water El.	E E S Watan					-
100 Y	/r. Water El. n of Wall El						-
	5 01 Wull CE.	F.S. Water	🖾 F.S. Lat. Water				ノ
<u> Wind Force:</u>							
(Construction	P.S. Lat. Wind					4
	No Water	F.S. Lat. Wind					
10 Y	/r. Water El.	F.S. Lat. Wind					
100 Y	/r. Water El.	F.S. Lat. Wind)

100	waurepaus	owamp		Project NO.	00032102		
Description	T-WALL SE	CTION		Computed by	AML	Date	Dec-20
	KCS-2 (Rep	resents KCS-4)		Oha aha dhaa		-	D 00
	LC1			Checked by	JMH	Date _	Dec-20
Nave Force:						Г	
10) Yr. Water Fl.	🔲 F.S. Lat. Wave					
100) Yr. Water El.	🔲 F.S. Lat. Wave					
т	op of Wall EL.	🔤 F.S. Lat. Wave					J
arthquake F	orce						\leq
	MDE	Soil Ver. MDE	🗖 Soil Lat. MDE	Conc. Ver. MDE	Conc. Lat. MDE		
	OBE	Soil Ver. OBE	🗖 Soil Lat. OBE	Conc. Ver. OBE	🗖 Conc. Lat. OBE		J
Surcharge Fo	orces:						
		F.S. Surcharge	Force 🔽 P.S. Sur	charge Force			
<u> Inbalanced L</u>	.oad:						
							$\overline{}$
10) Yr. Water El.	Lat. Unbalance					
100) Yr. Water El.	🔤 Lat. Unbalance					
т	op of Wall EL.	Lat. Unbalance					\neg
impact Load:							_
	-	🗖 Lat. Impact for	rce				
<u>Uplift Loads:</u>		10y SWL Uplift	Pressure				
	Tmpervioue	🗖 100y SWL Upli [.]	ft				
	Tuber Mons	TOW Uplift Pro	essure				
		🗖 10y SWL Uplift	Pressure				
	Pervious	🖬 100y SWL Upli	ft				
		TOW Uplift Pro	essure)

AECO	M				
Job	Maurepaus Swamp	Project No.	60632162		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)			_	
	LC1	Checked by	JMH	Date	Dec-20
				R	eferences

Fx	Fy	Fz	'X' Centroid	'Y' Centroid	'Z' Centroid	M×	My	Mz	NOTES:
(kip/ft)	(kip/ft)	(kip/ft)	(f†)	(f†)	(f†)	(kip-ft/ft)	(kip-ft/ft)	(kip-ft/ft)	
0.00	0.00	1.18	-1.50	0.00	0.00	0.00	1.77	0.00	Wall stem weight
0.00	0.00	4.50	0.00	0.00	0.00	0.00	0.00	0.00	Base slab weight
						0.00	0.00	0.00	F.S. soil weight
						0.00	0.00	0.00	P.S. soil weight
						0.00	0.00	0.00	F.S. lateral soil force
						0.00	0.00	0.00	P.S. lateral soil force
						0.00	0.00	0.00	Vertical water force
						0.00	0.00	0.00	Lateral water force
						0.00	0.00	0.00	Wind load
						0.00	0.00	0.00	FS wave load
						0.00	0.00	0.00	Soil Vertical EQ force
						0.00	0.00	0.00	Soil Lateral EQ force
						0.00	0.00	0.00	Con. Vertical EQ force
						0.00	0.00	0.00	Con. Lateral EQ force
0.00	0.00	1.44	2.13	0.00	0.00	0.00	-3.06	0.00	F.S. Surcharge load
0.00	0.00	0.69	-3.63	0.00	0.00	0.00	2.49	0.00	P.S. Surcharge load
						0.00	0.00	0.00	Unbalanced load
						0.00	0.00	0.00	Impact load
						0.00	0.00	0.00	Hydrostatic uplift
0.000	0.000	7.806				0.000	1.208	0.000	SUM.

		•		,			
cription	T-WALL S	SECTION		Computed by	AML	Date	Dec-20
	KCS-2 (Re	epresents KCS	6-4)				
	LC1			Checked by	JMH	Date	Dec-20
						I	References
ear and	Moment	on the Wo	all	l Indata		Vu	0.00 (kips/ft)
e: enter loa	d factors			Opdate		Mu	0.00 (kips-ft/ft
Sail F	00000						
Load F	actor	Unfact. V	Unfact. M	Factor	ed V & M		
FS	1.6			V _u =	0.000	(kips/ft)	
PS	1.6			M _u =	0.000	(kips-ft/ft)	
Watan	Force			Factor	ad V&M		
Load F	actor	Unfact V	Unfact M	V -	0.000	(kins/ft)	
FS	16		Onfact. M	M., =	0.000	(kips-ft/ft)	
					0.000	(po 1.011)	
Wind F	Force:			Factor	ed V & M		
Load F	actor	Unfact. V	Unfact. M	V _u =	0.000	(kips/ft)	
FS	1.6			M _u =	0.000	(kips-ft/ft)	
Waxe F	Fonce ·			Factor	ed V & M		
Load F	actor	Unfact V	Unfact M	V =	0.000	(kins/ft)	
FS	1.6			M _u =	0.000	(kips-ft/ft)	
Earthquak	ke Force:			Factor	ed V & M	_	
Load F	actor	Unfact. V	Unfact. M	V _u =	0.000	(kips/ft)	
PS	1.6			M _u =	0.000	(kips-ft/ft)	
Impact	Force:			Factor	ed V & M		
Load F	actor	Unfact. V	Unfact. M	V _u =	0.000	(kips/ft)	
	1.6			M _u =	0.000	(kips-ft/ft)	

Job	Maurepaus	Swamp		Project No. 60	632162		
Description	T-WALL SE	CTION		Computed by	AML	Date	Dec-20
	KCS-2 (Rep	resents KCS-4)		Checked by		Data	Dec 20
	LC2				JIMIT	Date	Dec-20
			LC2: Water to To	OW (impervious cutoff)			
Loads							
				Deselect All			
Dead Loads:							_
		🔽 Wall Stem Wt.	🗹 Base Slab Wt.				J
Soil Forces:							
		E S Soil Wt	P.S. Soil Wt.	ESLat Soil Force	PS Lo	t Soil Force	
	Dry	_					-
10	Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Force	P.S. La	t. Soil Force	
100	Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Force	P.S. La	at. Soil Force	
То	n of Wall Fl	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Force	P.S. La	t. Soil Force	
Water Forces							く
	_	F.S. Water	🗖 F.S. Lat. Water				
10	Yr. Water El.	E S Water	ESLat Water				
100	yr. water El.						_
10	por wance.	F.S. Water	F.S. Lat. Water				\mathcal{I}
Wind Force:							
	Construction	P.S. Lat. Wind F	orce				
	No Water	F.S. Lat. Wind					
10	Yr. Water El.	F.S. Lat. Wind					
100	Vn Waten El	ESL at Wind					

Description	T-WALL SE	CTION		Computed by	AML	Date _	Dec-20
	LC2	resents KCS-4)		Checked by	JMH	Date	Dec-20
				•		- F	References
Vave Force:							
10	Yr. Water El.	🔤 F.S. Lat. Wave					
100	Yr. Water El.	🗖 F.S. Lat. Wave					
т	op of Wall EL.	🗖 F.S. Lat. Wave					J
arthquake Fo	orce:						\leq
	MDE	Soil Ver. MDE	🖻 Soil Lat. MDE	Conc. Ver. MDE	Conc. Lat. MDE		
	OBE	Soil Ver. OBE	🖸 Soil Lat. OBE	Conc. Ver. OBE	Conc. Lat. OBE		
Surcharge Fo	<u>rces:</u>						
		F.S. Surcharge	Force 🗖 P.S. Sur	charge Force			
nbalanced L	ad:						
							$\overline{}$
10	Yr. Water El.	Lat. Unbalance					_
100	Yr. Water El.	🔤 Lat. Unbalance					
Т	op of Wall EL.	Lat. Unbalance					\mathbb{J}
mpact Load:							_
puer boudi		🗖 Lat. Impact for	ce				
<u>Jplift Loads:</u>		10y SWL Uplift	Pressure				
	. .	100y SWL Upli	ft				
	Impervious	TOW Uplift Pre	essure				
		10y SWL Uplift	Pressure				
	Pervious	100y SWL Ublin	ft				
							1

AECC	M								
Job	Maurepaus	s Swamp			Project No.	60632162	-		
Description	T-WALL SE	ECTION			Computed by	AML	Date	Dec-20	
	KCS-2 (Rep	oresents KCS	S-4)				•		
	LC2				Checked by	JMH	Date	Dec-20	
								References	
F×	Fy	Fz	'X' Centroid	'Y' Centroid	'Z' Centroid	M×	Му	Mz	NOTES:
				10.5	10.5			1	

FX	гу	ΓZ	X Centrola	y centrola	Z Centrola	MX	////	MZ	NOTES:
(kip/ft)	(kip/ft)	(kip/ft)	(f†)	(f†)	(f†)	(kip-ft/ft)	(kip-ft/ft)	(kip-ft/ft)	
0.00	0.00	1.18	-1.50	0.00	0.00	0.00	1.77	0.00	Wall stem weight
0.00	0.00	4.50	0.00	0.00	0.00	0.00	0.00	0.00	Base slab weight
0.00	0.00	0.63	2.13	0.00	0.00	0.00	-1.34	0.00	F.S. soil weight
0.00	0.00	0.63	-3.63	0.00	0.00	0.00	2.27	0.00	P.S. soil weight
-0.66	0.00	0.00	0.00	0.00	-1.63	0.00	1.07	0.00	F.S. lateral soil force
1.37	0.00	0.00	0.00	0.00	-1.63	0.00	-2.24	0.00	P.S. lateral soil force
0.00	0.00	1.88	2.13	0.00	0.00	0.00	-4.00	0.00	Vertical water force
-2.12	0.00	0.00	0.00	0.00	-2.75	0.00	5.82	0.00	Lateral water force
						0.00	0.00	0.00	Wind load
						0.00	0.00	0.00	FS wave load
						0.00	0.00	0.00	Soil Vertical EQ force
						0.00	0.00	0.00	Soil Lateral EQ force
						0.00	0.00	0.00	Con. Vertical EQ force
						0.00	0.00	0.00	Con. Lateral EQ force
						0.00	0.00	0.00	F.S. Surcharge load
						0.00	0.00	0.00	P.S. Surcharge load
						0.00	0.00	0.00	Unbalanced load
						0.00	0.00	0.00	Impact load
0.00	0.00	-3.34	1.75	0.00	0.00	0.00	5.85	0.00	Hydrostatic uplift
-1.407	0.000	5.474				0.000	9.215	0.000	SUM.

כ	Maurepau	is Swamp		Floject No.	60632162	_	
scription	T-WALL S	ECTION		Computed by	AML	Date	Dec-20
	KCS-2 (Re	epresents KCS	-4)	-			
	LC2			Checked by	JMH	Date	Dec-20
						F	References
hear and	Moment	on the Wa	all	l Indote		Vu	-0.79 (kips/ft)
te: enter loa	d factors			Opdate		Mu	2.29 (kips-ft/ft
Sail E	once ·				l		
Load F	actor	Unfact. V	Unfact. M	Factore	2d V & M		
FS	1.6	-0.013	0.063	V _u =	0.023	(kips/ft)	
PS	1.6	0.027	-0.130	M _u =	-0.108	(kips-ft/ft)	
Water	Force:			Factore	:d V & M		
Load F	actor	Unfact. V	Unfact. M	V _u =	-0.811	(kips/ft)	
FS	1.6	-0.507	1.496	M _u =	2.394	(kips-ft/ft)	
Wind F	Force:			Factore	2d V & M	_	
Load F	actor	Unfact. V	Unfact. M	V., =	0.000	(kips/ft)	
FS	1			M _u =	0.000	(kips-ft/ft)	
Wave I	Force:			Factore	.d V & M		
Load F	actor	Unfact. V	Unfact. M	V,, =	0.000	(kips/ft)	
FS	1			M _u =	0.000	(kips-ft/ft)	
Forthquak	va Fanca:			Factors	d V & M		
	actor	Unfact V	Unfact M	V =		(kins/ft)	
PS	1			M ₁₁ =	0.000	(kips-ft/ft)	
					0.000		
Impact	Force:			Factore	ed V & M	_	
Load F	actor	Unfact. V	Unfact. M	V _u =	0.000	(kips/ft)	
FS	1			M _u =	0.000	(kips-ft/ft)	

Job	Maurepaus	Swamp			Project No. 6	0632162		
Description	T-WALL SE	CTION			Computed by	AML	Date	Dec-20
	KCS-2 (Rep	resents KCS-4)			Checked by	імн	Date	Dec-20
	203					51411	Ref	erences
			LC3: Water to	FOW (pe	ervious cutoff)		-	
ads								
				Dese	lect All			
edd Lodds:								
		Wall Stem Wt.	<mark>▼ Base Slab Wt</mark> .					J
il Forces:								
	Dav	F.S. Soil Wt.	P.S. Soil Wt.	F.	S. Lat. Soil Force	🗖 P.S. L	.at. Soil Force	
10) Vn Watan El	F.S. Soil Wt.	P.S. Soil Wt.	E F.	S. Lat. Soil Force	P.S. L	at. Soil Force	
10								
100) Yr. Water El.	F.S. Soil Wt.		E F.	S. Lat. Soil Force	P.S. L	Lat. Soil Force	4
т	op of Wall EL.	F.S. Soil Wt.	P.S. Soil Wt.	₽ F.	S. Lat. Soil Force	P.S. L	.at. Soil Force	J
Vater Forces	<u>s:</u>							\leq
10) Yr. Water Fl.	F.S. Water	F.S. Lat. Water					
100) Yr. Water El.	F.S. Water	🗖 F.S. Lat. Water					
т	op of Wall EL.	F.S. Water	🔽 F.S. Lat. Water					
/ind Force:								<u> </u>
	Construction	P.S. Lat. Wind F	orce					
	No Water	F.S. Lat. Wind						
		ESLat Wind						
10	yr. Water El.							-
100	yr. Water El.	Lar.S. Lat. Wind						ノ

ob	Maurepaus	Swamp		Project No.	60632162		
escription	T-WALL SE	CTION		Computed by	AML	Date	Dec-20
	KCS-2 (Rep	resents KCS-4)				-	
	LC3			Checked by	ЈМН	Date _	Dec-20
Vave Force:						F	
10	Yr. Water El.	🔤 F.S. Lat. Wave					
100	Yr. Water El.	🔲 F.S. Lat. Wave					
Та	op of Wall EL.	F.S. Lat. Wave					J
arthquake Fo	orce:						\leq
	MDE	Soil Ver. MDE	🗖 Soil Lat. MDE	Conc. Ver. MDE	🔽 Conc. Lat. MD	DE	
	OBE	Soil Ver. OBE	🗖 Soil Lat. OBE	Conc. Ver. OBE	🔽 Conc. Lat. OB	E	J
jurcharge For	<u>rces:</u>						
		F.S. Surcharge	Force 🔽 P.S. Sur	charge Force			
nbalanced La	ad:						
							$\overline{}$
10	Yr. Water El.	🔤 Lat. Unbalance					_
100	Yr. Water El.	Lat. Unbalance					
Та	op of Wall EL.	🗖 Lat. Unbalance					
<u>mpact_Loa</u> d:							
·		Lat. Impact for	ce				
							_
<u>plitt Loads:</u>		10y SWL Uplift	Pressure				
	Tmpervious	🗖 100y SWL Uplit	it in the second se				
	Tuber Mon2	TOW Uplift Pre	ssure				
		10y SWL Uplift	Pressure				
	Pervious	🗖 100y SWL Uplit	it i				
		TOW Uplift Pre	ssure)

AECO	M								
Job	Maurepaus	s Swamp			Project No.	60632162			
Description	T-WALL SE	ECTION			Computed by	AML	Date	Dec-20	
	KCS-2 (Rep	presents KCS	6-4)		Chooked by	IML	Data	Dec 20	
					Checked by	JIVIE	. Date	References	
				1					
F×	Fy	Fz	'X' Centroid	'Y' Centroid	'Z' Centroid	M×	My	Mz	NOTES:
(kip/ft)	(kip/ft)	(kip/ft)	(ft)	(ft)	(f†)	(kip-ft/ft)	(kip-ft/ft)	(kip-ft/ft)	

FX	гу	FZ	X Centrold	y centroid	Z Centrola	MX	Му	MZ	NOTES:
(kip/ft)	(kip/ft)	(kip/ft)	(f†)	(f†)	(f†)	(kip-ft/ft)	(kip-ft/ft)	(kip-ft/ft)	
0.00	0.00	1.18	-1.50	0.00	0.00	0.00	1.77	0.00	Wall stem weight
0.00	0.00	4.50	0.00	0.00	0.00	0.00	0.00	0.00	Base slab weight
0.00	0.00	0.63	2.13	0.00	0.00	0.00	-1.34	0.00	F.S. soil weight
0.00	0.00	0.63	-3.63	0.00	0.00	0.00	2.27	0.00	P.S. soil weight
-0.66	0.00	0.00	0.00	0.00	-1.63	0.00	1.07	0.00	F.S. lateral soil force
1.37	0.00	0.00	0.00	0.00	-1.63	0.00	-2.24	0.00	P.S. lateral soil force
0.00	0.00	1.88	2.13	0.00	0.00	0.00	-4.00	0.00	Vertical water force
-2.12	0.00	0.00	0.00	0.00	-2.75	0.00	5.82	0.00	Lateral water force
						0.00	0.00	0.00	Wind load
						0.00	0.00	0.00	FS wave load
						0.00	0.00	0.00	Soil Vertical EQ force
						0.00	0.00	0.00	Soil Lateral EQ force
						0.00	0.00	0.00	Con. Vertical EQ force
						0.00	0.00	0.00	Con. Lateral EQ force
						0.00	0.00	0.00	F.S. Surcharge load
						0.00	0.00	0.00	P.S. Surcharge load
						0.00	0.00	0.00	Unbalanced load
						0.00	0.00	0.00	Impact load
0.00	0.00	-2.57	1.67	0.00	0.00	0.00	4.29	0.00	Hydrostatic uplift
-1.407	0.000	6.245				0.000	7.652	0.000	SUM.

)	Maurepau	is Swamp			60632162	_	
scription	T-WALL S	ECTION		Computed by	AML	Date	Dec-20
	KCS-2 (Re	epresents KCS	5-4)	-			
	LC3			Checked by	JMH	Date	Dec-20
						F	References
near and	Moment	on the Wo	all	Undata		V _u	-0.79 (kips/ft)
te: enter loa	d factors			opuare		Mu	2.29 (kips-ft/ft
Soil F	orce:				L		
Load F	actor	Unfact. V	Unfact. M	Factore	:d V & M		
FS	1.6	-0.013	0.063	V _u =	0.023	(kips/ft)	
PS	1.6	0.027	-0.130	M _u =	-0.108	(kips-ft/ft)	
Water	Force:			Factore	:d V & M		
Load F	actor	Unfact. V	Unfact. M	V _u =	-0.811	(kips/ft)	
FS	1.6	-0.507	1.496	M _u =	2.394	(kips-ft/ft)	
Wind F	Force:			Factore	dV&M	_	
Load F	actor	Unfact. V	Unfact. M	V _u =	0.000	(kips/ft)	
FS	1			M _u =	0.000	(kips-ft/ft)	
Wave I	Force:			Factore	:d V & M		
Load F	actor	Unfact. V	Unfact. M	V _u =	0.000	(kips/ft)	
FS	1			M _u =	0.000	(kips-ft/ft)	
Earthquak	ke Force:			Factore	:d V & M		
Load F	actor	Unfact. V	Unfact. M	V ₁₁ =	0.000	(kips/ft)	
PS	1			M _u =	0.000	(kips-ft/ft)	
	•			· · · · ·			
Impact	Force			Factore	:d V & M		
Load F	factor	Untact. V	Unfact. M	V _u =	0.000	(kips/ft)	
FS	1			M _u =	0.000	(kips-ft/ft)	

Job -	Maurep	baus Swamp	Project No.	60589133	_	
Descrij	ption	T-WALL SECTION	Computed by	AML	Date	Dec-20
		KCS-2 (Represents KCS-4)				
	Summa	ary of Foundation Loads	Checked by	JMH	Date	Dec-20
					R	eferences

Load	F×	Fy	Fz	M×	My	Mz
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)
LC1	0.00	0.00	140.51	0.00	21.75	0.00
LC2	-25.32	0.00	98.54	0.00	165.87	0.00
LC3	-25.32	0.00	112.42	0.00	137.73	0.00

Job Maurep	aus Swamp	Project No. <u>60632162</u>		
Description	T-WALL SECTION	Computed by AML D	ate	Dec-20
	KCS-2 (Represents KCS-4)			
Soil & P	Pile Information Required for CPGA	Checked by JMH D	ate	Dec-20
				References

Pile Layout: 6 HP Piles

Row	<u>1</u>		Row	<u>2</u>	
pile no.	×	у	pile no.	×	у
1	3.00	-6.00	4	-3.00	-6.00
2	3.00	0.00	5	-3.00	0.00
3	3.00	6.00	6	-3.00	6.00

Tip Elevation:

(For CPGA, need Tip Elevation as a function of CPGA Axis at B.O. Slab, +Z points downward)

"TIP" in CPGA =	35.89	ft
Pile Tip EL =	-28	NAVD89
B.O.S. Elevation =	7.89	NAVD88
A, need Tip Elevatio	on as a tunc	tion of CP

<u>Pile Properties & Attributes</u>

Note: All soil properties and pile capacities are taken from 95% submittial for Maurepaus Intake Strutture

Allowable Compression (AC) =	30.00	kips
Allowable Tension (AT) =	18.00	kips
ACC =	492.66	kips
ATT =	535.00	kips
AM1 =	2972.22	kip-in
AM2 =	994.44	kip-in

T-WALL SECTION

KCS-2 (Represents KCS-4) Soil & Pile Information Required for CPGA

Description

Project No. 60632162

Computed by AML

JMH

Checked by

Date Dec-20

Date Dec-20

References

Project No. 60632162

Description	T-WALL SECTION		Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)		_		• –	
	CPGA Input & Output Files	(Pile Analysis)	Checked by	ЈМН	Date	Dec-20
Input file:						
100 M	ONOLITH, TOW EL. 16.13,	TOS EL.10.89;	HP 14X73 PI	LES		
200 P	ROP 29000 729 261 21.4 1	.7 0 ALL				
300 S	OIL ES 0.3805 TIP 35.89	0 ALL				
400 P	IN ALL					
500 A	LLOW H 30 18 492.7 535 2	972.2 994.4 A	LL			
700 F	OVSTR 1.17 1.17 1					
800 F	OVSTR 1.33 1.33 2 3					
900 B	ATTER 6 All					
1200	ANGLE 180 4 TO 6					
1400	PILE 1 3 -6 0					
1500	PILE 2 3 0 0					
1600	PILE 3 3 6 0					
1700	PILE 4 -3 -6 0					
1800	PILE 5 -3 0 0					
1900	PILE 6 -3 6 0					
4500	LOAD 1 0 0 140.5 0 21.7	0				
4600	LOAD 2 -25.3 0 98.5 0 16	5.9 0				
4700	LOAD 3 -25.3 0 112.4 0 1	37.7 0				
9000	FOUT 1 2 3 4 5 6 7 KCS2P	.DOC				
9100 1 9200 1	PFO ALL PLB ALL					

T-WALL SECTION	Computed by	AML	Date	Dec-20
KCS-2 (Represents KCS-4)	-			
CPGA Input & Output Files (Pile Analysis)	Checked by	JMH	Date	Dec-20
	T-WALL SECTION KCS-2 (Represents KCS-4) CPGA Input & Output Files (Pile Analysis)	T-WALL SECTION Computed by KCS-2 (Represents KCS-4) CPGA Input & Output Files (Pile Analysis) Checked by	T-WALL SECTION Computed by AML KCS-2 (Represents KCS-4) CPGA Input & Output Files (Pile Analysis) Checked by JMH	T-WALL SECTION Computed by AML Date KCS-2 (Represents KCS-4) CPGA Input & Output Files (Pile Analysis) Checked by JMH Date

CPGA RESULTS without Load Factors (pinned connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 15-DEC-20 RUN TIME: 10:07:37

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 6 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

				Х		Y		Z
WITH	DIAGONAL	COORDINATES	= (-3.00	,	-6.00	,	0.00)
			(3.00	,	6.00	,	0.00)

PILE PROPERTIES AS INPUT

 E
 I1
 I2
 A
 C33
 B66

 KSI
 IN**4
 IN**2
 0.21400E+02
 0.17000E+01
 0.00000E+02

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

Job	Maurepa	us Swamp		_		Project	No. 60632	162	
Descriptio	on	T-WALL SE		-		Computed	by AM	L Date	Dec-20
	1	CPGA Inpu	presents KCS-4) It & Output Files	(Pile Analy	sis)	Checked	by_JM	H Date	Dec-20
ES	ESOII	LENGI	'H L	LU	1				
	K/IN**	2	FT	FT	I.				
	0.38050	E+00 T	0.35890E+	02 0.000	00E+00				
ESOIL(K/IN	ORIGINAI) RGROU	JP RCYCLIC						
0.380	50E+00	0.1000)E+01 0.1000E+	01					
THIS SO	IL DESCF	RIPTION APPI	LIES TO THE FO	LLOWING PI	LES -				
ALL									
*****	* * * * * * * *	******	*****	* * * * * * * * * *	* * * * * * *	********	*******	* * * * * *	
	PILE S	TIFFNESSES	AS CALCULATED	FROM PROP	ERTIES				
0 1706	07.00		0.00007.00	0.000007.			0.00000		
0.1/96	0E+02 (.00000E+00	0.00000E+00	0.00000E+	00 0.0	00000E+00	0.00000	E+00	
0.0000	000000000000000000000000000000000000000	00000E+02	0.00000E+00	0.00000E+		00000E+00	0.00000	E+00	
0.0000	000000000000000000000000000000000000000	00000E+00	0.24163E+04	0.00000E+		00000E+00	0.00000	E+00	
0.0000	000000000000000000000000000000000000000	0.00000E+00	0.00000E+00	0.00000E+	00 0.0	00000E+00	0.00000	E+00	
0.0000	000000000000000000000000000000000000000	00000E+00	0.00000E+00	0.00000E+	00 0.0	000001000	0.00000	E+00	
0.0000	0E+00 (.00000E+00	0.00000E+00	0.00000E+	00 0.0	1000011+00	0.00000	£+00	
THIS MA	TRIX APE	LIES TO THE	E FOLLOWING PI	les -					
1									
1									
*****	******	*******	******	* * * * * * * * * *	******	********	*******	* * * * * *	
	PILE G	GEOMETRY AS	INPUT AND/OR	GENERATED					
		37	7.	batter A	NGLE	LENGTH E	TIXITY		
NUM	Х	I	_						
NUM	X FT	I FT	FT			FΤ			
NUM 1	x FT 3.00	rT -6.00	FT 0.00	6.00	0.00	FT 36.39	P		
1 2	X FT 3.00 3.00	rT -6.00 0.00	FT 0.00 0.00	6.00 6.00	0.00	FT 36.39 36.39	P P		
1 2 3	x FT 3.00 3.00 3.00	FT -6.00 0.00 6.00	FT 0.00 0.00 0.00	6.00 6.00 6.00	0.00 0.00 0.00	FT 36.39 36.39 36.39	P P P		
1 2 3 4	x FT 3.00 3.00 3.00 -3.00	FT -6.00 0.00 6.00 -6.00	FT 0.00 0.00 0.00 0.00	6.00 6.00 6.00 6.00 1	0.00 0.00 0.00 80.00	FT 36.39 36.39 36.39 36.39	P P P		
1 2 3 4 5	x FT 3.00 3.00 3.00 -3.00 -3.00	FT -6.00 0.00 6.00 -6.00 0.00	FT 0.00 0.00 0.00 0.00 0.00	6.00 6.00 6.00 6.00 1 6.00 1	0.00 0.00 0.00 80.00 80.00	FT 36.39 36.39 36.39 36.39 36.39 36.39	P P P P		

Description	T-WALL SECTION		Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)		_		_	
	CPGA Input & Output Files (Pil	e Analysis)	Checked by	ЈМН	Date	Dec-20
218.31						

APPLIED	LOADS	

LOAD CASE	PX K	PY K	PZ K	MX FT-K	MY FT-K	MZ OVERSTRESS FT-K COM TEN
1	0.0	0.0	140.5	0.0	21.7	0.0 1.17 1.17
2	-25.3	0.0	98.5	0.0	165.9	0.0 1.33 1.33
3	-25.3	0.0	112.4	0.0	137.7	0.0 1.33 1.33

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.15654E-03	-0.84008E+05	0.00000E+00	0.34106E-12	-0.43483E-05	0.49673E+03
-0.34106E-11	0.10222E-02	0.00000E+00	0.28394E-04	0.13937E+03	-0.43483E-05
-0.10222E-02	0.00000E+00	0.00000E+00	0.14109E+05	0.28394E-04	0.56843E-12
-0.13970E-08	0.00000E+00	0.48761E+08	0.00000E+00	0.00000E+00	0.0000E+00
-0.36799E-01	0.18285E+08	0.00000E+00	0.00000E+00	0.10222E-02	-0.84008E+05
0.18973E+07	-0.36799E-01	-0.13970E-08	-0.10222E-02	-0.34106E-11	0.15654E-03

6 PILES 3 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.

Job	Maurepau	s Swamp			Project N	o. 60632162		
Descrip	otion	T-WALL SECT	ION		Computed	by AML	Date	Dec-20
		KCS-2 (Repres	ents KCS-4) Output Files (F	vile Analysis)	Checked	by JMH	Date	Dec-20
	PILE CA	AP DISPLACEMEN	TS					
LOAD								
CASE	DX	DY	DZ	RX	RY	RZ		
	IN	IN	IN	RAD	RAD	RAD		
1	0.1080E-C	01 -0.2160E-08	0.9958E-02	0.1637E-27	0.6385E-04	0.5712E-11		
2	-0.1458E+0	0 -0.1857E-08	0.6981E-02	0.1407E-27	-0.5610E-03	0.4910E-11		
3	-0.1598E+C	00 -0.1887E-08	0.7967E-02	0.1429E-27	-0.6440E-03	0.4989E-11		
* * * * *	*****	*****	*****	* * * * * * * * * * * * *	* * * * * * * * * * * * * *	****		
	EI	ASTIC CENTER	INFORMATION					
ELAST	IC CENTER I	N PLANE X-Z	Х	Z				
			FT	FT				
			0.00	0.00				
* * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * *		
	PILE FC	RCES IN LOCAL	GEOMETRY					
	М1	& M2 NOT AT F	ILE HEAD FOR	PINNED PILE	S			
	* I	NDICATES PILE	FAILURE					
	# 1	NDICATES CBF	BASED ON MOME	ENTS DUE TO				
		(F3*	EMIN) FOR CON	NCRETE PILES				
	BI	NDICATES BUCK	LING CONTROLS	3				
LOAD	CASE - 1							
PILE	Fl	F2 F3	Ml	M2	M3 ALF CE	3F		
	K	K K	IN-K	IN-K	IN-K			

1	0.2	0.0	22.5	0.0	-5.1	0.0 0.64 0.04
2	0.2	0.0	22.5	0.0	-5.1	0.0 0.64 0.04
3	0.2	0.0	22.5	0.0	-5.1	0.0 0.64 0.04
4	-0.2	0.0	24.9	0.0	6.9	0.0 0.71 0.05
5	-0.2	0.0	24.9	0.0	6.9	0.0 0.71 0.05
6	-0.2	0.0	24.9	0.0	6.9	0.0 0.71 0.05

Job	Maure	oaus Swa	mp		-		Proje	ct No.	60632162		
Descrip	otion	T-WALL SECTION KCS-2 (Represents KCS-4)			-	с	omput	ed by	AML	Date	Dec-20
					_			-		_	
		CPG	A Input & C	Output Files	(Pile Analysis)		Check	ed by	JMH	Date	Dec-20
LOAD	CASE -	2									
PILE	F1	F2	F3	M1	M2	М3	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-2.7	0.0	6.9	0.0	81.0	0.0	0.17	0.07			
2	-2.7	0.0	6.9	0.0	81.0	0.0	0.17	0.07			
3	-2.7	0.0	6.9	0.0	81.0	0.0	0.17	0.07			
4	2.6	0.0	26.4	0.0	-79.8	0.0	0.66	0.10			
5	2.6	0.0	26.4	0.0	-79.8	0.0	0.66	0.10			
LOAD	CASE -	3									
PILE	F1	F2	F3	M1	М2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-2.9	0.0	10.7	0.0	89.0	0.0	0.27	0.08			
2	-2.9	0.0	10.7	0.0	89.0	0.0	0.27	0.08			
3	-2.9	0.0	10.7	0.0	89.0	0.0	0.27	0.08			
4	2.9	0.0	27.2	0.0	-87.5	0.0	0.68	0.11			
5	2.9	0.0	27.2	0.0	-87.5	0.0	0.68	0.11			
~	2 0	0 0	27 2	0 0	-87 5	0 0	0 68	0 11			

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1	3.9	0.0	22.2	0.0	0.0	0.0
2	3.9	0.0	22.2	0.0	0.0	0.0
3	3.9	0.0	22.2	0.0	0.0	0.0
4	-3.9	0.0	24.6	0.0	0.0	0.0
5	-3.9	0.0	24.6	0.0	0.0	0.0
6	-3.9	0.0	24.6	0.0	0.0	0.0

Description	Description	T-WALL SECTION		-	c	Computed by	AML	Date	Dec-20
		KCS-2 (Repre	esents KCS-4)	-		· · · -	-		
		CPGA Input &	Output Files	(Pile Analys	is)	Checked by	ЈМН	Date	Dec-20
LOAD CASE	- 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-1.5	0.0	7.2	0.0	0.0	0.0			
2	-1.5	0.0	7.2	0.0	0.0	0.0			
3	-1.5	0.0	7.2	0.0	0.0	0.0			
4	-6.9	0.0	25.6	0.0	0.0	0.0			
5	-6.9	0.0	25.6	0.0	0.0	0.0			
6	-6.9	0.0	25.6	0.0	0.0	0.0			
LOAD CASE	- 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-1.1	0.0	11.1	0.0	0.0	0.0			
2	-1.1	0.0	11.1	0.0	0.0	0.0			
3	-1.1	0.0	11.1	0.0	0.0	0.0			
4	-7.3	0.0	26.4	0.0	0.0	0.0			
5	-7.3	0.0	26.4	0.0	0.0	0.0			
6	-7.3	0.0	26.4	0.0	0.0	0.0			

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)	-			
	CPGA Input & Output Files (Pile Anal	ysis) Checked by _	JMH	Date	Dec-20

CPGA RESULTS without Load Factors (fixed connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 15-DEC-20 RUN TIME: 10:08:14

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 6 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-6.00 ,	0.00)
(3.00 ,	6.00 ,	0.00)

PILE PROPERTIES AS INPUT

E I1 I2 A C33 B66 KSI IN**4 IN**2 0.29000E+05 0.72900E+03 0.26100E+03 0.21400E+02 0.17000E+01 0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by	JMH	Date	Dec-20

SOIL DESCRIPTIONS AS INPUT

ES	ESOIL	LENGTH	L	LU
	K/IN**2		FT	FT
	0.38050E+00	Т	0.35890E+02	0.00000E+00

ESOIL(ORIGINAL) RGROUP RCYCLIC K/IN**2 0.38050E+00 0.1000E+01 0.1000E+01

THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -

ALL

PILE STIFFNESSES AS CALCULATED FROM PROPERTIES

```
        0.35937E+02
        0.0000E+00
        0.0000E+00
        0.16971E+04
        0.0000E+00

        0.0000E+00
        0.46458E+02
        0.0000E+00
        -0.28362E+04
        0.0000E+00
        0.0000E+00

        0.0000E+00
        0.0000E+00
        0.24163E+04
        0.0000E+00
        0.0000E+00
        0.0000E+00

        0.0000E+00
        -0.28362E+04
        0.0000E+00
        0.34630E+06
        0.0000E+00
        0.0000E+00

        0.16971E+04
        0.0000E+00
        0.0000E+00
        0.16028E+06
        0.0000E+00

        0.16971E+04
        0.0000E+00
        0.0000E+00
        0.0000E+00
        0.16028E+06
        0.0000E+00

        0.0000E+00
        0.0000E+00
        0.0000E+00
        0.0000E+00
        0.0000E+00
        0.0000E+00
```


Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)	-			
	CPGA Input & Output Files (Pile Analysis)	Checked by	JMH	Date	Dec-20

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	X FT	Y FT	Z FT	BATTER	ANGLE	LENGTH FT	FIXITY
1	3.00	-6.00	0.00	6.00	0.00	36.39	F
2	3.00	0.00	0.00	6.00	0.00	36.39	F
3	3.00	6.00	0.00	6.00	0.00	36.39	F
4	-3.00	-6.00	0.00	6.00	180.00	36.39	F
5	-3.00	0.00	0.00	6.00	180.00	36.39	F
6	-3.00	6.00	0.00	6.00	180.00	36.39	F

```
218.31
```

APPLIED LOADS

LOAD	PX	PY	ΡZ	MX	MY	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0 0	0.0	140 5	0 0	21 7	0 0 1 17 1 17
2	-25.3	0.0	98.5	0.0	21.7	0.0 1.33 1.33
3	-25.3	0.0	112.4	0.0	137.7	0.0 1.33 1.33

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by	JMH	Date	Dec-20

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.60163E+03	-0.39288E-05	0.22737E-12	-0.82036E-04	-0.73334E+05	0.10740E-03
-0.39288E-05	0.27875E+03	0.28182E-04	-0.16786E+05	0.10966E-02	-0.18190E-11
0.45475E-12	0.28182E-04	0.14112E+05	0.20369E-04	-0.29104E-10	-0.10145E-02
-0.82036E-04	-0.16786E+05	0.20369E-04	0.50793E+08	-0.12164E-01	-0.13970E-08
-0.73334E+05	0.10966E-02	-0.29104E-10	-0.12164E-01	0.19371E+08	-0.43577E-01
0.10740E-03	-0.13642E-11	-0.10145E-02	-0.13970E-08	-0.43577E-01	0.26981E+07

6 PILES 3 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSI	ON	=	0.
LOAD	CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSI	ON	=	0.
LOAD	CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSI	ON	=	0.
****	* * * * * * * *	* * * * :	* * * * * * *	* * * *	* * * * * * * *	****	* * * *	* * * * * * * *	***	*****	***	*****	* * :	* * * * ;	* * * *
	PIL	e cai	P DISPL	ACEN	MENTS										
LOAD															
CASE	D	x	1	DY		DZ		RX		I	RY			RZ	
	II	N	:	IN		IN		RAD		RA	AD		I	RAD	
1	0.3043	3E-02	2 -0.10	83E-	-08 0.99	56E-	02 -	0.3510E-	-12	0.249	96E-	-04 0	.40)26E-	-11
2	-0.5482	2E-03	1 -0.10	95E-	-08 0.69	80E-	02 -	0.4783E-	-12	-0.104	18E-	-03 0	.3	L15E-	-11
3	-0.5878	8E-03	1 -0.112	24E-	-08 0.79	65E-	02 -	0.5025E-	-12	-0.13	72E-	-03 0	.31	L18E-	-11

ELASTIC CENTER INFORMATION

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Job	Maure	epaus Swa	mp		-		Proje	ect No.	60632162		
Descrip	otion	T-W	ALL SECTIO	ON	-	с	ompu	ted by	AML	Date	Dec-20
		KCS	-2 (Represe	ents KCS-4)	-						
		CPG	A Input & C	Output Files	(Pile Analysis)		Checl	ked by _	JMH	Date	Dec-20
	PIL	E FORCES	IN LOCAL	GEOMETRY							
		M1 & M2	NOT AT PI	LE HEAD FO	R PINNED PIL	ES					
		* INDICA	ATES PILE	FAILURE							
		# INDICA	ATES CBF E	BASED ON MC	MENTS DUE TO						
		D INDICI	(F3*E	MIN) FOR C	CONCRETE PILE	S					
		B INDIC	ILS BUCKI	ING CONTRO	20						
LOAD	case -	1									
PILE	F1	F2	F3	М1	М2	М3	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	0.1	0.0	22.8	0.0	6.6	0.0	0.65	0.05			
2	0.1	0.0	22.8	0.0	6.6	0.0	0.65	0.05			
3	0.1	0.0	22.8	0.0	6.6	0.0	0.65	0.05			
4	-0.2	0.0	24.7	0.0	-12.1	0.0	0.70	0.05			
5	-0.2	0.0	24.7	0.0	-12.1	0.0	0.70	0.05			
6	-0.2	0.0	24.7	0.0	-12.1	0.0	0.70	0.05			
LOAD	case -	2									
PILE	F1	F2	F3	M1	М2	М3	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-2.2	0.0	3.8	0.0	-111.6	0.0	0.10	0.09			
2	-2.2	0.0	3.8	0.0	-111.6	0.0	0.10	0.09			
3	-2.2	0.0	3.8	0.0	-111.6	0.0	0.10	0.09			
4	2.1	0.0	29.4	0.0	107.7	0.0	0.74	0.13			
5	2.1	0.0	29.4	0.0	107.7	0.0	0.74	0.13			
6	2.1	0.0	29.4	0.0	107.7	0.0	0.74	0.13			
LOAD	case -	3									
PILE	Fl	F2	F3	M1	M2	М3	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-2.4	0.0	7.4	0.0	-124.0	0.0	0.19	0.11			
2	-2.4	0.0	7.4	0.0	-124.0	0.0	0.19	0.11			
3	-2.4	0.0	7.4	0.0	-124.0	0.0	0.19	0.11			
4	2.3	0.0	30.6	0.0	119.5	0.0	0.77	0.14			
5	2.3	0.0	30.6	0.0	119.5	0.0	0.77	0.14			
6	2.3	0.0	30.6	0.0	119.5	0.0	0.77	0.14			
* * * * *	* * * * * * *	* * * * * * * * *	********	* * * * * * * * * * *	* * * * * * * * * * * *	* * * * *	* * * * *	* * * * * *	* * * * * * * * * * *		

PILE FORCES IN GLOBAL GEOMETRY

Description		T-WALL SEC	ΓΙΟΝ	-	c	omputed by	AML	Date	Dec-20
1		KCS-2 (Repre	sents KCS-4)	_		_			
		CPGA Input 8	Output Files	(Pile Anal	ysis)	Checked by	JMH	Date	Dec-20
LOAD CASE	- 1								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	3.8	0.0	22.5	0.0	6.6	0.0			
2	3.8	0.0	22.5	0.0	6.6	0.0			
3	3.8	0.0	22.5	0.0	6.6	0.0			
4	-3.8	0.0	24.4	0.0	12.1	0.0			
5	-3.8	0.0	24.4	0.0	12.1	0.0			
6	-3.8	0.0	24.4	0.0	12.1	0.0			
LOAD CASE	- 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-1.5	0.0	4.2	0.0	-111.6	0.0			
2	-1.5	0.0	4.2	0.0	-111.6	0.0			
3	-1.5	0.0	4.2	0.0	-111.6	0.0			
4	-6.9	0.0	28.7	0.0	-107.7	0.0			
5	-6.9	0.0	28.7	0.0	-107.7	0.0			
0	0.9	0.0	20.7	0.0	107.7	0.0			
LOAD CASE	- 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-1.1	0.0	7.7	0.0	-124.0	0.0			
2	-1.1	0.0	7.7	0.0	-124.0	0.0			
3	-1.1	0.0	7.7	0.0	-124.0	0.0			
4	-7.3	0.0	29.8	0.0	-119.5	0.0			
5	-7.3	0.0	29.8	0.0	-119.5	0.0			
6	-7.3	0.0	29.8	0.0	-119.5	0.0			

9200 PLB ALL

Project No. 60632162 Maurepaus Swamp **T-WALL SECTION** Description Computed by AML Dec-20 Date KCS-2 (Represents KCS-4) CPGA Input & Output Files (Concrete Design) Checked by JMH Date Dec-20 Input file: 100 MONOLITH, TOW EL. 16.13, TOS EL.10.89; HP 14X73 PILES 200 PROP 29000 729 261 21.4 1.7 0 ALL 300 SOIL ES 0.3805 TIP 35.89 0 ALL 400 PIN ALL 500 ALLOW H 30 18 492.7 535 2972.2 994.4 ALL 700 FOVSTR 1 1 1 800 FOVSTR 1 1 2 3 900 BATTER 6 All 1200 ANGLE 180 4 TO 6 1400 PILE 1 3 -6 0 1500 PILE 2 3 0 0 1600 PILE 3 3 6 0 1700 PILE 4 -3 -6 0 1800 PILE 5 -3 0 0 1900 PILE 6 -3 6 0 4500 LOAD 1 0 0 224.8 0 34.8 0 4600 LOAD 2 -40.5 0 157.7 0 265.4 0 4700 LOAD 3 -40.5 0 179.9 0 220.4 0 9000 FOUT 1 2 3 4 5 6 7 KCS2SC.DOC 9100 PFO ALL

Job N	laurepaus Swamp	Project No.	60632162		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)	-			
	CPGA Input & Output Files (C	concrete Design) Checked by	JMH	Date	Dec-20

CPGA RESULTS with Load Factors

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 15-DEC-20 RUN TIME: 10:08:53

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.10.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 6 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

				Х		Y		Z	
WITH I	DIAGONAL	COORDINATES	= (-3.00	,	-6.00	,	0.00)
			(3.00	,	6.00	,	0.00)

PILE PROPERTIES AS INPUT

E	I1	I2	A	C33	B66
KSI	IN**4	IN**4	IN**2		
0.29000E+05	0.72900E+03	0.26100E+03	0.21400E+02	0.17000E+01	0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

		60632162	Project No.		_		/amp	epaus Sv	Maure	Job
Dec-2	Date	AML	Computed by		_	ION	VALL SECT	T-\	cription	Descr
	_)	sents KCS-4	S-2 (Repres	к	•	
Dec-2	Date _	JMH	Checked by	e Design)	(Concret	Output Files	GA Input &	CF		
						3 INPUT	IPTIONS AS	L DESCR	SOII	
				LU		L	LENGTH	SOIL	ES ES(E
				FT		FT		N**2	K/II	
				0000E+00	02 0.	0.35890E+	Т	8050E+00	0.380	
					2	RCYCLIC	RGROUP	INAL)	SOIL(ORIGI) K/IN**2	ESO K
					-01	0.1000E+	0.1000E+0	00	0.38050E+00	0.
				PILES -	DLLOWING	3 TO THE FO	ON APPLIES	SCRIPTI	IS SOIL DES	THIS
									ALL	
		* * * * * * * * * * * *	*****	*****	******	* * * * * * * * * * * *	* * * * * * * * * *	******	****	* * * *
				OPERTIES	FROM P	CALCULATEI	NESSES AS	LE STIFF	PILI	
		.00000E+00	0000E+00 0)E+00 0.(0.0000	.00000E+00	00E+00 0.	2 0.000	.17968E+02	0.1
		.00000E+00	0000E+00 0)E+00 0.0	0.0000	.00000E+00	29E+02 0.	0.232	.00000E+00	0.0
		.00000E+00	0000E+00 0)E+00 0.0	0.0000	.24163E+04	00E+00 0.	0.000	.00000E+00	0.0
		.00000E+00	0000E+00 0)E+00 0.(0.0000	.00000E+00	00E+00 0.	0.000	.00000E+00	0.0
		.00000E+00	0000E+00 0)E+00 0.(0.0000	.00000E+00	00E+00 0.	0.000	.00000E+00	0.0
		.00000E+00	0000E+00 0)E+00 0.(0.0000	.00000E+00	00E+00 0.	0.000	.00000E+00	0.0
					les -	OLLOWING P!	TO THE FO	APPLIES	IS MATRIX A	THIS
									1	
		* * * * * * * * * * * *	******	*******	******	* * * * * * * * * * *	* * * * * * * * * *	******	* * * * * * * * * * *	****
				D.	GENERAT	PUT AND/OR	TRY AS INI	LE GEOME	PILI	
		ITY	LENGTH FIX	ANGLE	BATTER	Z	Y	ζ.	M X	NUM
			FT			FT	FT	1	FT	
			26.20 -	0.00	C 00	0.00	C 00	0.0	1 .	4
			36.39 P	0.00	6.00	0.00	-6.00		т 3.(о	1 C
			36.39 P	0.00	6.00	0.00	0.00	.00	∠ 3.0	2
			36.39 P	0.00	6.00	0.00	6.00		3.(3
			36.39 P	180.00	6.00	0.00	-6.00	.00	4 -3.0	4
			36.39 P	180.00	6.00	0.00	0.00	00	5 -3.0	5
			36.39 P	180.00	6.00	0.00	6.00	.00	6 -3.0	6
			36.39 P 36.39 P 36.39 P 36.39 P 36.39 P 36.39 P	0.00 0.00 180.00 180.00 180.00	6.00 6.00 6.00 6.00 6.00	0.00 0.00 0.00 0.00 0.00	0.00 6.00 -6.00 0.00 6.00	00 00 00 00	2 3.0 3 3.0 4 -3.0 5 -3.0 6 -3.0	2 3 4 5 6

218.31

-WALL SEC CCS-2 (Repr PGA Input of APP PY K 0.0 0.0 0.0 0.0	CTION resents KCS-4 & Output Files ************************************	MX FT-K 0.0 0.0 0.0	Comp esign) Che ************************************	MZ FT-K 0.0 0.0	ML YH	Date	Dec-20
CCS-2 (Repr PGA Input of APP PY K 0.0 0.0 0.0 0.0	A Contraction of the second se	 (Concrete De мх FT-К 0.0 0.0 0.0 0.0	MY FT-K 34.8 265.4 220.4	MZ FT-K 0.0 0.0	<u>WH</u>	Date	Dec-20
PGA Input *********** APP PY K 0.0 0.0 0.0 0.0	& Output Files	MX FT-K 0.0 0.0 0.0	ANY FT-K 34.8 265.4 220.4	MZ FT-K 0.0 0.0	<u>WH</u>	Date _	Dec-20
APP PY K 0.0 0.0 0.0 0.0	**************************************	MX FT-K 0.0 0.0 0.0 0.0	MY FT-K 34.8 265.4 220.4	MZ FT-K 0.0 0.0	****		
APP PY K 0.0 0.0 0.0 0.0	**************************************	MX FT-K 0.0 0.0 0.0 0.0	MY FT-K 34.8 265.4 220.4	MZ FT-K 0.0 0.0	****		
APP FY K 0.0 0.0 0.0 0.0	LIED LOADS PZ K 224.8 157.7 179.9	MX FT-K 0.0 0.0 0.0	MY FT-K 34.8 265.4 220.4	MZ FT-K 0.0 0.0			
PY K 0.0 0.0 0.0	PZ K 224.8 157.7 179.9	MX FT-K 0.0 0.0 0.0	MY FT-K 34.8 265.4 220.4	MZ FT-K 0.0 0.0			
K 0.0 0.0 0.0	K 224.8 157.7 179.9	FT-K 0.0 0.0 0.0	FT-K 34.8 265.4 220.4	FT-K 0.0 0.0			
0.0 0.0 0.0	224.8 157.7 179.9	0.0 0.0 0.0	34.8 265.4 220.4	0.0			
0.0	157.7 179.9	0.0	265.4 220.4	0.0			
0.0	179.9	0.0	220.4	0 0			
				0.0			
PILE GROU 8483E-05 8937E+03 8394E-04 0000E+00 0222E-02 106E-11 -	P STIFFNESS 0.34106E-12 0.28394E-04 0.14109E+05 0.00000E+00 0.00000E+00 0.10222E-02	MATRIX 0.00000E+0 0.00000E+0 0.48761E+0 0.00000E+0 -0.13970E-0	00 -0.84008F 00 0.10222F 00 0.00000F 08 0.00000F 00 0.18285F 08 -0.36799F	E+05 0.1565 E-02 -0.3410 E+00 -0.1022 E+00 -0.1397 E+08 -0.3679 E-01 0.1897	4E-03 6E-11 2E-02 0E-08 9E-01 3E+07		
6 PIL	ES 3 LOAD	CASES					
IUMBER OF	FAILURES =	6. NUMBER	COF PILES 1	IN TENSION =	0.		
UMBER OF	FAILURES =	3. NUMBER	R OF PILES 1	IN TENSION =	0.		
			OF PILES 1	N TENSION =	0.		
	PILE GROU 4483E-05 3937E+03 394E-04 0000E+00 222E-02 1006E-11 - 6 PIL IUMBER OF	PILE GROUP STIFFNESS 4483E-05 0.34106E-12 937E+03 0.28394E-04 394E-04 0.14109E+05 0000E+00 0.00000E+00 222E-02 0.00000E+00 106E-11 -0.10222E-02 6 PILES 3 LOAD IUMBER OF FAILURES =	PILE GROUP STIFFNESS MATRIX 4483E-05 0.34106E-12 0.00000E+0 3937E+03 0.28394E-04 0.00000E+0 394E-04 0.14109E+05 0.00000E+0 0000E+00 0.00000E+00 0.48761E+0 222E-02 0.00000E+00 0.00000E+0 106E-11 -0.10222E-02 -0.13970E-0 6 PILES 3 LOAD CASES IUMBER OF FAILURES = 6. NUMBEF	PILE GROUP STIFFNESS MATRIX 4483E-05 0.34106E-12 0.00000E+00 -0.84008E 937E+03 0.28394E-04 0.00000E+00 0.10222E 9394E-04 0.14109E+05 0.00000E+00 0.00000E 0000E+00 0.00000E+00 0.48761E+08 0.00000E 0222E-02 0.00000E+00 0.00000E+00 0.18285E 106E-11 -0.10222E-02 -0.13970E-08 -0.36799E 6 PILES 3 LOAD CASES IUMBER OF FAILURES = 6. NUMBER OF PILES 1	PILE GROUP STIFFNESS MATRIX 4483E-05 0.34106E-12 0.00000E+00 -0.84008E+05 0.1565 937E+03 0.28394E-04 0.00000E+00 0.10222E-02 -0.3410 394E-04 0.14109E+05 0.00000E+00 0.00000E+00 -0.1022 0000E+00 0.00000E+00 0.48761E+08 0.00000E+00 -0.1397 0222E-02 0.00000E+00 0.00000E+00 0.18285E+08 -0.3679 106E-11 -0.10222E-02 -0.13970E-08 -0.36799E-01 0.1897 6 PILES 3 LOAD CASES NUMBER OF FAILURES = 6. NUMBER OF PILES IN TENSION =	PILE GROUP STIFFNESS MATRIX 4483E-05 0.34106E-12 0.00000E+00 -0.84008E+05 0.15654E-03 937E+03 0.28394E-04 0.00000E+00 0.10222E-02 -0.34106E-11 394E-04 0.14109E+05 0.00000E+00 0.00000E+00 -0.10222E-02 0000E+00 0.00000E+00 0.48761E+08 0.00000E+00 -0.13970E-08 0222E-02 0.00000E+00 0.00000E+00 0.18285E+08 -0.36799E-01 106E-11 -0.10222E-02 -0.13970E-08 -0.36799E-01 0.18973E+07 6 PILES 3 LOAD CASES NUMBER OF FAILURES = 6. NUMBER OF PILES IN TENSION = 0.	PILE GROUP STIFFNESS MATRIX 4483E-05 0.34106E-12 0.00000E+00 -0.84008E+05 0.15654E-03 937E+03 0.28394E-04 0.00000E+00 0.10222E-02 -0.34106E-11 394E-04 0.14109E+05 0.00000E+00 0.00000E+00 -0.10222E-02 0000E+00 0.00000E+00 0.48761E+08 0.00000E+00 -0.13970E-08 0222E-02 0.00000E+00 0.00000E+00 0.18285E+08 -0.36799E-01 106E-11 -0.10222E-02 -0.13970E-08 -0.36799E-01 0.18973E+07 6 PILES 3 LOAD CASES NUMBER OF FAILURES = 6. NUMBER OF PILES IN TENSION = 0.

Job	Maure	epaus	Swamp			Pr	roject No	60632162		
Descrip	otion	1	-WALL SEC			Com	nputed b	y <u>AML</u>	Date	Dec-20
		(CPGA Input &	& Output Files (C	oncrete Design	i) Ch	lecked b	yJMH	Date	Dec-20
	PIL	E CAP	DISPLACEM	ENTS						
LOAD										
CASE	D	Х	DY	DZ	RX	F	RY	RZ		
	I	N	IN	IN	RAD	RA	AD	RAD		
1	0.173	2E-01	-0.3457E-0	0.1593E-01	0.2619E-27	0.102	24E-03	0.9141E-11		
2	-0.233	5E+00	-0.2972E-0	0.1118E-01	0.2251E-27	-0.898	86E-03	0.7858E-11		
3	-0.255	9E+00	-0.3020E-0	0.1275E-01	0.2288E-27	-0.103	31E-02	0.7986E-11		
****	*****	* * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * *	****	*****	* * * * * * * *	* * * * * * * * * * *	* *	
		ELA	STIC CENTER	R INFORMATION						
ELAST	IC CENT	ER IN	PLANE X-Z	Х	Z					
				FT	FT					
				0.00	0.00					
* * * * *	*****	*****	* * * * * * * * * * *	* * * * * * * * * * * * * * * *	*****	*****	******	* * * * * * * * * * * *	* *	
	PIL	E FOR	CES IN LOCA	AL GEOMETRY						
		M1 &	M2 NOT AT	PILE HEAD FOR	PINNED PILES	5				
		* IN	DICATES PII	LE FAILURE						
		# IN1	DICATES CBI	F BASED ON MOM	ENTS DUE TO					
		B IN	(F. DICATES BUG	3*EMIN) FOR CO CKLING CONTROL	NCRETE PILES S					
LOAD	case -	1								
PILE	F1	F	2 F3	M1	М2	мз а	ALF CBI	F		
	K	1	K K	IN-K	IN-K	IN-K				
1	0.3	0	.0 36.1	0.0	-8.2	0.0 1.	.20 0.0	8	*	
2	0.3	0	.0 36.1	0.0	-8.2	0.0 1.	.20 0.0	8	*	
3	0.3	0	.0 36.1	0.0	-8.2	0.0 1.	.20 0.0	8	*	
4	-0.4	0	.0 39.9	0.0	11.1	0.0 1.	.33 0.0	9	*	
5	-0.4	0	.0 39.9	0.0	11.1	0.0 1.	.33 0.0	9 .	*	
6	-0.4	0	.0 39.9	0.0	11.1	0.0 1.	.33 0.0	9	*	

Job	Maure	paus Swa	mp		-		Proje	ct No.	60632162	-	
Descri	ption	T-W/	ALL SECTIO	DN	-	c	ompu	ted by	AML	Date	Dec-20
		CPG	-2 (Represe A Input & C	onts KCS-4) Output Files	(Concrete De	esign)	Check	ed by	ЈМН	Date	Dec-20
LOAD	CASE -	2								_	
PILE	Fl	F2	F3	Ml	М2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-4.3	0.0	11.0	0.0	129.8	0.0	0.37	0.15			
2	-4.3	0.0	11.0	0.0	129.8	0.0	0.37	0.15			
3	-4.3	0.0	11.0	0.0	129.8	0.0	0.37	0.15			
4	4.2	0.0	42.3	0.0	-127.8	0.0	1.41	0.21		*	
5	4.2	0.0	42.3	0.0	-127.8	0.0	1.41	0.21		*	
6	4.2	0.0	42.3	0.0	-127.8	0.0	1.41	0.21		*	
LOAD	CASE -	3									
PILE	Fl	F2	F3	Ml	M2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-4.7	0.0	17.2	0.0	142.4	0.0	0.57	0.18			
2	-4.7	0.0	17.2	0.0	142.4	0.0	0.57	0.18			
3	-4.7	0.0	17.2	0.0	142.4	0.0	0.57	0.18			
4	4.6	0.0	43.6	0.0	-140.1	0.0	1.45	0.23		*	
5	4.6	0.0	43.6	0.0	-140.1	0.0	1.45	0.23		*	
6	4.6	0.0	43.6	0.0	-140.1	0.0	1.45	0.23		*	

PILE FORCES IN GLOBAL GEOMETRY

LOAD CA:	SE – 1					
PILE	PX	PY	ΡZ	MX	MY	MZ
	К	K	K	IN-K	IN-K	IN-K
1	6.2	0.0	35.5	0.0	0.0	0.0
2	6.2	0.0	35.5	0.0	0.0	0.0
3	6.2	0.0	35.5	0.0	0.0	0.0
4	-6.2	0.0	39.4	0.0	0.0	0.0
5	-6.2	0.0	39.4	0.0	0.0	0.0
6	-6.2	0.0	39.4	0.0	0.0	0.0

Descriptio	on	T-WALL SEC	TION		Com	puted by AML	Date Dec-20
	1	KCS-2 (Repre	esents KCS-4	4)			
		CPGA Input &	Cutput File	s (Concrete D	esign) Ch	ecked by JMH	Date Dec-20
LOAD CA	ASE - 2						
PILE	PX	PY	ΡZ	MX	MY	MZ	
	K	K	K	IN-K	IN-K	IN-K	
1	-2.4	0.0	11.5	0.0	0.0	0.0	
2	-2.4	0.0	11.5	0.0	0.0	0.0	
3	-2.4	0.0	11.5	0.0	0.0	0.0	
4	-11.1	0.0	41.0	0.0	0.0	0.0	
5	-11.1	0.0	41.0	0.0	0.0	0.0	
6	-11.1	0.0	41.0	0.0	0.0	0.0	
LOAD CA	SE - 3						
PILE	PX	PY	ΡZ	MX	MY	MZ	
	К	K	K	IN-K	IN-K	IN-K	
1	-1.8	0.0	17.7	0.0	0.0	0.0	
2	-1.8	0.0	17.7	0.0	0.0	0.0	
3	-1.8	0.0	17.7	0.0	0.0	0.0	
4	-11.7	0.0	42.2	0.0	0.0	0.0	
5	-11.7	0.0	42.2	0.0	0.0	0.0	
6	-11.7	0.0	42.2	0.0	0.0	0.0	

Job Mau	epaus Swamp	Project No.	60632162		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)				
Sum	mary of Shear & Moment	Checked by	JMH	Date	Dec-20
				R	eferences

Load	V _{u,max}	M u,max
Case	(kip/ft)	(kip/ft)
LC1	0.00	0.00
LC2	-0.79	2.29
LC3	-0.79	2.29

AECOM Job Maurepaus Swamp Project No. 60632162 Description **T-WALL SECTION** Computed by KCS-2 (Represents KCS-4) Shear & Moment Check for Wall Checked by * Given Information: 1.50 ft Wall Thickness: 0.25 ft Clear Cover: 0.08 ft Diameter Bar to Start: 0.79 kips per foot Maximum Shear (V_u): Maximum Moment (M_u): 2.29 kip-ft per foot

* Shear Calculations:

φV _c = <u>16507.1</u> lbs	
d = 1.21 ft	
b = 1 ft strip	
f' _c = 4 ksi	
$\varphi_{shear} = 0.75$	
Shear Capacity (ϕV_c): $\phi_{shear} * 2 * Jf'_c * b$	o * d (ACI Eq. 11-3)
Design Shear Strength (φVn)≥Requir	ed Shear Strength (V _u) (ACI Eq. 11-1)

* Reinforcement Calculations:

Limit	of Maximum Reinforcement: $0.25 \times \rho_b$ (C where $\rho_b = 0.0285$ fo Max Rebar = 0.00713 *t	Design Criteria, EM 1110-2- or f' _c = 4,000psi, fy = 60,00 b * d	2104, 3-5) DOpsi
	Maximum Reinforcement: 0.0071 *	b * d = 1.24 in ²	per 1ft strip
	A _{gross} = 1.5 ft * 12 in,	/ft * 12 in strip = 216.0	0 in ²
Limits	of Minimum Reinforcement: 0.003 × A	Agross = 0.65 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
	(3*√(f' _c) *b	o*d)/f _y = 0.55 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
	(200*b	$b^{*}d)/f_{y} = 0.58 in^{2}$	(ACI 318-14, 9.6.1.2, min for flexural members)
			_
	Min Reinforcement, temp & sh	rinkage: 0.32 in ²	per 1ft strip, per face
	Min Reinforcement, f	flexural: 0.58 in ²	per 1ft strip, per face

AML

JMH

Date

Date _

Dec-20

Dec-20 References

AECOM

Job Maure	epaus Swamp	Project No.	60632162	-	
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-	-4)			
Shear	& Moment Check for Wall	Checked by	ЈМН	Date	Dec-20
				Re	ferences

* Moment Calculations:

* T = A_s × f_y * C = 0.85 × f'_c × a × b * Assuming Tension = Compression → A_s × f_y = 0.85 × f'_c × a × b * φMn = φ × T × (d - (a / 2))

= $\varphi \times A_s \times f_y \times (d - (a / 2))$

* Capacity of Min Flexural Reinforcement:

φM _n =	440.8	kip-in
=	36.73	kip-ft

* Capacity of Maximum Reinforcement:

a = $(A_s \times f_y) / (0.85 \times f'_c \times b)$ = 1.823 in

φMn =	909.7	kip-in
=	75.81	kip-ft

The minimum proposed reinforcement for T&S Wall Rebar is #6 @ 9" (A = 0.59 in²) and the minimum proposed reinforcement for F.S. & P.S. Wall Rebar is #6 @ 9"(A=0.59 in²).

	O Maure	M Daus Swamp	Project No.	60632162		
Descriptio	on	T-WALL SECTION	Computed by	AML	Date	Dec-20
		KCS-2 (Represents KC	CS-4)			
S	Slab		Checked by	JMH	Date	Dec-20
					Re	eferences

M_y = -8.75 kips-ft

Job Maure	paus Swamp	Project No.	60632162		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-2 (Represents KCS-4)				
Slab C	alculation	Checked by	JMH	Date	Dec-20
				Ref	erences

Shear and Moment Calculations:

1) Sign Convention:

2) Find Equations for each loading to use in shear and moment calculations: (Moving a distance "X" from the protected side to the wall stem across the slab)

Self Weight:	w _{weight} =	-4.32 kips/ft	
	V _{weight} =	-4.32 X	
	M_{weight} =	-4.32 X² / 2	
Soil Load:	w _{soil} =	-2.19 kips/ft	
	V _{soil} =	-2.19 X	
	M _{soil} =	-2.19 X² / 2	
Const. Surcharge:	w _{EQ} =	-0 kips/ft	
	V _{EQ} =	-0 X	
	M _{EQ} =	-0 X² / 2	
Uplift Load:	w _{uplift} =	0.49 X Kips/ft	
	V _{uplift} =	0.49 X² / 2	
	M _{uplift} =	0.49 X^3 / 6	
Conc. EQ:	w _{EQ} =	-0 kips/ft	
	V _{EQ} =	-0 X	
	M _{EQ} =	-0 X² / 2	
Pile P2:	V _{pile} =	42.2 Kips	(after x = 2ft)
	M _{pile} =	42.2 (X - 2 ft)	
~			

Rz = Self Weight + Soil Load + Surch. - Pile Reaction 1 - Uplift

 $R_z = 3.14$ kips

Job Maure	paus Swamp	Project No.	60632162	-		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20	
	KCS-2 (Represents KCS-4)					
Slab C	Calculation	Checked by	ЈМН	Date	Dec-20	
				Refe	erences	

Shear and Moment Calculations:

1) Sign Convention:

2) Find Equations for each loading to use in shear and moment calculations: (Moving a distance "X" from the flood side to the wall stem across the slab)

Self Weight:	w _{weight} = -4.32 kips/ft V _{weight} = -4.32 X M _{weight} = -4.32 X ² / 2					
Soil Load:	$w_{soil} = -0 \text{ kips/ft}$ $V_{soil} = -0 \times$ $M_{soil} = -0 \times^2 / 2$					
Const. Surcharge:	w_{EQ} = -2.4 kips/ft V_{EQ} = -2.4 X M_{EQ} = -2.4 X ² / 2					
Uplift Load:	w _{uplift} = 0 V _{uplift} = 0 M _{uplift} = 0		Water Load:	w _{uplift} = V _{uplift} = M _{uplift} =	-0 kips -0 X -0 X² / 2	
Conc. EQ:	$w_{EQ} = -0 \text{ kips/ft}$ $V_{EQ} = -0 \text{ X}$ $M_{EQ} = -0 \text{ X}^2 / 2$					
Pile P2:	V _{pile} = 35.5 Kips M _{pile} = 35.5 (X - 2 ft)	(after x = 2ft)				

~

AFCOM Job Maurepaus Swamp Project No. Description T-WALL SECTION Computed by KCS-2 (Represents KCS-4) Slab Conc. Check Checked by * Given Information:

60632162

AML

JMH

Date

Date

Dec-20

Dec-20

References

* Shear Calculations:

1- Shear Capacity:

Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u)

Maurepaus Swamp Project No. 60632162 Job Description **T-WALL SECTION** Computed by AML Date Dec-20 KCS-2 (Represents KCS-4) Slab Conc. Check JMH Dec-20 Checked by Date References 2- Punching Shear Capacity (ACI 318-14 Table 22.6.5.2): Vc = minimum value = Eq. a: $4 \times J(f'_c) \times b_0 \times d$ for $\beta_c < 2.0$ Eq. b: $(2 + (4 / \beta_c)) \times \sqrt{(f'_c)} \times b_0 \times d$ for $\beta_c > 2.0$ Eq. c: $((a_s \times d) / b_0 + 2) \times J(f'_c) \times b_0 \times d$ b₀ / d effect based on a_s (interior column: $a_s = 40$, edge column: $a_s = 30$, corner column: $a_s = 20$) d for piles = 26.203 in (Slab thickness - 9" pile embed - cover - 0.5d_{bar}) where β_c = Long side / Short side = b_0 = Perimeter of Critical Section = $\pi^*(D_{pile} + d)$ = 125.673 a_s = 20 (worst case - corner column) Vc = minimum value = Eq. a: 833.07 kips 1249.61 kips Eq. b: 1285.02 kips Eq. c: φV_c = 624.81 kips Check corner pile failure to edge of slab: $D_{pile}/2+d/2 =$ 1.67 ft /2 + d/2 D_{pile} Diameter of corner failure = 1.667 + 2 ft 3.67 ft 2.00 Dia. punching shear calc above = 3.33 Diameter of punching shear calculation is smaller than the diameter of this corner failure area. Therefore, no recheck of corner punching failure is required. φVc used in design = 30.10 kips ** φVc = 30.1k≥ Vu = 5k, Shear Capacity OK Maximum Pile Reaction = 42.20 ** φVc=625k≥ Vu=42k, Punching Shear Capacity OK

Slab	Conc. Check	Checked by	JMH	Date	Dec-20
	KCS-2 (Represents KC	(S-4)			
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
Job <u>Maur</u>	epaus Swamp	Project No.	60632162	-	

3- Deep Beam One-Way Shear Capacity (ϕV_{c1}):

- -

For $(w/d) \ge 1.0$, a one-way (normal) shear investigation with loads outside the critical section (located at a distance d from the face of the column, b = footing width) and

$$v_c = 1.9\sqrt{f_c'} + 2500\rho_w \left(\frac{V_u d}{M_u}\right) \ge 2\sqrt{f_c'}$$
 (ACI Eq. 11-5)

which reduces for $\rho_w \approx 0.002$ and 3,000 psi $\leq f_c' \leq 4,000$ psi to $v_c = 1.9\sqrt{f_c'} + 0.1\sqrt{f_c'} (V_u d/M_u) \geq 2\sqrt{f_c'}$.

For (w/d) < 1.0, $1.0 > M_u/V_u d > 0$; $\infty > V_u d/M_u \ge 1.0$ (no limits on $M_u, V_u d$, other than above)

$$v_c = \left(\frac{d}{w}\right) \left[3.5 - 2.5\left(\frac{M_u}{V_u d}\right)\right] \left[1.9\sqrt{f_c} + 0.1\sqrt{f_c}\left(\frac{V_u d}{M_u}\right)\right]$$

$$\leq 10\sqrt{f_c'} \quad (\text{ACI Eq. 13-2})$$

* Reinforcement Calculations:

Limit of Maximum Reinforcement: 0.25 x $ ho_b$ (Design Criteria, EM 1110-2-2104, 3-5)		
where $p_b = 0.0285$ for	or f' _c = 4,000psi, fy = 60	0,000psi
Max Rebar = 0.00713 *b * d		
Maximum Reinforcement: 0.0071 *	b * d = 2.26 in ²	per 1ft strip
A_{gross} = 3 ft * 12 in/ft * 12 in strip = 432.00 in ²		
Limits of Minimum Reinforcement: 0.003 × A	Agross = 1.30 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
(3*√(f' _c) *b	*d)/ $f_y = 1.00 \text{ in}^2$	(ACI 318-14, 9.6.1.2, min for flexural members)
(200*b	$b^{*}d)/f_{y} = 1.06 in^{2}$	(ACI 318-14, 9.6.1.2, min for flexural members)
Min Reinforcement, temp & sh	rinkage: 0.65 in²	per 1ft strip, per face
Min Reinforcement, f	lexural: 1.06 in ²	per 1ft strip, per face
AECOM

					Re	ferences	
	Slab C	Conc. Check	Checked by	JMH	Date	Dec-20	
		KCS-2 (Represents KC	S-4)				
Descrip	tion	T-WALL SECTION	Computed by	AML	Date	Dec-20	
Job	Maure	epaus Swamp	Project No.	60632162	-		

* Moment Calculations:

capacity of maximum rount of comen

a = $(A_s \times f_y) / (0.85 \times f'_c \times b)$ = 3.324 in

φMn =	3023.8	kip-in	
=	251.98	kip-ft	

The minimum proposed reinforcement for to T&S Slab Rebar is #6 @ 6"(A = 0.88 in2) and the minimum proposed reinforcment for Top & Bot Slab Rebar is #7 @ 6"(A =1.2in2).

** φMn=252 ≥ Mu=2.2, Section OK	ТОР
** φMn=252 ≥ Mu=5.6, Section OK	Bottom

Maurepaus Swamp

Gate Monolith

KCS Gate Monolith

AECOM Project : 60632162

Foundation, Wall & Slab

Computed by:	JMH	Checked by:	AML
Date:	Dec-20	Date:	Dec-20

Job	Maurepaus Swamp	Project No. 60632162	
Description	Gate Monolith	Computed by JMH	Date Dec-20
	KCS Gate Monolith		
	Wall Geometry	Checked by AML	Date Dec-20
			References
WALL GEOME	<u>TRY:</u>		TECTED SIDE
Top of Pilaster EL	. 16.63 NAVD88	TOW EL x.xx	N N
Top of Wall EL	. 16.13 NAVD88		$\langle X \rangle$
100 Yr. Water E	I. NAVD88		Z
10 Yr. Water E	I. NAVD88		× (
Top of Slab EL			
H	= <u>12.74</u> ft.	GRADE	
h1:	= <u>8.24</u> ft.	I I I I I I I I I I I I I I I I I I I	
h2:	= 4.50 ft. (Base Slab Height)		
h3:	= 0.00 ft. (P.S. Soil Height)	<u>ب</u> ا يو ا	GRADE
h4:	= 0.00 ft.		/
h5:	= 0.00 ft. (F.S. Soil Height)		<u> </u>
B	= 10.00 ft. (Base Slab Width)	2	
b1:	= <u>1.50</u> ft. (Wall Stem Width, top)		
b2:	= <u>5.75</u> ft. (F.S. Slab Width)	b5 / /	
b3:	= 1.50 ft. (Wall Stem Width, bottom)		
b4:	= 2.75 ft. (P.S. Slab Width)		
b5:	= 2.00 ft. (F.S. Pile Row Edge Space)	B/2 8/2	B/2
b6:	= 6.50 ft. (Sheet Pile Edge Space)	b^{2} b^{2} b^{3} b^{3}	b/2 b4
BAI	= 0.00 (Wall Batter, N/A)		
PS Grade :	= 1.09 NAVD88 (Average of PS soll for all)	I-WALL CRUSS-SECTION	a inte pasa
		<u>inotes:</u> 1) positive y axis is	s into page
Monolith Length	= 45.5 ft	2) pile batters vary	from those shown
		in diagram	
Bottom Of Slab :	= 3.39 NAVD88		

Note: In this report, white boxes are for input data and colored boxes are calculated values.

Description	Gate Monolith	
	KCS Gate Monolith	
	Applied Loads in SAP Model	

Pile and Pilaster Layout:

Job	Maurepaus Swamp		Project No	o. 60632162		
Description	Gate Monolith		Computed b	y JMH	Date	Dec-20
	KCS Gate Monolith				_	
	Assumptions		Checked b	y AML	Date	Dec-20
			-		F	References
Lini	it Waight of Storm Wator -	0.0624	lket			
On	Weight of Storm water -	0.0024	KCI			
	Set Unit Weight of Soil -	0.1200	KCI			
	Sui Unit Weight of Son -	0.0578	KCI			
	Unit weight of concrete =	0.1500	јкст			
	Impact Load =	0.0000]k/ft			
	FS Wind force above SWL=[0.0500	ksf			
Constru	uction Surcharge Pressure =	0.2500	ksf			
Unbalanced	Load for Stability Analysis:					
	F _{cap} (k/ft) =	0.00	(10y SWL Case; Force ad	cts at bottom of sl	ab)	
	F _{cap} (k/ft) =	0.00	(100y SWL Case; Force (acts at bottom of s	slab)	
	F _{cap} (k/ft) =	0.00	(Water to TOW Case; Fo	orce acts at bottor	n of slab)	
	K ₀ , Granular fill =[0.95	(for lateral soil forces)			
Assumed	Wall Reinforcement Cover =	0.25]ft			
	Assumed Wall $d_{bar} =$	0.06	ft			
	Gate Length =	20.58]ft			
	Gate Opening =	18.00	ft *Tributary	Length = 9'		
	Gate Weight =	5.66	kip *Taken from	m similar swing gat	e from Hoboke	en project.
*N (8. By wit wil	IOTE: Gate calculations show 4 - 5.66) / 14 piles = .2 kip/pi inspection, gate weight will n th the pile capacities along wi l be updated and analyzed for	a gate weight c le ot drastically at th the shear and the next subm	f 8.4 kip: fect the design and the i d moment capacities for t ittal.	new gate weight po the slab. The gate	usses weight	

AECOM

Job Maure	epaus Swamp	Project No. 60632162		
Description	Gate Monolith	Computed by JMH	Date	Dec-20
KCS	Gate Monolith		-	
Load	Cases	Checked by AML	Date	Dec-20
			-	References

No. of Load Cases 4 Update

No.	DCD LC No.	Description	FS Water El.	PS Water El.	Pile Design Over Stresses
1	1	Construction + Surcharge	3.39	3.39	1.17
2	2a	Water to TOW (impervious cutoff)	16.13	3.39	1.33
3	2b	Water to TOW (pervious cutoff)	16.13	3.39	1.33
4		Dead + Cooper E80	3.39	3.39	1.00

* Impact load is not applicable for this section, so it is excluded from the load combinations

* Forces induced by 10y water elevation are not applicable for this section, so they are excluded from the load combinations

*Earthquake and Wave Loads are to be determined and are excluded from these calculations

Job	Maurepaus Swamp	Project No.	60632162		
Description	Gate Monolith	- Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith	-			
	Applied Loads in SAP Model	Checked by	AML	Date	Dec-20
					References

*The following diagrams represent the loads applied in the SAP Model; base reactions were taken from SAP to plug into CPGA to get the pile reactions of the structure.

Swing Gate weight from Hoboken project = 7.61 kips / (22.5 - 7.7) = .044 ks Multiplied by the KCS Gate Dimensions = $(6.24' \times 20.63')(.044$ ksf) = 5.66 kip / 2 = 2.83 kip

AECOM

Job	Maurep	oaus Swamp	Project No.	60589133	_	
Descr	iption	Gate Monolith	Computed by	JMH	Date	Dec-20
		KCS Gate Monolith				
	Summa	ary of Foundation Loads	Checked by	AML	Date	Dec-20
					R	eferences

UNFACTORED LOADS FOR CPGA								
Load	F×	Fy	Fz	M×	My	Mz		
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)		
LC1	0.00	0.00	486.68	0.00	74.56	0.00		
LC2	-225.51	0.00	264.67	0.00	1174.19	0.00		
LC3	-225.51	0.00	318.59	0.00	1064.86	0.00		
LC4	0.00	0.00	625.33	0.00	56.01	0.00		

This table represents the base reactions taken from SAP. The moments were taken from the centroid of the structure with positive-x facing the flood side and positive-z facing downwards.

*NOTE: Loads exported from SAP 2000 are within 5% on the conservative side of the actual loads on the monolith; OK for this submittal.

FACTORED LOADS FOR CPGA										
Load	Fx	Fy	Fz	M×	My	Mz				
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)				
LC1	0.00	0.00	778.70	0.00	119.30	0.00				
LC2	-360.81	0.00	423.47	0.00	1878.71	0.00				
LC3	-360.81	0.00	509.74	0.00	1703.78	0.00				
LC4	0.00	0.00	1375.74	0.00	123.23	0.00				

Description Gate Monolith KCS Gate Monolith Soil & Pile Information Required for CPGA Computed by JMH

AML

Project No. 60632162

Checked by

Date Dec-20

References

Date Dec-20

Pile Layout: 14 HP Piles

Row	<u>1</u>	<u>Row</u> 2					
pile no.	×	у	pile no.	×	у		
1	3.00	-19.50	8	-3.00	-19.50		
2	3.00	-13.00	9	-3.00	-13.00		
3	3.00	-6.50	10	-3.00	-6.50		
4	3.00	0.00	11	-3.00	0.00		
5	3.00	6.50	12	-3.00	6.50		
6	3.00	13.00	13	-3.00	13.00		
7	3.00	19.50	14	-3.00	19.50		

 Tip Elevation:
 (For CPGA, need Tip Elevation as a function of CPGA Axis at B.O. Slab, +Z points downward)

 B.O.S. Elevation =
 3.39

 NAVD88
 Pile Tip El. =

 -38
 NAVD89

 "TIP" in CPGA =
 41.39 ft

<u>Pile Properties & Attributes</u>

E =	29000000.0	psi
A =	21.40	in ² HP14X73
I _x =	729.00	in ⁴
I _y =	261.00	in ⁴
C ₃₃ =	1.70	(factor for method of axial load transfer from pile to soil; = 1 full tip bearing, = 2 full skin friction)
S _x =	107.00	in ³
S _y =	35.80	in ³
F _y =	50.00	ksi

*Note: All soil properties and pile capacities are taken from 95% submittal for Maurepas intake structure.

Allowable Compression (AC) =	55.00	kips	
Allowable Tension (AT) =	35.00	kips	
ACC =	492.66	kips	ACC = 5/6x0.67xFyxA
ATT =	535.00	kips	ATT = 5/6x0.67xFyxA
AM1 =	2972.22	kip-in	AM1 = 5/6x0.67xFyxSx
AM2 =	994.44	kip-in	AM2 = 5/6x0.67xFyxSy

Decerir	tion	Coto Monalith	Computed by INU Date Date 20
Descrip	puon	KCS Gate Mon	
	Soil & Pile Inf	ormation Requi	red for CPGA Checked by AML Date Dec-20
			References
<u>Es Val</u>	lue for CPGA	<u>Run:</u> Mono	lith width = 46 ft $E_s = 540.40$ psi = 0.5404 ksi
	GROUP	FACTORS	
	Pile Spacing in Direction of Loading	From EM1110-2- 2906	Group reduction is based on distance between piles in direction of loading. This includes distance due to battering and is taken over the distance 10 x d _{pile} (point of fixety).
		D	
	3B	0.33	Assume a batter of 6.00
	4B	0.38	B = d _{pile} = 13.6 in = 1.133 ft
	5B	0.45	
	6B	0.56	Distance between piles at B.O. Slab = 6.00 ft
	7B	0.71	Average distance between piles over 10*dpile = 7.89 ft
	8B	1	
			Average distance between piles in terms of pile width B = 6.96 B
			Group Reduction "D" value for this distance = 0.70
			Therefore, Es including group reduction = 0.38 ksi

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith				
Soil & Pil	e Information Required for CPGA	Checked by	AML	Date	Dec-20
					References

Undrained Strength Case with HP 14x73 Pile 35 55 100 200 300 400 500 0 0.0 -10.0 Skin Friction -20.0 Ultimate Capacity -30.0 -38 ----- Tension -40.0 --- End Bearing -50.0 -60.0 Required Safety Factors are: 3.0 for tension and compression w/o -70.0 -80.0 -90.0 -70.0 load test 2.0 for tension and compression with load test. -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 Pile Capacity, tons

Input fil 10 20 30	KCS Gate Monolith CPGA Input & Output Files (e: 00 MONOLITH, TOW EL. 16.13, T 00 PROP 29000 729 261 21.4 1. 00 SOIL ES 0.3805 TIP 41.39 0 00 PIN ALL 00 ALLOW H 55 35 492.7 535 29	Pile Analysis) OS EL.7.89; HP : 7 0 ALL ALL	Checked by	AML	Date	Dec-20
Input fil 10 20 30	CPGA Input & Output Files (e: 00 MONOLITH, TOW EL. 16.13, T 00 PROP 29000 729 261 21.4 1. 00 SOIL ES 0.3805 TIP 41.39 0 00 PIN ALL 00 ALLOW H 55 35 492.7 535 29	Pile Analysis) OS EL.7.89; HP 3 7 0 ALL ALL	Checked by	AML	Date	Dec-20
Input fil 10 20 30	e: 00 MONOLITH, TOW EL. 16.13, T 00 PROP 29000 729 261 21.4 1. 00 SOIL ES 0.3805 TIP 41.39 0 00 PIN ALL 00 ALLOW H 55 35 492.7 535 29	OS EL.7.89; HP : 7 0 ALL ALL	14X73 PILE	S		
1(2(3)	00 MONOLITH, TOW EL. 16.13, T 00 PROP 29000 729 261 21.4 1. 00 SOIL ES 0.3805 TIP 41.39 0 00 PIN ALL 00 ALLOW H 55 35 492.7 535 29	OS EL.7.89; HP : 7 0 ALL ALL	14X73 PILE	S		
20	00 PROP 29000 729 261 21.4 1. 00 SOIL ES 0.3805 TIP 41.39 0 00 PIN ALL 00 ALLOW H 55 35 492.7 535 29	7 0 ALL ALL				
30	00 SOIL ES 0.3805 TIP 41.39 0 00 PIN ALL 00 ALLOW H 55 35 492.7 535 29	ALL				
	00 PIN ALL 00 Allow H 55 35 492.7 535 29					
4 (00 ALLOW H 55 35 492.7 535 29					
50		72.2 994.4 ALL				
60	0 FOVSTR 1.17 1.17 1					
7(00 FOVSTR 1.33 1.33 2 3					
80	00 FOVSTR 1 1 4					
90	00 BATTER 6 All					
12	200 ANGLE 180 8 TO 14					
13	300 PILE 1 3 -19.5 0					
14	400 PILE 2 3 -13 0					
1:	500 PILE 3 3 -6.5 0					
1	500 PILE 4 3 0 0					
1	700 PILE 5 3 6.5 0					
18	300 PILE 6 3 13 0					
19	900 PILE 7 3 19.5 0					
20	000 PILE 8 -3 -19.5 0					
2	100 PILE 9 -3 -13 0					
22	200 PILE 10 -3 -6.5 0					
23	300 PILE 11 -3 0 0					
2	400 PILE 12 -3 6.5 0					
23	500 PILE 13 -3 13 0					
2	500 PILE 14 -3 19.5 0					
4	500 LOAD 1 0 0 486.7 0 74.6 0					
4	500 LOAD 2 -225.5 0 264.7 0 1	174.2 0				
4	700 LOAD 3 -225.5 0 318.6 0 1	064.9 0				
48	300 LOAD 4 0 0 625.3 0 56 0					
90	000 FOUT 1 2 3 4 5 6 7 KCS01P	DOC				
91	.00 PFO ALL					
92	200 PLB ALL					

Gate Monolith		Computed by	ЈМН	Date	Dec-20
KCS Gate Monolith				_	
CPGA Input & Output Files(Pile Analysis)	Checked by	AML	Date	Dec-20
	Sate Monolith <cs gate="" monolith<br="">CPGA Input & Output Files (</cs>	Bate Monolith KCS Gate Monolith CPGA Input & Output Files (Pile Analysis)	Gate Monolith Computed by KCS Gate Monolith CPGA Input & Output Files (Gate Monolith Computed by JMH KCS Gate Monolith CPGA Input & Output Files (Pile Analysis) Checked by AML	Gate Monolith Computed by JMH Date 4CS Gate Monolith CPGA Input & Output Files (Pile Analysis) Checked by AML Date

CPGA RESULTS without Load Factors (pinned connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 27-DEC-20 RUN TIME: 11:45:14

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE
- NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.7.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 14 PILES AND 4 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

			Х	Y	Z	
WITH DIAGONAL C	COORDINATES	= (-3.00 ,	-19.50	, 0.00)
		(3.00 ,	19.50	, 0.00)

PILE PROPERTIES AS INPUT

E I1 I2 A C33 B66 KSI IN**4 IN**4 IN**2 0.29000E+05 0.72900E+03 0.26100E+03 0.21400E+02 0.17000E+01 0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

SOIL DESCRIPTIONS AS INPUT

Description		Gate Mond	olith Manalith	_	Compute	d by_	JMH	Date	Dec-20
		CPGA Inpu	ut & Output Files	s (Pile Analysis) Checke	d by _	AML	Date _	Dec-20
ES	ESOIL	LENGI	'H L	LU					
	K/IN**2		FT	FT					
	0.38050E	т 00+	0.41390E+	02 0.00000E	+00				
ESOIL(O K/IN*	RIGINAL) *2	RGROU	P RCYCLIC						
0.3805	0E+00	0.1000	E+01 0.1000E+0	01					
THIS SOI	L DESCRI	PTION APPI	IES TO THE FO	LLOWING PILES	-				
ALL									
******	* * * * * * * *	******	****	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	****	******	×	
	PILE ST	IFFNESSES	AS CALCULATED	FROM PROPERT	IES				
0.17968	E+02 0.	00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00	000E+00		
0.0000	E+00 0.	23229E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.00	000E+00		
0.0000	E+00 0.	00000E+00	0.20952E+04	0.00000E+00	0.00000E+00	0.00	000E+00		
0.0000	E+00 0.	00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00	000E+00		
0.0000	E+00 0.	00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00	000E+00		
0.00000	E+00 0.	00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00	000E+00		
THIS MAT	RIX APPL	IES TO THE	FOLLOWING PI	les -					
1									

Description	ı	Gate Mond	olith	_		Compu	ited by	JMH	Date	Dec-20
		KCS Gate								
		CPGA Inp	ut & Output Files	(Pile A	nalysis)	Chec	ked by	AML	Date	Dec-20
	PILE G	EOMETRY AS	INPUT AND/OR (GENERAT	ED					
NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY			
	FT	FΤ	FΤ			FT				
1	3.00	-19.50	0.00	6.00	0.00	41.96	P			
2	3.00	-13.00	0.00	6.00	0.00	41.96	P			
3	3.00	-6.50	0.00	6.00	0.00	41.96	P			
4	3.00	0.00	0.00	6.00	0.00	41.96	P			
5	3.00	6.50	0.00	6.00	0.00	41.96	P			
6	3.00	13.00	0.00	6.00	0.00	41.96	P			
7	3.00	19.50	0.00	6.00	0.00	41.96	P			
8	-3.00	-19.50	0.00	6.00	180.00	41.96	P			
9	-3.00	-13.00	0.00	6.00	180.00	41.96	P			
10	-3.00	-6.50	0.00	6.00	180.00	41.96	P			
11	-3.00	0.00	0.00	6.00	180.00	41.96	P			
12	-3.00	6.50	0.00	6.00	180.00	41.96	P			
13	-3.00	13.00	0.00	6.00	180.00	41.96	P			
14	-3.00	19.50	0.00	6.00	180.00	41.96	P			

```
587.45
```

APPLIED LOADS

LOAD	PX	PY	ΡZ	MX	MY	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0.0	0.0	486.7	0.0	74.6	0.0 1.17 1.17
2	-225.5	0.0	264.7	0.0	1174.2	0.0 1.33 1.33
3	-225.5	0.0	318.6	0.0	1064.9	0.0 1.33 1.33
4	0.0	0.0	625.3	0.0	56.0	0.0

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith	-		-	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.10376E+04
 -0.86678E-05
 0.56843E-12
 0.00000E+00
 -0.16978E+06
 0.31204E-03

 -0.86678E-05
 0.32521E+03
 0.57384E-04
 -0.21684E-18
 0.20658E-02
 -0.65938E-11

 0.56843E-12
 0.57384E-04
 0.28547E+05
 0.00000E+00
 0.29104E-10
 -0.20658E-02

 0.00000E+00
 0.21684E-18
 -0.58208E-10
 0.69473E+09
 0.00000E+00
 -0.18626E-07

 -0.16978E+06
 0.20658E-02
 0.29104E-10
 0.00000E+00
 0.36997E+08
 -0.74369E-01

 0.31204E-03
 -0.65938E-11
 -0.20658E-02
 -0.74506E-08
 -0.74369E-01
 0.25671E+08

14 PILES 4 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	7.
LOAD	CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	7.
LOAD	CASE	4.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	Ο.

PILE CAP DISPLACEMENTS

LOAD						
CASE	DX	DY	DZ	RX	RY	RZ
	IN	IN	IN	RAD	RAD	RAD
1	0.1589E-01	-0.3202E-08	0.1705E-01	0.1428E-20	0.9712E-04	0.1460E-11
2	-0.6222E+00	-0.2502E-08	0.9272E-02	0.7769E-21	-0.2475E-02	0.1141E-11
3	-0.6455E+00	-0.2552E-08	0.1116E-01	0.9351E-21	-0.2617E-02	0.1164E-11
4	0.1193E-01	-0.4010E-08	0.2190E-01	0.1835E-20	0.7291E-04	0.1829E-11

ELASTIC CENTER INFORMATION

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith	_		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date _	Dec-20

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES

- * INDICATES PILE FAILURE
- # INDICATES CBF BASED ON MOMENTS DUE TO
 - (F3*EMIN) FOR CONCRETE PILES
- B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

PILE	Fl	F2	F3	M1	M2	M3 ALF CBF
	K	K	K	IN-K	IN-K	IN-K
1	0.2	0.0	33.5	0.0	-7.3	0.0 0.52 0.06
2	0.2	0.0	33.5	0.0	-7.3	0.0 0.52 0.06
3	0.2	0.0	33.5	0.0	-7.3	0.0 0.52 0.06
4	0.2	0.0	33.5	0.0	-7.3	0.0 0.52 0.06
5	0.2	0.0	33.5	0.0	-7.3	0.0 0.52 0.06
6	0.2	0.0	33.5	0.0	-7.3	0.0 0.52 0.06
7	0.2	0.0	33.5	0.0	-7.3	0.0 0.52 0.06
8	-0.3	0.0	37.0	0.0	10.4	0.0 0.57 0.07
9	-0.3	0.0	37.0	0.0	10.4	0.0 0.57 0.07
10	-0.3	0.0	37.0	0.0	10.4	0.0 0.57 0.07
11	-0.3	0.0	37.0	0.0	10.4	0.0 0.57 0.07
12	-0.3	0.0	37.0	0.0	10.4	0.0 0.57 0.07
13	-0.3	0.0	37.0	0.0	10.4	0.0 0.57 0.07
14	-0.3	0.0	37.0	0.0	10.4	0.0 0.57 0.07

PILE	Fl	F2	F3	M1	M2	MЗ	ALF	CBF	
	K	K	К	IN-K	IN-K	IN-K			
1	-11.3	0.0	-11.1	0.0	344.2	0.0	0.24	0.28	
2	-11.3	0.0	-11.1	0.0	344.2	0.0	0.24	0.28	
3	-11.3	0.0	-11.1	0.0	344.2	0.0	0.24	0.28	
4	-11.3	0.0	-11.1	0.0	344.2	0.0	0.24	0.28	
5	-11.3	0.0	-11.1	0.0	344.2	0.0	0.24	0.28	
6	-11.3	0.0	-11.1	0.0	344.2	0.0	0.24	0.28	
7	-11.3	0.0	-11.1	0.0	344.2	0.0	0.24	0.28	
8	11.3	0.0	49.4	0.0	-342.6	0.0	0.68	0.33	
9	11.3	0.0	49.4	0.0	-342.6	0.0	0.68	0.33	
10	11.3	0.0	49.4	0.0	-342.6	0.0	0.68	0.33	
11	11.3	0.0	49.4	0.0	-342.6	0.0	0.68	0.33	
12	11.3	0.0	49.4	0.0	-342.6	0.0	0.68	0.33	
13	11.3	0.0	49.4	0.0	-342.6	0.0	0.68	0.33	
14	11.3	0.0	49.4	0.0	-342.6	0.0	0.68	0.33	

Project No. 606	32162

Description		Gate Monolith					Comp	uted by	JMH	Date	Dec-20
		KCS Gate Monolith			KCS Gate Monolith						
		CPG	A Input & 0	Dutput Files	s (Pile Analysis)		Cheo	ked by _	AML	Date _	Dec-20
LOAD	case -	3									
PILE	۲٦	F2	۶٦	м1	м2	MЗ	AT.F	CBF			
	K	K	K	IN-K	IN-K	IN-K		0.51			
1	-11.8	0.0	-4.6	0.0	357.4	0.0	0.10	0.28			
2	-11.8	0.0	-4.6	0.0	357.4	0.0	0.10	0.28			
3	-11.8	0.0	-4.6	0.0	357.4	0.0	0.10	0.28			
4	-11.8	0.0	-4.6	0.0	357.4	0.0	0.10	0.28			
5	-11.8	0.0	-4.6	0.0	357.4	0.0	0.10	0.28			
6	-11.8	0.0	-4.6	0.0	357.4	0.0	0.10	0.28			
7	-11.8	0.0	-4.6	0.0	357.4	0.0	0.10	0.28			
8	11.7	0.0	50.7	0.0	-355.4	0.0	0.69	0.35			
9	11.7	0.0	50.7	0.0	-355.4	0.0	0.69	0.35			
10	11.7	0.0	50.7	0.0	-355.4	0.0	0.69	0.35			
11	11.7	0.0	50.7	0.0	-355.4	0.0	0.69	0.35			
12	11.7	0.0	50.7	0.0	-355.4	0.0	0.69	0.35			
13	11.7	0.0	50.7	0.0	-355.4	0.0	0.69	0.35			
14	11.7	0.0	50.7	0.0	-355.4	0.0	0.69	0.35			
LOAD	case -	4									
LOAD PILE	CASE - Fl	4 F2	F3	Ml	м2	МЗ	ALF	CBF			
LOAD PILE	CASE - F1 K	4 F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF			
LOAD PILE 1	CASE - F1 K 0.2	4 F2 K 0.0	F3 K 44.0	M1 IN-K 0.0	M2 IN-K -4.7	M3 IN-K 0.0	ALF 0.80	CBF 0.09			
LOAD PILE 1 2	CASE - F1 K 0.2 0.2	4 F2 K 0.0 0.0	F3 K 44.0 44.0	M1 IN-K 0.0 0.0	M2 IN-K -4.7 -4.7	M3 IN-K 0.0 0.0	ALF 0.80 0.80	CBF 0.09 0.09			
LOAD PILE 1 2 3	CASE - F1 K 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0	F3 K 44.0 44.0 44.0	M1 IN-K 0.0 0.0 0.0	M2 IN-K -4.7 -4.7 -4.7	M3 IN-K 0.0 0.0 0.0	ALF 0.80 0.80 0.80	CBF 0.09 0.09 0.09			
LOAD PILE 1 2 3 4	CASE - F1 K 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0	F3 K 44.0 44.0 44.0 44.0	M1 IN-K 0.0 0.0 0.0 0.0	M2 IN-K -4.7 -4.7 -4.7 -4.7	M3 IN-K 0.0 0.0 0.0 0.0	ALF 0.80 0.80 0.80 0.80	CBF 0.09 0.09 0.09 0.09			
LOAD PILE 1 2 3 4 5	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 44.0 44.0 44.0 44.0 44.0	M1 IN-K 0.0 0.0 0.0 0.0 0.0	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7	M3 IN-K 0.0 0.0 0.0 0.0 0.0	ALF 0.80 0.80 0.80 0.80 0.80	CBF 0.09 0.09 0.09 0.09 0.09			
LOAD PILE 1 2 3 4 5 6	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 44.0 44.0 44.0 44.0 44.0 44.0 44.0	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7 -4.7	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0	ALF 0.80 0.80 0.80 0.80 0.80 0.80	CBF 0.09 0.09 0.09 0.09 0.09 0.09			
LOAD PILE 1 2 3 4 5 6 7	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALF 0.80 0.80 0.80 0.80 0.80 0.80 0.80	CBF 0.09 0.09 0.09 0.09 0.09 0.09 0.09			
LOAD PILE 1 2 3 4 5 6 7 8	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 8.6	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALF 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	CBF 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0			
LOAD PILE 1 2 3 4 5 6 7 8 9	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	F3 K 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 8.6 8.6	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALF 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	CBF 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0			
LOAD PILE 1 2 3 4 5 6 7 8 9 10	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	F3 K 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 8.6 8.6 8.6 8.6	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALF 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	CBF 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10			
LOAD PILE 1 2 3 4 5 6 7 8 9 10 11	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	F3 K 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 8.6 8.6 8.6 8.6 8.6	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALF 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	CBF 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10			
LOAD PILE 1 2 3 4 5 6 7 8 9 10 11 12	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	F3 K 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 8.6 8.6 8.6 8.6 8.6 8.6 8.6	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALF 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	CBF 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10			
LOAD PILE 1 2 3 4 5 6 7 8 9 10 11 12 13	CASE - F1 K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	F3 K 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALF 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	CBF 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10			

Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by _	AML	Date	Dec-20

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	5.7	0.0	33.0	0.0	0.0	0.0
2	5.7	0.0	33.0	0.0	0.0	0.0
3	5.7	0.0	33.0	0.0	0.0	0.0
4	5.7	0.0	33.0	0.0	0.0	0.0
5	5.7	0.0	33.0	0.0	0.0	0.0
6	5.7	0.0	33.0	0.0	0.0	0.0
7	5.7	0.0	33.0	0.0	0.0	0.0
8	-5.7	0.0	36.5	0.0	0.0	0.0
9	-5.7	0.0	36.5	0.0	0.0	0.0
10	-5.7	0.0	36.5	0.0	0.0	0.0
11	-5.7	0.0	36.5	0.0	0.0	0.0
12	-5.7	0.0	36.5	0.0	0.0	0.0
13	-5.7	0.0	36.5	0.0	0.0	0.0
14	-5.7	0.0	36.5	0.0	0.0	0.0

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-13.0	0.0	-9.0	0.0	0.0	0.0
2	-13.0	0.0	-9.0	0.0	0.0	0.0
3	-13.0	0.0	-9.0	0.0	0.0	0.0
4	-13.0	0.0	-9.0	0.0	0.0	0.0
5	-13.0	0.0	-9.1	0.0	0.0	0.0
6	-13.0	0.0	-9.1	0.0	0.0	0.0
7	-13.0	0.0	-9.1	0.0	0.0	0.0
8	-19.2	0.0	46.9	0.0	0.0	0.0
9	-19.2	0.0	46.9	0.0	0.0	0.0
10	-19.2	0.0	46.9	0.0	0.0	0.0
11	-19.2	0.0	46.9	0.0	0.0	0.0
12	-19.2	0.0	46.9	0.0	0.0	0.0
13	-19.2	0.0	46.9	0.0	0.0	0.0
14	-19.2	0.0	46.9	0.0	0.0	0.0

Description		Gate Monoli	th	_	(Computed by	JMH	Date	Dec-20
-		KCS Gate M	_	-			· –		
		CPGA Input	& Output Files	(Pile Anal	ysis)	Checked by	AML	Date _	Dec-20
LOAD CA:	SE - 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	К	K	IN-K	IN-K	IN-K			
1	-12.3	0.0	-2.6	0.0	0.0	0.0			
2	-12.3	0.0	-2.6	0.0	0.0	0.0			
3	-12.3	0.0	-2.6	0.0	0.0	0.0			
4	-12.3	0.0	-2.6	0.0	0.0	0.0			
5	-12.3	0.0	-2.6	0.0	0.0	0.0			
6	-12.3	0.0	-2.6	0.0	0.0	0.0			
7	-12.3	0.0	-2.6	0.0	0.0	0.0			
8	-19.9	0.0	48.1	0.0	0.0	0.0			
9	-19.9	0.0	48.1	0.0	0.0	0.0			
10	-19.9	0.0	48.1	0.0	0.0	0.0			
11	-19.9	0.0	48.1	0.0	0.0	0.0			
12	-19.9	0.0	48.1	0.0	0.0	0.0			
13	-19.9	0.0	48.1	0.0	0.0	0.0			
14	-19.9	0.0	48.1	0.0	0.0	0.0			

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	7.4	0.0	43.3	0.0	0.0	0.0
2	7.4	0.0	43.3	0.0	0.0	0.0
3	7.4	0.0	43.3	0.0	0.0	0.0
4	7.4	0.0	43.3	0.0	0.0	0.0
5	7.4	0.0	43.3	0.0	0.0	0.0
6	7.4	0.0	43.3	0.0	0.0	0.0
7	7.4	0.0	43.3	0.0	0.0	0.0
8	-7.4	0.0	46.0	0.0	0.0	0.0
9	-7.4	0.0	46.0	0.0	0.0	0.0
10	-7.4	0.0	46.0	0.0	0.0	0.0
11	-7.4	0.0	46.0	0.0	0.0	0.0
12	-7.4	0.0	46.0	0.0	0.0	0.0
13	-7.4	0.0	46.0	0.0	0.0	0.0
14	-7.4	0.0	46.0	0.0	0.0	0.0

Description	Gate Monolith		Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith					
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20
CPGA RE	SULTS without Load	l Factors	(fixed	connec	ction)	

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 27-DEC-20 RUN TIME: 11:49:51

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.7.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 14 PILES AND 4 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-19.50 ,	0.00)
(3.00 ,	19.50 ,	0.00)

PILE PROPERTIES AS INPUT

Description	Gate Mond	olith	_	Compute	d by	ЈМН	Date	Dec-20
	KCS Gate	Monolith			-		_	
	CPGA Inpu	ut & Output File	s (Pile Analysis)) Checke	d by _	AML	Date	Dec-20
E	I1	I2	A	C33		B66		
KSI	IN**4	IN**4	IN**2					
0.29000E+05	0.72900E+03	0.26100E+03	0.21400E+02	0.17000E+01	0.00	000E+00		
THESE PILE PRC	PERTIES APPL	Y TO THE FOLL	OWING PILES -					
ALL								
**********	*****	******	*****	*****	****	******		
SOIL	DESCRIPTIONS	AS INPUT						
ES ESOI	L LENGT	H L	LU					
K/IN* 0.3805	*2 0E+00 T	FT 0.41390E+	FT 02 0.00000E	+00				
ESOIL (ORIGINA	L) RGROU	P RCYCLIC						
K/IN**2								
0.38050E+00	0.1000	E+01 0.1000E+	01					
THIS SOIL DESC	RIPTION APPL	IES TO THE FO	LLOWING PILES	-				
ALL								
**********	*****	* * * * * * * * * * * * *	****	* * * * * * * * * * * * *	****	******		
PILE	STIFFNESSES	AS CALCULATED	FROM PROPERT	IES				
0.35937E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.16971E+04	0.00	000E+00		
0.00000E+00	0.46458E+02	0.00000E+00	-0.28362E+04	0.00000E+00	0.00	000E+00		
0.00000E+00	0.00000E+00	0.20952E+04	0.00000E+00	0.00000E+00	0.00	000E+00		
0.00000E+00 -	0.28362E+04	0.00000E+00	0.34630E+06	0.00000E+00	0.00	000E+00		
0.16971E+04	0.00000E+00	0.00000E+00	0.00000E+00	0.16028E+06	0.00	000E+00		
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00	000E+00		
THIS MATRIX AP	PLIES TO THE	FOLLOWING PI	LES -					
1								

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith	-		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	Х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY
	FT	FT	FT			FT	
1	3.00	-19.50	0.00	6.00	0.00	41.96	F
2	3.00	-13.00	0.00	6.00	0.00	41.96	F
3	3.00	-6.50	0.00	6.00	0.00	41.96	F
4	3.00	0.00	0.00	6.00	0.00	41.96	F
5	3.00	6.50	0.00	6.00	0.00	41.96	F
6	3.00	13.00	0.00	6.00	0.00	41.96	F
7	3.00	19.50	0.00	6.00	0.00	41.96	F
8	-3.00	-19.50	0.00	6.00	180.00	41.96	F
9	-3.00	-13.00	0.00	6.00	180.00	41.96	F
10	-3.00	-6.50	0.00	6.00	180.00	41.96	F
11	-3.00	0.00	0.00	6.00	180.00	41.96	F
12	-3.00	6.50	0.00	6.00	180.00	41.96	F
13	-3.00	13.00	0.00	6.00	180.00	41.96	F
14	-3.00	19.50	0.00	6.00	180.00	41.96	F

587.45

APPLIED LOADS

PX	PY	ΡZ	MX	МҮ	MZ OVERSTRESS
K	K	K	FT-K	FT-K	FT-K COM TEN
0.0	0.0	486.7	0.0	74.6	0.0 1.17 1.17
-225.5	0.0	264.7	0.0	1174.2	0.0 1.33 1.33
-225.5	0.0	318.6	0.0	1064.9	0.0 1.33 1.33
0.0	0.0	625.3	0.0	56.0	0.0
	PX K 0.0 -225.5 -225.5 0.0	PX PY K K 0.0 0.0 -225.5 0.0 -225.5 0.0 0.0 0.0	PX PY PZ K K K 0.0 0.0 486.7 -225.5 0.0 264.7 -225.5 0.0 318.6 0.0 0.0 625.3	PX PY PZ MX K K K FT-K 0.0 0.0 486.7 0.0 -225.5 0.0 264.7 0.0 -225.5 0.0 318.6 0.0 0.0 0.0 625.3 0.0	PX PY PZ MX MY K K K FT-K FT-K 0.0 0.0 486.7 0.0 74.6 -225.5 0.0 264.7 0.0 1174.2 -225.5 0.0 318.6 0.0 1064.9 0.0 0.0 625.3 0.0 56.0

Description	Gate Monolith	Computed by	JMH	Date	Dec-20	
	KCS Gate Monolith					
	CPGA Input & Output Files (Pile Analysis)	Checked by _	AML	Date _	Dec-20	

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.12823E+04	-0.76889E-05	0.12506E-11	-0.19142E-03	-0.14487E+06	0.19737E-03
-0.76889E-05	0.65041E+03	0.56887E-04	-0.39167E+05	0.22394E-02	-0.54570E-11
0.12506E-11	0.56887E-04	0.28554E+05	0.47527E-04	0.00000E+00	-0.20479E-02
-0.19142E-03	-0.39167E+05	0.47527E-04	0.69961E+09	-0.28383E-01	-0.74506E-08
-0.14487E+06	0.22394E-02	0.00000E+00	-0.28383E-01	0.39531E+08	-0.90183E-01
0.19737E-03	-0.54570E-11	-0.20479E-02	-0.74506E-08	-0.90183E-01	0.32650E+08

14 PILES 4 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	7.
LOAD	CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	7.
LOAD	CASE	4.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.

PILE CAP DISPLACEMENTS

LOAD						
CASE	DX	DY	DZ	RX	RY	RZ
	IN	IN	IN	RAD	RAD	RAD
1	0.4366E-02	-0.1577E-08	0.1704E-01	-0.8671E-13	0.3865E-04	0.1149E-11
2	-0.2314E+00	-0.1865E-08	0.9270E-02	-0.1883E-12	-0.4915E-03	0.6225E-12
3	-0.2378E+00	-0.1911E-08	0.1116E-01	-0.1951E-12	-0.5481E-03	0.6232E-12
4	0.3277E-02	-0.1983E-08	0.2190E-01	-0.1104E-12	0.2901E-04	0.1434E-11

ELASTIC CENTER INFORMATION

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith	_		_	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date _	Dec-20

PILE FORCES IN LOCAL GEOMETRY

M1 & M2 NOT AT PILE HEAD FOR PINNED PILES

- * INDICATES PILE FAILURE
- # INDICATES CBF BASED ON MOMENTS DUE TO
 - (F3*EMIN) FOR CONCRETE PILES
- B INDICATES BUCKLING CONTROLS

LOAD CASE - 1

PILE	Fl	F2	F3	M1	M2	M3 ALF CBF
	K	K	K	IN-K	IN-K	IN-K
1	0.1	0.0	33.9	0.0	9.1	0.0 0.53 0.07
2	0.1	0.0	33.9	0.0	9.1	0.0 0.53 0.07
3	0.1	0.0	33.9	0.0	9.1	0.0 0.53 0.07
4	0.1	0.0	33.9	0.0	9.1	0.0 0.53 0.07
5	0.1	0.0	33.9	0.0	9.1	0.0 0.53 0.07
6	0.1	0.0	33.9	0.0	9.1	0.0 0.53 0.07
7	0.1	0.0	33.9	0.0	9.1	0.0 0.53 0.07
8	-0.3	0.0	36.6	0.0	-18.6	0.0 0.57 0.08
9	-0.3	0.0	36.6	0.0	-18.6	0.0 0.57 0.08
10	-0.3	0.0	36.6	0.0	-18.6	0.0 0.57 0.08
11	-0.3	0.0	36.6	0.0	-18.6	0.0 0.57 0.08
12	-0.3	0.0	36.6	0.0	-18.6	0.0 0.57 0.08
13	-0.3	0.0	36.6	0.0	-18.6	0.0 0.57 0.08
14	-0.3	0.0	36.6	0.0	-18.6	0.0 0.57 0.08

PILE	F1	F2	F3	M1	M2	MЗ	ALF	CBF	
	K	K	K	IN-K	IN-K	IN-K			
1	-9.2	0.0	-24.0	0.0	-473.6	0.0	0.51	0.39	
2	-9.2	0.0	-24.0	0.0	-473.6	0.0	0.51	0.39	
3	-9.2	0.0	-24.0	0.0	-473.6	0.0	0.51	0.39	
4	-9.2	0.0	-24.0	0.0	-473.6	0.0	0.51	0.39	
5	-9.2	0.0	-24.0	0.0	-473.6	0.0	0.51	0.39	
6	-9.2	0.0	-24.0	0.0	-473.6	0.0	0.51	0.39	
7	-9.2	0.0	-24.0	0.0	-473.6	0.0	0.51	0.39	
8	9.1	0.0	62.3	0.0	468.5	0.0	0.85	0.45	
9	9.1	0.0	62.3	0.0	468.5	0.0	0.85	0.45	
10	9.1	0.0	62.3	0.0	468.5	0.0	0.85	0.45	
11	9.1	0.0	62.3	0.0	468.5	0.0	0.85	0.45	
12	9.1	0.0	62.3	0.0	468.5	0.0	0.85	0.45	
13	9.1	0.0	62.3	0.0	468.5	0.0	0.85	0.45	
14	9.1	0.0	62.3	0.0	468.5	0.0	0.85	0.45	

Project No.	60632162

Descrip	otion	Gat	e Monolith				Comp	uted by	ЈМН	Date	Dec-20	
		KCS	KCS Gate Monolith		-							
		CPC	GA Input & (Output Files	(Pile Analysis)		Cheo	ked by	AML	Date _	Dec-20	
LOAD	case -	3										
DTTE	ए 1	F2	53	м1	MQ	MS	אדד	CPE				
LIPP	K	K	K	IN-K	IN-K	IN-K	ALF	CBF				
1	-9.5	0.0	-18.1	0.0	-494.5	0.0	0.39	0.40				
2	-9.5	0.0	-18.1	0.0	-494.5	0.0	0.39	0.40				
3	-9.5	0.0	-18.1	0.0	-494.5	0.0	0.39	0.40				
4	-9.5	0.0	-18.1	0.0	-494.5	0.0	0.39	0.40				
5	-9.5	0.0	-18.1	0.0	-494.5	0.0	0.39	0.40				
6	-9.5	0.0	-18.1	0.0	-494.5	0.0	0.39	0.40				
7	-9.5	0.0	-18.1	0.0	-494.5	0.0	0.39	0.40				
8	9.4	0.0	64.2	0.0	488.3	0.0	0.88	0.47				
9	9.4	0.0	64.2	0.0	488.3	0.0	0.88	0.47				
10	9.4	0.0	64.2	0.0	488.3	0.0	0.88	0.47				
11	9.4	0.0	64.2	0.0	488.3	0.0	0.88	0.47				
12	9.4	0.0	64.2	0.0	488.3	0.0	0.88	0.47				
13	9.4	0.0	64.2	0.0	488.3	0.0	0.88	0.47				
14	9.4	0.0	64.2	0.0	488.3	0.0	0.88	0.47				
LOAD	CASE -	4										
PILE	Fl	F2	F3	Ml	М2	MЗ	ALF	CBF				
	K	K	K	IN-K	IN-K	IN-K						
1	0.0	0.0	44.2	0.0	4.3	0.0	0.80	0.09				
2	0.0	0.0	44.2	0.0	4.3	0.0	0.80	0.09				
3	0.0	0.0	44.2	0.0	4.3	0.0	0.80	0.09				
4	0.0	0.0	44.2	0.0	4.3	0.0	0.80	0.09				
_	0.0	0.0	44.2	0.0	4.3	0.0	0.80	0.09				
5		0 0	44.2	0.0	4.3	0.0	0.80	0.09				
6	0.0	0.0										
5 6 7	0.0	0.0	44.2	0.0	4.3	0.0	0.80	0.09				
5 6 7 8	0.0 0.0 -0.3	0.0	44.2 46.3	0.0	4.3 -16.5	0.0 0.0	0.80 0.84	0.09 0.11				
5 6 7 8 9	0.0 0.0 -0.3 -0.3	0.0 0.0 0.0	44.2 46.3 46.3	0.0 0.0 0.0	4.3 -16.5 -16.5	0.0 0.0 0.0	0.80 0.84 0.84	0.09 0.11 0.11				
5 6 7 8 9 10	0.0 0.0 -0.3 -0.3 -0.3	0.0 0.0 0.0 0.0	44.2 46.3 46.3 46.3	0.0 0.0 0.0 0.0	4.3 -16.5 -16.5 -16.5	0.0 0.0 0.0 0.0	0.80 0.84 0.84 0.84	0.09 0.11 0.11 0.11				
5 6 7 8 9 10 11	0.0 0.0 -0.3 -0.3 -0.3 -0.3	0.0 0.0 0.0 0.0 0.0	44.2 46.3 46.3 46.3 46.3	0.0 0.0 0.0 0.0 0.0	4.3 -16.5 -16.5 -16.5	0.0 0.0 0.0 0.0	0.80 0.84 0.84 0.84 0.84	0.09 0.11 0.11 0.11 0.11				
5 6 7 8 9 10 11 12	0.0 0.0 -0.3 -0.3 -0.3 -0.3 -0.3	0.0 0.0 0.0 0.0 0.0 0.0	44.2 46.3 46.3 46.3 46.3 46.3	0.0 0.0 0.0 0.0 0.0	4.3 -16.5 -16.5 -16.5 -16.5 -16.5	0.0 0.0 0.0 0.0 0.0	0.80 0.84 0.84 0.84 0.84 0.84	0.09 0.11 0.11 0.11 0.11 0.11				
5 6 7 8 9 10 11 12 13	0.0 0.0 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0	44.2 46.3 46.3 46.3 46.3 46.3 46.3	0.0 0.0 0.0 0.0 0.0 0.0	4.3 -16.5 -16.5 -16.5 -16.5 -16.5 -16.5	0.0 0.0 0.0 0.0 0.0 0.0	0.80 0.84 0.84 0.84 0.84 0.84 0.84	0.09 0.11 0.11 0.11 0.11 0.11 0.11				

Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith			-	
	CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date	Dec-20

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	5.7	0.0	33.4	0.0	9.1	0.0
2	5.7	0.0	33.4	0.0	9.1	0.0
3	5.7	0.0	33.4	0.0	9.1	0.0
4	5.7	0.0	33.4	0.0	9.1	0.0
5	5.7	0.0	33.4	0.0	9.1	0.0
6	5.7	0.0	33.4	0.0	9.1	0.0
7	5.7	0.0	33.4	0.0	9.1	0.0
8	-5.7	0.0	36.2	0.0	18.6	0.0
9	-5.7	0.0	36.2	0.0	18.6	0.0
10	-5.7	0.0	36.2	0.0	18.6	0.0
11	-5.7	0.0	36.2	0.0	18.6	0.0
12	-5.7	0.0	36.2	0.0	18.6	0.0
13	-5.7	0.0	36.2	0.0	18.6	0.0
14	-5.7	0.0	36.2	0.0	18.6	0.0

PILE	PX	PY	ΡZ	MX	M	Y	MZ	
	K	K	K	IN-K	IN-	-K	IN-K	
1	-13.0	0.0	-22.1	0.0	-473	3.6	0.0	
2	-13.0	0.0	-22.1	0.0	-473	3.6	0.0	
3	-13.0	0.0	-22.1	0.0	-473	3.6	0.0	
4	-13.0	0.0	-22.1	0.0	-473	3.6	0.0	
5	-13.0	0.0	-22.1	0.0	-473	3.6	0.0	
6	-13.0	0.0	-22.1	0.0	-473	3.6	0.0	
7	-13.0	0.0	-22.1	0.0	-473	3.6	0.0	
8	-19.2	0.0	59.9	0.0	-468	8.5	0.0	
9	-19.2	0.0	59.9	0.0	-468	8.5	0.0	
10	-19.2	0.0	59.9	0.0	-468	8.5	0.0	
11	-19.2	0.0	59.9		0.0	-468.5	5	0.0
12	-19.2	0.0	59.9		0.0	-468.5	5	0.0
13	-19.2	0.0	59.9		0.0	-468.5	5	0.0
14	-19.2	0.0	59.9		0.0	-468.5	5	0.0

7

8

9

10

11

12

13

14

7.3

-7.3

-7.3

-7.3

-7.3

-7.3

-7.3

-7.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

43.6

45.7

45.7

45.7

45.7

45.7

45.7

45.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

4.3

16.5

16.5

16.5

16.5

16.5

16.5

16.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Project No. 60632162

Description		Gate Monolith			Computed by	ЈМН	Date	Dec-20
		KCS Gate Mon	olith				_	
		CPGA Input & Output Files (Pile Analysis)	Checked by	AML	Date _	Dec-20
LOAD CAS	5E -	3						
PILE	PX	PY	ΡZ	MX	MY	MZ		
	K	K	K	IN-K	IN-K	IN-K		
1	-12.4	4 0.0	-16.2	0.0	-494.5	0.0		
2	-12.4	4 0.0	-16.2	0.0	-494.5	0.0		
3	-12.4	4 0.0	-16.2	0.0	-494.5	0.0		
4	-12.4	4 0.0	-16.2	0.0	-494.5	0.0		
5	-12.4	4 0.0	-16.2	0.0	-494.5	0.0		
6	-12.4	4 0.0	-16.2	0.0	-494.5	0.0		
7	-12.4	4 0.0	-16.2	0.0	-494.5	0.0		
8	-19.8	3 0.0	61.8	0.0	-488.3	0.0		
9	-19.8	3 0.0	61.8	0.0	-488.3	0.0		
10	-19.8	3 0.0	61.8	0.0	-488.3	0.0		
11	-19.8	3 0.0	61.8	0.0	-488.3	0.0		
12	-19.8	3 0.0	61.8	0.0	-488.3	0.0		
13	-19.8	3 0.0	61.8	0.0	-488.3	0.0		
14	-19.8	3 0.0	61.8	0.0	-488.3	0.0		
LOAD CAS	Е –	4						
PILE	PX	PY	ΡZ	MX	MY	MZ		
	K	K	K	IN-K	IN-K	IN-K		
1	7.3	3 0.0	43.6	0.0	4.3	0.0		
2	7.3	3 0.0	43.6	0.0	4.3	0.0		
3	7.3	3 0.0	43.6	0.0	4.3	0.0		
4	7.3	3 0.0	43.6	0.0	4.3	0.0		
5	7.3	3 0.0	43.6	0.0	4.3	0.0		
6	7.3	3 0.0	43.6	0.0	4.3	0.0		

Description	Gate Monolith	-	Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith		.			
	CPGA Input & Output Files (Concrete Design)	Checked by	AML	Date _	Dec-20
Input file:						
100	MONOLITH, TOW EL. 16.13, T	TOS EL.7.89; HP	14X73 PILE	S		
200	PROP 29000 729 261 21.4 1.	.7 0 ALL				
300	SOIL ES 0.3805 TIP 41.39 0) ALL				
400	PIN ALL					
500	ALLOW H 55 35 492.7 535 29	972.2 994.4 ALL				
600	FOVSTR 1 1 1					
700	FOVSTR 1 1 2 3 4					
800	BATTER 6 All					
1200) ANGLE 180 8 TO 14					
1300) PILE 1 3 -19.5 0					
1400) PILE 2 3 -13 0					
1500) PILE 3 3 -6.5 0					
1600) PILE 4 3 0 0					
1700) PILE 5 3 6.5 0					
1800) PILE 6 3 13 0					
1900) PILE 7 3 19.5 0					
2000) PILE 8 -3 -19.5 0					
2100) PILE 9 -3 -13 0					
2200) PILE 10 -3 -6.5 0					
2300) PILE 11 -3 0 0					
2400) PILE 12 -3 6.5 0					
2500) PILE 13 -3 13 0					
2600) PILE 14 -3 19.5 0					
4500	LOAD 1 0 0 778.7 0 119.3	0				
4600	LOAD 2 -360.8 0 423.5 0 1	L878.7 O				
4700) LOAD 3 -360.8 0 509.7 0 1	L703.8 0				
4800) LOAD 4 0 0 1375.7 0 123.2	2 0				
9000) FOUT 1 2 3 4 5 6 7 KCS01s	S.DOC				
9100	PFO ALL					
9200	PLB ALL					

Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20	
	KCS Gate Monolith	_				
	CPGA Input & Output Files (Concrete Desig	n) Checked by _	AML	Date	Dec-20	

CPGA RESULTS with Load Factors

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 27-DEC-20 RUN TIME: 11:50:40

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE
- NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.7.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 14 PILES AND 4 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-19.50 ,	0.00)
(3.00 ,	19.50 ,	0.00)

PILE PROPERTIES AS INPUT

E	I1	I2	A C33		B66
KSI	IN**4	IN**4	IN**2		
0.29000E+05	0.72900E+03	0.26100E+03	0.21400E+02	0.17000E+01	0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

Description	Gate Mon	olith	_	Computer	dby Ji	ин с	Date	Dec-20
	KCS Gate	Monolith	_					
	CPGA Inp	ut & Output Files	s (Concrete Desi	gn) Checked	d by Al	<u>ML</u> C	Date	Dec-20
SOIL	DESCRIPTIONS	S AS INPUT						
ES ESC	IL LENG	CH L	LU					
K/IN	**2	FT	FΤ					
0.380	50E+00 T	0.41390E+	02 0.00000E	+00				
ESOIL(ORIGIN K/IN**2	AL) RGROU	JP RCYCLIC						
0.38050E+00	0.1000)E+01 0.1000E+	01					
THIS SOIL DES	מסג ארדייסדסי	TES TO THE FO	LIOWING DILES	_				
11115 5011 015	CRITITON ATT	11115 IO INE IO	DEGWING TIEES					
ALL								
*****	****		****	*****	******	*****		
PILE	STIFFNESSES	AS CALCULATED	FROM PROPERT	IES				
0.17968E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000	E+00		
0.00000E+00	0.23229E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000	E+00		
0.00000E+00	0.00000E+00	0.20952E+04	0.00000E+00	0.00000E+00	0.00000	E+00		
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000	E+00		
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000	E+00		
0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000	E+00		
THIS MATRIX A	PPLIES TO THE	E FOLLOWING PI	les -					
1								

Description	ı	Gate Mon	olith			Compu	puted by JMH Date			Dec-20	
		KCS Gate	Monolith				_				
		CPGA Input & Output Files (C		es (Concr	Concrete Design)		Checked by		Date	ate Dec-20	
	PILE G	EOMETRY AS	INPUT AND/OR	GENERAT	ED						
NUM	х	Y	Z	BATTER	ANGLE	LENGTH	FIXITY				
	FT	FT	FT			FT					
1	3.00	-19.50	0.00	6.00	0.00	41.96	P				
2	3.00	-13.00	0.00	6.00	0.00	41.96	P				
3	3.00	-6.50	0.00	6.00	0.00	41.96	P				
4	3.00	0.00	0.00	6.00	0.00	41.96	P				
5	3.00	6.50	0.00	6.00	0.00	41.96	P				
6	3.00	13.00	0.00	6.00	0.00	41.96	P				
7	3.00	19.50	0.00	6.00	0.00	41.96	P				
8	-3.00	-19.50	0.00	6.00	180.00	41.96	P				
9	-3.00	-13.00	0.00	6.00	180.00	41.96	P				
10	-3.00	-6.50	0.00	6.00	180.00	41.96	P				
11	-3.00	0.00	0.00	6.00	180.00	41.96	P				
12	-3.00	6.50	0.00	6.00	180.00	41.96	P				
13	-3.00	13.00	0.00	6.00	180.00	41.96	P				
14	-3.00	19.50	0.00	6.00	180.00	41.96	P				

587.45

APPLIED LOADS

load Case	PX K	PY K	PZ K	MX FT-K	MY FT-K	MZ FT-K
1	0.0	0.0	778.7	0.0	119.3	0.0
2	-360.8	0.0	423.5	0.0	1878.7	0.0
3	-360.8	0.0	509.7	0.0	1703.8	0.0
4	0.0	0.0	1375.7	0.0	123.2	0.0

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.31204E-03	-0.16978E+06	0.00000E+00	0.56843E-12	-0.86678E-05	0.10376E+04
-0.65938E-11	0.20658E-02	-0.21684E-18	0.57384E-04	0.32521E+03	-0.86678E-05
-0.20658E-02	0.29104E-10	0.00000E+00	0.28547E+05	0.57384E-04	0.56843E-12
-0.18626E-07	0.00000E+00	0.69473E+09	-0.58208E-10	0.21684E-18	0.00000E+00
-0.74369E-01	0.36997E+08	0.00000E+00	0.29104E-10	0.20658E-02	-0.16978E+06
0.25671E+08	-0.74369E-01	-0.74506E-08	-0.20658E-02	-0.65938E-11	0.31204E-03

Descri	ption	Gate Monolith			Computed	bv JMH	Date	Dec-20
		KCS Gate Mon	olith			.,		
	1	CPGA Input &	Output Files (C	oncrete Desig	n) Checked	by AML	Date	Dec-20
		14 PILES	4 LOAD CAS	ES				
LOAD	CASE 1.	NUMBER OF FAI	LURES = 7.	NUMBER OF	PILES IN TEN	SION = 0.		
LOAD	CASE 2.	NUMBER OF FAI	LURES = 7.	NUMBER OF	PILES IN TEN	SION = 7.		
LOAD	CASE 3.	NUMBER OF FAI	LURES = 7.	NUMBER OF	PILES IN TEN	SION = 7.		
LOAD	CASE 4.	NUMBER OF FAI	LURES = 14.	NUMBER OF	PILES IN TEN	SION = 0.		
****	*****	*****	****	******	*****	*****	* *	
	PILE C	AP DISPLACEMENT	'S					
LOAD								
CASE	DX	DY	DZ	RX	RY	RZ		
	IN	IN	IN	RAD	RAD	RAD		
1	0.2541E-	01 -0.5122E-08	0.2728E-01	0.2285E-20	0.1553E-03	0.2336E-11		
2	-0.9956E+	00 -0.4003E-08	0.1483E-01	0.1243E-20	-0.3959E-02	0.1826E-11		
3 4	-0.1033E+ 0.2625E-	01 -0.4082E-08 01 -0.8823E-08	0.1785E-01 0.4819E-01	0.1496E-20 0.4038E-20	-0.4187E-02 0.1604E-03	0.1862E-11 0.4024E-11		
****	*****	* * * * * * * * * * * * * * * *	*****	*********	*****	*****	**	
	E	LASTIC CENTER 1	NFORMATION					
ELAS	FIC CENTER	IN PLANE X-Z	х	Z				
			FT	FT				
			0.00	0.00				

Descri	ption	Gat	e Monolith		_	(Comp	uted by	ЈМН	Date	Dec-20
		KCS	Gate Mon	olith	<u> </u>						
		CPC	GA Input & 0	Output Files	s (Concrete D)esign)	Cheo	ked by		Date _	Dec-20
	PIL	E FORCES	IN LOCAL	GEOMETRY							
		M1 5. M2	אריי איי א	TE HEAD E	ר סדאואדה פ	TIFS					
		* INDIC	ATES PILE	FATLURE	OK FINNED F	1772					
		# INDIC	ATES CBF F	BASED ON M	OMENTS DUE	ТО					
			(F3*F	MIN) FOR	CONCRETE PI	LES					
		B INDIC	ATES BUCKI	JING CONTR	OLS						
	~ ~ ~										
LOAD	CASE -	1									
PILE	F1	F2	F3	M1	M2	МЗ	ALF	CBF			
	K	K	К	IN-K	IN-K	IN-K					
1	0.4	0.0	53.6	0.0	-11.8	0.0	0.97	0.12			
2	0.4	0.0	53.6	0.0	-11.8	0.0	0.97	0.12			
3	0.4	0.0	53.6	0.0	-11.8	0.0	0.97	0.12			
4	0.4	0.0	53.6	0.0	-11.8	0.0	0.97	0.12			
5	0.4	0.0	53.6	0.0	-11.8	0.0	0.97	0.12			
6	0.4	0.0	53.6	0.0	-11.8	0.0	0.97	0.12			
/	0.4	0.0	53.6	0.0	-11.8	0.0	0.97	0.12			
8	-0.5	0.0	59.2	0.0	16.7	0.0	1.08	0.14	*		
10	-0.5	0.0	59.2	0.0	16.7	0.0	1.08	0.14	^ +		
11	-0.5	0.0	59.2	0.0	16.7	0.0	1 00	0.14	*		
12	-0.5	0.0	59.2	0.0	16.7	0.0	1 08	0.14	*		
1.3	-0.5	0.0	59.2	0.0	16.7	0.0	1.08	0.14	*		
14	-0.5	0.0	59.2	0.0	16.7	0.0	1.08	0.14	*		
LOAD	CASE -	2									
PILE	F1	F2	F3	M1	М2	МЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-18 1	0 0	-17 7	0 0	550 8	0 0	0 51	0 59			
2	-18 1	0.0	-17 7	0.0	550.8	0.0	0.51	0.59			
3	-18.1	0.0	-17.7	0.0	550.8	0.0	0.51	0.59			
4	-18.1	0.0	-17.7	0.0	550.8	0.0	0.51	0.59			
5	-18.1	0.0	-17.7	0.0	550.8	0.0	0.51	0.59			
6	-18.1	0.0	-17.7	0.0	550.8	0.0	0.51	0.59			
7	-18.1	0.0	-17.7	0.0	550.8	0.0	0.51	0.59			
8	18.0	0.0	79.0	0.0	-548.1	0.0	1.44	0.71	*		
9	18.0	0.0	79.0	0.0	-548.1	0.0	1.44	0.71	*		
10	18.0	0.0	79.0	0.0	-548.1	0.0	1.44	0.71	*		
11	18.0	0.0	79.0	0.0	-548.1	0.0	1.44	0.71	*		
12	18.0	0.0	79.0	0.0	-548.1	0.0	1.44	0.71	*		
13	18.0	0.0	79.0	0.0	-548.1	0.0	1.44	0.71	*		
14	18.0	0.0	79.0	0.0	-548.1	0.0	1.44	0.71	*		

muurepuus	owamp

	ption	Gate	e Monolith				Comp	uted by	JMH	Date	Dec-2
		KCS	6 Gate Mono	olith				_			
		CPC	GA Input & C	Output Files	s (Concrete D	esign)	Cheo	ked by _	AML	Date _	Dec-2
LOAD	CASE -	3									
PILE	F1	F2	F3	M1	М2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	-18.8	0.0	-7.4	0.0	571.9	0.0	0.21	0.59			
2	-18.8	0.0	-7.4	0.0	571.9	0.0	0.21	0.59			
3	-18.8	0.0	-7.4	0.0	571.9	0.0	0.21	0.59			
4	-18.8	0.0	-7.4	0.0	571.9	0.0	0.21	0.59			
5	-18.8	0.0	-7.4	0.0	571.9	0.0	0.21	0.59			
6	-18.8	0.0	-7.4	0.0	571.9	0.0	0.21	0.59			
7	-18.8	0.0	-7.4	0.0	571.9	0.0	0.21	0.59			
8	18 7	0 0	81 2	0 0	-568 7	0 0	1 48	0 74	*		
9	18 7	0 0	81 2	0 0	-568 7	0 0	1 48	0 74	*		
10	18 7	0.0	81 2	0.0	-568 7	0.0	1 48	0 74	*		
11	18 7	0.0	81 2	0.0	-568 7	0.0	1 48	0 74	*		
12	18 7	0.0	81 2	0.0	-568 7	0.0	1 / 8	0.74	*		
13	10.7	0.0	01.2	0.0	-569 7	0.0	1 /0	0.74	*		
14	10.7	0.0	01.2	0.0	-500.7	0.0	1 40	0.74	*		
LOAD	CASE -	4									
LOAD PILE	CASE - F1	4 F2	F3	Ml	м2	м3	ALF	CBF			
LOAD PILE	CASE - F1 K	4 F2 K	F3 K	M1 IN-K	M2 IN-K	M3 IN-K	ALF	CBF			
LOAD PILE 1	CASE - F1 K 0.3	4 F2 K 0.0	F3 K 96.7	M1 IN-K 0.0	M2 IN-K -10.3	M3 IN-K 0.0	ALF 1.76	CBF 0.21	*		
LOAD PILE 1 2	CASE - F1 K 0.3 0.3	4 F2 K 0.0 0.0	F3 K 96.7 96.7	M1 IN-K 0.0 0.0	M2 IN-K -10.3 -10.3	M3 IN-K 0.0 0.0	ALF 1.76 1.76	CBF 0.21 0.21	*		
LOAD PILE 1 2 3	CASE - F1 K 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0	F3 K 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0	M2 IN-K -10.3 -10.3 -10.3	M3 IN-K 0.0 0.0 0.0	ALF 1.76 1.76 1.76	CBF 0.21 0.21 0.21	* *		
LOAD PILE 1 2 3 4	CASE - F1 K 0.3 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0 0.0 0.0	F3 K 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0	M2 IN-K -10.3 -10.3 -10.3 -10.3	M3 IN-K 0.0 0.0 0.0 0.0	ALF 1.76 1.76 1.76 1.76	CBF 0.21 0.21 0.21 0.21	* * *		
LOAD PILE 1 2 3 4 5	CASE - F1 K 0.3 0.3 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0 0.0 0.0	F3 K 96.7 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0 0.0	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3	M3 IN-K 0.0 0.0 0.0 0.0 0.0	ALF 1.76 1.76 1.76 1.76 1.76	CBF 0.21 0.21 0.21 0.21 0.21 0.21	* * * *		
LOAD PILE 1 2 3 4 5 6	CASE - F1 K 0.3 0.3 0.3 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 96.7 96.7 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3 -10.3	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALF 1.76 1.76 1.76 1.76 1.76 1.76	CBF 0.21 0.21 0.21 0.21 0.21 0.21	* * * * * *		
LOAD PILE 1 2 3 4 5 6 7	CASE - F1 K 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 96.7 96.7 96.7 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALF 1.76 1.76 1.76 1.76 1.76 1.76 1.76	CBF 0.21 0.21 0.21 0.21 0.21 0.21 0.21	* * * * * * *		
LOAD PILE 1 2 3 4 5 6 7 8	CASE - F1 K 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 -0.6	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 96.7 96.7 96.7 96.7 96.7 96.7 96.7 102.5	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 19.0	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALF 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	CBF 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	* * * * * * *		
LOAD PILE 1 2 3 4 5 6 7 8 9	CASE - F1 K 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 -0.6 -0.6	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 19.0 19.0	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALF 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.86	CBF 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	* * * * * * * *		
LOAD PILE 1 2 3 4 5 6 7 8 9 10	CASE - F1 K 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F3 K 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 19.0 19.0 19.0	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALF 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.86 1.86	CBF 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	* * * * * * * *		
LOAD PILE 1 2 3 4 5 6 7 8 9 10 11	CASE - F1 K 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	F3 K 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 19.0 19.0 19.0	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALF 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.86 1.86 1.86	CBF 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	* * * * * * * * *		
LOAD PILE 1 2 3 4 5 6 7 8 9 10 11 12	CASE - F1 K 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	F3 K 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 19.0 19.0 19.0 19.0	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALF 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.86 1.86 1.86 1.86 1.86	CBF 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	* * * * * * * * *		
LOAD PILE 1 2 3 4 5 6 7 8 9 10 11 12 13	CASE - F1 K 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4 F2 K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	F3 K 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7	M1 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	M2 IN-K -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 19.0 19.0 19.0 19.0 19.0	M3 IN-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALF 1.76 1.76 1.76 1.76 1.76 1.76 1.86 1.86 1.86 1.86 1.86 1.86	CBF 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.23 0.23 0.23 0.23 0.23	* * * * * * * * * *		

Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith	-		- ·	
	CPGA Input & Output Files (Concrete Design) Checked by _	AML	Date	Dec-20

PILE FORCES IN GLOBAL GEOMETRY

LOAD CASE - 1

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	9.2	0.0	52.8	0.0	0.0	0.0
2	9.2	0.0	52.8	0.0	0.0	0.0
3	9.2	0.0	52.8	0.0	0.0	0.0
4	9.2	0.0	52.8	0.0	0.0	0.0
5	9.2	0.0	52.8	0.0	0.0	0.0
6	9.2	0.0	52.8	0.0	0.0	0.0
7	9.2	0.0	52.8	0.0	0.0	0.0
8	-9.2	0.0	58.5	0.0	0.0	0.0
9	-9.2	0.0	58.5	0.0	0.0	0.0
10	-9.2	0.0	58.5	0.0	0.0	0.0
11	-9.2	0.0	58.5	0.0	0.0	0.0
12	-9.2	0.0	58.5	0.0	0.0	0.0
13	-9.2	0.0	58.5	0.0	0.0	0.0
14	-9.2	0.0	58.5	0.0	0.0	0.0

LOAD CASE - 2

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	-20.8	0.0	-14.5	0.0	0.0	0.0
2	-20.8	0.0	-14.5	0.0	0.0	0.0
3	-20.8	0.0	-14.5	0.0	0.0	0.0
4	-20.8	0.0	-14.5	0.0	0.0	0.0
5	-20.8	0.0	-14.5	0.0	0.0	0.0
6	-20.8	0.0	-14.5	0.0	0.0	0.0
7	-20.8	0.0	-14.5	0.0	0.0	0.0
8	-30.8	0.0	75.0	0.0	0.0	0.0
9	-30.8	0.0	75.0	0.0	0.0	0.0
10	-30.8	0.0	75.0	0.0	0.0	0.0
11	-30.8	0.0	75.0	0.0	0.0	0.0
12	-30.8	0.0	75.0	0.0	0.0	0.0
13	-30.8	0.0	75.0	0.0	0.0	0.0
14	-30.8	0.0	75.0	0.0	0.0	0.0

Descriptio	on	Gate Monoli	:h	-	(Computed by	JMH	Date	Dec-20
		KCS Gate Mo	onolith	-		-			
		CPGA Input	& Output Files	(Concrete	Design)	Checked by	AML	Date	Dec-20
LOAD CA	.se – 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	-19.8	0.0	-4.2	0.0	0.0	0.0			
2	-19.8	0.0	-4.2	0.0	0.0	0.0			
3	-19.8	0.0	-4.2	0.0	0.0	0.0			
4	-19.8	0.0	-4.2	0.0	0.0	0.0			
5	-19.8	0.0	-4.2	0.0	0.0	0.0			
6	-19.8	0.0	-4.2	0.0	0.0	0.0			
7	-19.8	0.0	-4.2	0.0	0.0	0.0			
8	-31.8	0.0	77.0	0.0	0.0	0.0			
9	-31.8	0.0	77.0	0.0	0.0	0.0			
10	-31.8	0.0	77.0	0.0	0.0	0.0			
11	-31.8	0.0	77.0	0.0	0.0	0.0			
12	-31.8	0.0	77.0	0.0	0.0	0.0			
13	-31.8	0.0	77.0	0.0	0.0	0.0			
14	-31.8	0.0	77.0	0.0	0.0	0.0			

LOAD CASE - 4

PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	16.2	0.0	95.3	0.0	0.0	0.0
2	16.2	0.0	95.3	0.0	0.0	0.0
3	16.2	0.0	95.3	0.0	0.0	0.0
4	16.2	0.0	95.3	0.0	0.0	0.0
5	16.2	0.0	95.3	0.0	0.0	0.0
6	16.2	0.0	95.3	0.0	0.0	0.0
7	16.2	0.0	95.3	0.0	0.0	0.0
8	-16.2	0.0	101.2	0.0	0.0	0.0
9	-16.2	0.0	101.2	0.0	0.0	0.0
10	-16.2	0.0	101.2	0.0	0.0	0.0
11	-16.2	0.0	101.2	0.0	0.0	0.0
12	-16.2	0.0	101.2	0.0	0.0	0.0
13	-16.2	0.0	101.2	0.0	0.0	0.0
14	-16.2	0.0	101.2	0.0	0.0	0.0

Job Maurep	M Daus Swamp	Project No.	60632162	_	
Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith			_	
Summa	ary of Shear & Moment	Checked by	AML	Date	Dec-20
				R	eferences

Load	V _{u,max}	M u,max
Case	(kip/ft)	(kip/ft)
LC1	0.00	0.00
LC2	3.39	9.29
LC3	3.39	9.29
LC4	0.00	0.00

*Note: LC 1 and 4 only have vertical forces, so there is no shear or moment on the wall.

The following calculations are the max shear (Vu) and moment (Mu) on the wall form LC 2 and LC 3:

AECOM Imagine it. Delivered	JOB TITLE _	mai	urera	S	nsi	-1	STI	ruciu	es -	1	103	vanc	-
	PROJECT/JO	B NO		54				_ CALCU	LATION	NO			
	COMPUTED	3Y	,	20	-			_		ATE			
11 11 21 1.	VERIFIED BY				-				SHEET	NO.	1	OF	_
Wall Calculations	, SCALE					_		_			-	_	-
													_
										1.1			
Ascumptions!				A	the	ap	(all	alabo	1 6	nly	choi.		
Apsolit roots.					11	T.	La	a cau	1.1	. 10		10.0	-
F-164-164	+++	-			The	100	aing	1 con	8/10	2112	on w	and	
0=1.9=18			-		TO	1	M	14	14	5/5	LOUR	below	v.
Cover = 3	Assume :	#6 b	ars			_	-	-		-	-	-	+
4 = 16 -3 - 15													
$b = 12^{"}$													
0 = 75			-										
h i- q											-		-
e moment - 1			-			-	-	1.t		-	+		-
$F_V = 60 \text{ rs}$		-	-			-	h	wildi	-	-	-		-
$f_c = 4 h_s$		-		1			2			-	E	1.16.	110
			_	1			A	-					
			11	-4.3	35		11						
	- 1- 1-		n	1		1	1						
				1		A	7		-	-			00
		+		1	T I	-	7	-	-	1	-6	Lil.	99
		-		-	-	-	-		-	+	-	-	+
			-	-		-	-		_	-			-
		-		-									
			-	_		-							
(1) Shear Calculation	5;												
										1	1.1	2	+
hulot -	$V_{0} = $	718	water)(H)	= 1	kt	.01	141	8.1	(9.1	351	-	-
1 1 1 1 1 1 1	1	or e			-	21	141	0417	fe'l	-	14	-	+
	11-	1 11	1 10		-	+	-		-	-		1.	
	Vy T	2.110	o MA	2	-	-	-		_			_	
	IVV F		10		-	-	-		-				
	16 4 7	3.39	Kip	2 =1	4 0	nc	10	fwal	1			-	+
			11	E	1							-	+-
									-	-	-		+
Dement Calculation					-	+		-		-		_	-
	7.		-	-	-	+	-		-	-		-	
		11/	141	-6	100	18	.135	1	-	10	10		
Nw, lat >	MyF	Vyl	3)	-12.	SU	LF	3	17	- 9.	74	1-H	-	-
	1	-	-	-		-	1	1	-	f	4	-	-
	1 4	9 10	K-CL		11.	12	011		-	11	Y-		-
	1/Nu F	1.0.1	11.22	DN	1 1	1 1							
	My=	-0	4	ON	10	21 1	iqui		+	+			

4x4 = 1 in

Dec-20

Dec-20

A COM Job Maurepaus Swamp Project No. 60632162 Description Gate Monolith Computed by JMH Date KCS Gate Monolith Shear & Moment Check for Wall Checked by AML Date References * Given Information: 1.50 ft Wall Thickness: Clear Cover: 0.25 ft Diameter Bar to Start: 0.06 ft Maximum Shear (V_u): 3.39 kips per foot Maximum Moment (M_u): 9.29 kip-ft per foot φ_{shear} = 0.75 (ACI 318) 0.9 (ACI 318) ϕ_{moment} = 60 ksi f_{y, rebar} = f'_c = 4 ksi * Shear Calculations: Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u) (ACI Eq. 11-1) Shear Capacity (ϕV_c): $\phi_{shear} * 2 * \int f'_c * b * d$ (ACI Eq. 11-3) 0.75 φ_{shear} = 4 ksi f'_c = 1 ft strip b = 1.22 ft d = 16649.4 lbs $\phi V_c =$ 16.65 kips ** φVc=16.6 ≥ Vu=3.4, Shear Capacity OK

* Reinforcement Calculations:

Limit	of Maximum	Reinforcement: where p _b = Max Rebar =	0.25 x ρ _b (Design C 0.0285 for f' _c = 4 0.00713 *b * d	riteria, EM 1,000psi, fy	1110-2-21 = 60,000	04, 3-5) psi
	Maximum	Reinforcement:	0.0071 * b * d =	1.25	in²	per 1ft strip
		A _{gross} =	1.5 ft * 12 in/ft * 12	in strip = [216.00	in ²
Limits	of Minimum	Reinforcement:	0.005 x Agross =	1.08	in²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
			$(3*J(f'_{c})*b*d)/f_{y} =$	0.55	in²	(ACI 318-14, 9.6.1.2, min for flexural members)
			(200*b*d)/f _y =	0.59	in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
		Min Reinforcemer	nt, temp & shrinkage:	0.54	in ²	per 1ft strip, per face
		Min Reir	nforcement, flexural:	0.59	in ²	per 1ft strip, per face

Job Maur	epaus Swamp	Project No.	60632162	-		
Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20	
	KCS Gate Monolith					
Shear	r & Moment Check for Wall	Checked by	AML	Date	Dec-20	
				Re	ferences	

* Moment Calculations:

* $T = A_s \times f_y$ * $C = 0.85 \times f'_c \times a \times b$ * Assuming Tension = Compression $\rightarrow A_s \times f_y = 0.85 \times f'_c \times a \times b$ * $\phi Mn = \phi \times T \times (d - (a / 2))$ $= \phi \times A_s \times f_y \times (d - (a / 2))$

* Capacity of Min Flexural Reinforcement:

φM _n =	448.4	kip-in
=	37.37	kip-ft

* Capacity of Maximum Reinforcement:

a = $(A_s \times f_y) / (0.85 \times f'_c \times b)$ = 1.839 in

φMn =	925.4	kip-in	
=	77.12	kip-ft	

FLOODED SIDE

T&S WALL REBAR

F.S. & P.S. WALL REBAR

4

4

44

3" CLR.

(TYP)

4

PROTECTED SIDE

GRADE

The minimum proposed reinforcement for T&S Wall Rebar is #6 @ 9" (A = 0.59 in²) and the minimum proposed reinforcement for F.S. & P.S. Wall Rebar is #6 @ 9"(A=0.59 in²).

A Job	Maure	M Daus Swamp	Project No.	60632162		
Descrij	otion	Gate Monolith	Computed by	JMH	Date	Dec-20
		KCS Gate Monolith				
	Slab		Checked by	AML	Date	Dec-20
					Re	eferences

Tributary width (pile spacing):	6.5 ft	Referred to as "width" in calculations
---------------------------------	--------	--

Job Mau	JIVI Irepaus Swamp	Project No.	60632162		
Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith				
Slab	Calculations	Checked by	AML	Date	Dec-20
				R	eferences
*Note: The f for all Loa adding th monolith pas the slab o	ollowing calculations repres d Combos. The calcs shown e gate sill will increase the sses, then the gate (or mido can be found in the "Slab Co	ent the total shear (Vi below only consider the rigidity of the structu dle) section of the mon onc Check" tab. All read results from CPGA	u) and moment (A e t-wall section in re; therefore, if olith will also pas ctions are taken	Au) on both s n this monoli the t-wall se ss. Capacity o from the pin	sides of the slab th. In theory, ection of the calculations for ned or fixed

lab (alculations: scale			
lab (alculations: scale			DATE OF .
		SHI	EET NO
Lonstruction Surcharge			
-> Concrete we.			
-> Sur charge =, 25 K/A2			
-> Assume 6.5' of the leng	th		
between piles	64	415-1	P.S.
-> 8conc. =, 15 K/fe3	(.).	101	
	Surch =. V	51%	1000 1
	2	'fri	7 4 35
	2		
	+ + +		VV
			4.5'
			1
	1-5.	15-1 1	- 2.75-1
haist	. /	10	/
Flood Side: Survey			Sordrafae
			VITE
V>	w. yah	1	w,slab
	VI		1
R = 33.4 Kip from CIGA	1 I	R	- 1075× 0
slab= (5.75)(6.5) 4.5 (.15 kp2)	R		3.75-1
slab = 25.23 Kip			
KICOS KICOS KICI			
wonarge = (.15 72) (6.5)			
urcharge = 9,34 Kip			
1 - 9 74 - 25 77 - 1		_	
Vy= 1,57 1 (25.23) 7 (4	33.4		
6 Vu 1.87 Kip = .29	Kip		
65	145		
3 trib			
lewath			
(Celle			

Job Maure	paus Swamp	Project No.	60632162		
Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith				
Slab C	Calculations	Checked by	AML	Date	Dec-20
				Re	eferences

Delivered.	PROJECT/JOB NO.			CALCULATION NO		
	COMPUTED BY	JH		DATE		
	VERIFIED BY			DATE	2	or
	SCALE			SHEET NO	3	OF
Mu > R=	33.4 Ki0	633	75 (F			
			Tr' A			
Wislar =	25.23 Kip	@ d.8	13 U			
Surch =	= 9.34 1:0	Q) 1.8	75 A)			
		01				
1 - (934)(14	70 + (25.25	VICTO	1 - (33)	1/375		
ny - lis Mar		JC2005				
$M_{\rm U} = -25.86$	hip-fe			-		
11.00 - 11.29	hin C		Di			-
1.6 //14 - 41.50	TUP TE =	-6.36	ip te			
	5 Datric		fe		-	
	lemth	_				
	· J.		Sarcharge			-
Do 1. 1.1. (11.		Mu			-	
notected side!		4	willab	_		
1		Vu	V		_	-
Vu -7		VII				
		K	75		_	
(= 3	5.5 hip from C	PGA	Tim			
wslab=(75 6,5 4.5	523	-1.315			
1. Clab=	12.07	ny				
Containe	Charles Al 10					
Juranaige=	1.15/6.5/(125)	(4)				
Surcharge =	47 Kip					
$V_{4} = 4.47$	12.07 36	.5				
-19.96	Kil					
Vų					-	
1.6 Vy = -31.94	KI = V =	-4.91 ki	2			
15	Vų L		4		-	
015						- 1
M > N-	36.5 KD (a) 75'	0	1.		
ma k-			Q			
Wislab	= 12.07 Kip (0) 1.375	(F)			
Guerhacas	= 4.47 Kin	1 1375	(A)			
Surviula			W			-

Job Maure	paus Swamp	Project No.	60632162		
Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith				
Slab C	Calculations	Checked by	AML	Date	Dec-20
				Re	eferences

AECOM Delivered.	PROJECT/JOB NO	Σħ		_ CALCULATION NO DATE		
	VERIFIED BY			DATE SHEET NO	4_ OF	
		Kunna				
$M_{\rm H} = (4.47)($	(, 3/5) T (<u>12</u> .	07 (1.3 /3) -		36.5 (,75)		
$M_{\rm U} = -4.63$	hip-ft					
16 00 - 741	W'a 0.			4		
1.6 //lu	141-te =	-1.14 kip	fŧ =	= 1/4		
	0,7	T	ft			
2. Water to 10) (impervious)					
-> concrete	weight	F.	5.	P.S.		
> hilat can	be ignored		-	12.130		
-> Uplift im	ervious -	1-5.	15-7	-13-2,15-7	1	
assume s	eetpile)	3	108x		105	
-> Assume 6	5 of tab				7355	
length bet	ween piles	Y V			X	
					4.5'	-
Flood Side:			T	A	1	
			-	La MALEL		
Vy >			wslab	- mint imp		
R= -22.1 Kip From	CPGA		hum	EMU		
Wslab= (5.75') (6.5') (4.5) (.15 hef)	1		(Vu)		-
Wslah = 25.23 Kip		R	Uimp.			
hiver= (5.75')(6,5	×(8.35)(.0614	kef)	3.75	,		
hiver = 19. 21 Ki	e .					-
Uplift = (5.75')(6.5)(12.74')(.06)	4 Kcf)				-
Uplitt = 29.71 Kip						

Gata Monalith		Computed by	IML	Data	Dec 20
KCS Gate Mono	lith		JWIT	Date	Dec-20
alculations	, , , , , , , , , , , , , , , , , , ,	Checked by	AML	Date	Dec-20
					References
	VERIFIED BY		DAT	5	OF
$V_0 = 22.1 + 2$	5.23 + 19	- 29.71			
Vu = 36.83 K	ip in in				
	Gate Monolith KCS Gate Mono alculations	Gate Monolith KCS Gate Monolith alculations The alculations The alcula	Gate Monolith Computed by KCS Gate Monolith alculations Checked by Imagine it JOB TITLE PROJECT/JOB NO. COMPUTED BY Vul = 22.1 + 25.23 + 19.41 - 29.71	Gate Monolith Computed by JMH KCS Gate Monolith alculations Checked by AML ECOM Imagine it. JOB TITLE PROJECT/JOB NO. CALCULATION NO. COMPUTED BY JH VIL 22.1 VIL 22.1 VIL 22.1	Gate Monolith Computed by JMH Date KCS Gate Monolith All Date alculations Checked by AML Date Imagine it. JOB TITLE PROJECT/JOB NO. CALCULATION NO. Computed BY Date VIL Z2.1 H Z5.23 H /////.l.l Z9.71 Date

1.(Vu = 58.93 Kip -	9.07			
6.5'	At - V			
M	kip @ 3.75	A		
W slab = 25.23	Kip @) 1.875	Æ		
hurer = 19 h	1 10 6) 1.875	Ä		
(10)ift = 29.71	1 Kp @ 1575'	A		
strain -		Y		
$M_{y} = 22.1(3.75) + (25)$.23)(1.875) +	(19.21)(J.	875) - (29	9.71) (J. 875)
Mu = 125.22 Kip-fe				
1.6 My = 200.36 Kip fe _	30.82 hp-f	6 - m.		
65	- Pt	-1.14		
PTib lengt	h			
Protected Side:	M	(
Vu =>	- A	(0)	lab	
R= 59.9 Kie fam/IGA		he p		
(vslob=(175')(5')4.5)(1	(5 hcf)	R	75'	
4. slah = 12.07 hill		He	1375	
			1.510	
$V_{\rm V} = 12.07 - 59.9$				
U = -47.83 Kip				
1.6 V = -76.53 KP	11.77 K(0 -	V		
15	At At	Mu		
Stile level.				
The cult				

Job Maure	paus Swamp	Project No.	60632162		
Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith				
Slab Calculations		Checked by	AML	Date	Dec-20
				Re	eferences

AECOM Imagine it. Delivered.	JOB TITLE		CALCULATION NO.	-
	COMPUTED BY T	ł	DATE	
	VERIFIED BY		DATE	,
	SCALE		SHEET NO.	6_0
$M_{\rm U} \rightarrow R =$	59.9 Kip @ 75	Θ		
- M	1207 4:0 0 1375	A	1 1 1	
W, SI40 -				
My = (12.07) (1.37	5) - (59.9)(, 75			
			_	-
$M_{\rm U} = -28.33$ h	ip-fe			
16 Mu = 45.22 h	0-ft		M	
43.33	-6.97	ip to =	ng l	
6.5	hit.	4t		-
	ength			
3. Water to TOW Cpe	ervious)			
-> contrete wit				
-> Lat ran he iana	vel			
-> L upri		r st'	15 25	-
Supliff pervious		5.15-7	1.0	1,
> Accume / 5' etc		2 hover		1
length let on sile	2	5		8.135
reight between fries	1			
		V V		11
				4.5'
			T T	- 1
Ploud Side:		11		
V > 0 16.2 km	En IPCA		they bernion?	
Vy 10 - 25 23 h	Cree prev (alre)	K d. \$75-1		
L ven - 19 11 his	(see orely intro)	V	Frid	
IIII - C	(second ares)	Vivert) -5.75-	7
Upht 5.16+2	.2)(5.75)	12	5.16 k	1 2.2 ki
6 /		K Uppirty		
(1)14 = 21.16	Tio		PM	
Aburb	-	-3.00-1		

Job Maure	paus Swamp	Project No.	60632162		
Description	Gate Monolith	Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith				
Slab Calculations		Checked by	AML	Date	Dec-20
				Re	eferences

		PROJECT/JOB NO			
	COMPUTED BY	JH	DATE	_	
		VERIFIED BY		DATE	
		SCALE		SHEET NO. 7 OF	
111				TITIT	T
11 -		+ 19 71	21.16		+
Vy -L	16.2	25.23 1 1 (• 04	21.10		-
11.5		kin			-
vu-	39.48	NP			-
1,600 =	63.17	hip - 0.72	kie - U		-
	-10	9.72			+
	6.0	Atril	172		-
		tength			-
					-
AL .	0				-
/my ->	R-	- 16.2 10 0	3.75 0		+
	wisial=	25.23 Kip	1.875 (Đ		-
	hivert=	19.21 Kip 6)	1.875 (1)		-
	Lable				-
	uplitt =	21.16 14 6	3.26 ()		-
	1/2751	C NO	77 1 1 10 11/100		-
Au = (16.2	1 3.151	T 25.23 J.	181 + 1 19 211 1.81		1.7
	111/	C. C.	and the first of a	(21.10)(3.06)	+
					1
My =	119.53	sip-Ae			-
Mu = [119.53	sip-fe			
$M_{\rm H} = [$ 1.6 $M_{\rm H} =$	119.53	iip - At hip - At = 2	9.42 Kip-ft > My		
My = [1.6 My =	119.53 191.25	sip-fe hip-fe = [2: s'	9.42 $k_{i}p = ft > M_{i}$		
My = [1.6 My =	119.53 191.25 6r	vp-fe hip-fe = 22 5'	9.42 $kip = ft = M_{ij}$		
My = [1.6 My =	119.53 / 191.25 67	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9.42 kip = ft = ft		
Nu = [1.6 Nu = Protees	119.53 191.25 6r Side	\$\$ \$\$ \$\$	9.42 $kip = ft = M_{ij}$ ft		
Ny = [1.6 Ny = Protees	119.53 191.25 67 Side:	sip-fe hip-fe s'	9.42 $kip=ft \Rightarrow Mu$ Ft Mu		
$ \begin{array}{c} & \Lambda_{\rm U} = [\\ $	119.53 / 191.25 6r Side:	\$\$ \$\$ \$\$	9.42 $kip=ft = Mu$ Ft ft Mu J Will	ab	
$M_{u} = [$ $I_{0} = M_{u} = 0$ $I_{10} = 0$ $V_{u} = 0$ $V_{u} = 0$	119.53 / 119.53 / 191.25 6r Side	$\frac{hip - fe}{s'} = \frac{2}{s'}$	9.42 $kip=ft \Rightarrow Mu$ Ft ft Mu ft Mu ft Mu ft Mu ft	ab	
$ \begin{array}{l} M_{4} = [\\ l.6 M_{4} = \\ l.6 M_{4} = \\ liotates \end{array} $ $ \begin{array}{l} M_{4} = \\ V_{4} = \\ N_{4} = \\ N_{4} = \\ N_{4} = \\ N_{4} = \\ \end{array} $	119.53 / 191.25 6r 5ide 61.8 Kin = 12.071	$\frac{hip}{from} CPOA$	9.42 $kip=ft = Mu$ Ft Mu	ab /75'~	kie
$M_{4} = [$ $I_{1.6} M_{4} = $ $I_{10} + Cete s.$ $V_{4} \rightarrow $ $N_{2} \rightarrow $ $N_{2} \rightarrow $ $N_{31ab} = $	$ \begin{array}{c} 119.53 \\ 191.25 \\ 6r \\ Side \\ 61.8 \\ Filter \\ 12.07 \\ 1 \end{array} $	$\frac{kip - ft}{kip - ft} = 22$ $\frac{kip - ft}{kip} = 22$ $\frac{from Clo A}{kip (see prev. calcs)}$	9.42 $kip = ft = Mu$ Ft Mu Vu R $unit$		Kif
$M_{4} = [$ $I_{1.6} M_{4} = $ $P_{10} + c_{4}e_{3}$ $V_{4} \rightarrow $ $N_{2} \rightarrow $ $N_{2} \rightarrow $ $N_{3}e_{3}$ $U_{4}h_{1}$	$ \begin{array}{c} 119.53 \\ 191.25 \\ 6r. \\ 5r. \\ 6r. \\ 5r. \\ 6r. $	$\frac{hip-ft}{from CPdA} = 22$ $\frac{hip-ft}{from CPdA}$ $\frac{from CPdA}{from CPdA}$ $\frac{from CPdA}{from CPdA}$	9.42 $kip = ft = Mu$ ft		Kif
$M_{4} = \begin{bmatrix} \\ 1.6 & M_{4} = \\ $	$\begin{array}{c} 119.53 \\ 119.53 \\ 191.25 \\ 6, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\frac{kip - ft}{kip - ft} = 22$ $\frac{kip - ft}{5} = 22$	9.42 $kip = ft = M_{ij}$ $ft = ft = ft = M_{ij}$ ft = ft = ft = ft ft = ft = ft = ft ft	ab 1.42 kip	Kif
My = [1.6 My = Protested Vy → N= Wstab Uptit	$ \begin{array}{c} 119.53 \\ 191.25 \\ 6, \\ 5, \\ 6, \\ 6, \\ 6, \\ 6, \\ 6, \\ 6, \\ 6, \\ 6$	$\frac{kip - ft}{kip - ft} = 22$ $\frac{kip - ft}{5} = 22$ $\frac{kip - ft}{5} = 22$ $\frac{kip - ft}{5} = 22$	9.42 $kip = ft = Mu$ Ft f(375) Mu Vu R uilt r r r r r r r r	ab 1.42 kip	Kif
My = [1.6 My = Protested Vy → N= Wstab Uptiti Uptiti	$ \begin{array}{c} 119.53 \\ 191.25 \\ 6r \\ 5id \\ e \\ 12.07 \\ e \\ 1.95 \\ 1.95 \\ \end{array} $	$\frac{k_{i}p - ft}{k_{i}p - ft} = 2$ $\frac{k_{i}p - ft}{k_{i}p} = 2$ $\frac{k_{i}p - ft}{k_{i}p} = 2$	9.42 $k_{i}e - ft > M_{i}e$ et	ab 1.42 kip	IS P
Ny = [l.6 Ny = Protested Vy -> Wstab Ughts Ughts	119.53 / 191.25 6, 5,id e : 61.8 Kiff = 12.07 1 = 1,95	$\frac{Vip - ft}{Fip - ft} = 22$ $\frac{Fip - ft}{Fip - ft} = 22$	9.42 $k_{i}e = ft = M_{i}e$ et	ab	IS:P

	aurepaus Swamp	Project No.	60632162		
Descriptio	n Gate Monolith	Computed by	ЈМН	Date	Dec-20
	KCS Gate Monolith				
Slab Calculations		Checked by	AML	Date	Dec-20
				Re	eferences

AECOM Delivered.	PROJECT/JOB NO	CALCULATION NO. DATE DATE
	SCALE	SHEET NO. B OF
12.07 -	61.8 1.95	
V. = -51.68	<i>kip</i>	
$1.6V_{u} = -82.69$	hig = -12.72 kig =	Va
My -> R= Wildb=	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Uplift=	1.95 hi @ ,92' (ð
$M_{\rm V} = (12.07)($	1.375) - (61.8)(,75) - (1.95)(, ())
$M_{\rm u} = -31.55$	hip-fe	
$1.6 M_{\rm H} = -50.48$	Kip-ft7.77 Kip	$f = m_{\mu}$
	,5' P	с

AECOM Job Maurepaus Swamp Project No. 60632162 Description **Gate Monolith** Computed by JMH KCS Gate Monolith Slab Conc. Check Checked by AML * Given Information: 4.50 ft Slab Thickness: Slab Width: 10.00 ft Clear Cover: 0.75 ft 0.09 ft Diameter Bar to Start: 1.13 ft Diameter of Pile: Load Fact. Maximum Pile Reaction: 101.20 kips 1 101.20 kips Maximum Shear: 12.72 kips 30.82 kip-ft Maximum Moment (Top): 7.77 kip-ft Maximum Moment (Bottom):

Date

Date

Dec-20

Dec-20

*From Factored CPGA Results

References

 $\begin{array}{c} \phi_{shear} = & 0.75 \\ \phi_{moment} = & 0.9 \\ f_{y, rebar} = & 60 \\ f'_{c} = & 4 \\ \end{array} \\ \left. \begin{array}{c} (ACI \ 318) \\ ksi \\ ksi \\ ksi \\ ksi \\ \end{array} \right.$

* Shear Calculations:

1- Shear Capacity:

Design Shear Strength $(\varphi V_n) \ge$ Required Shear Strength (V_u)

AECOM Job Maurepaus Swamp

b <u>Maur</u>	epaus Swamp	Project No.	60632162		
scription	Gate Monolith	Computed by	ЈМН	Date	Dec-20
••••	KCS Gate Monolith				
Slab	Conc. Check	Checked by	AML	Date	Dec-20
				Re	ferences
2 Du	unching Shaan Canacity (AC	T 218 11 Table 22 6 5	2).		
2- ru	inching Shear Capacity (Ac	1 510-14 Tuble 22.0.5).		
Vc = mir	nimum value = Eq. a: 4 x V	ſ(f' _c) x b₀ x d		for B _c < 2.0	
	Eq. b: (2 +	(4 / β _c)) × √(f' _c) × b ₀ >	× d	for $\beta_c > 2.0$	
	Eq. c: ((a _s ;	× d) / b₀ + 2) × √(f'₅) ×	k b ₀ x d	b_0 / d effect	based on as
	(interior colum	n: a _s = 40, edge column: a _s =	30, corner column:	a _s = 20)	
	d for piles = 44.203 in	(Slab thickness - 9"	pile embed - co	ver - 0.5d _{bar})	
	where $\beta_c = \text{Long side } /$	Short side =		1	
	$b_0 = \text{Perimeter } o$	t Critical Section = π^2	`(D _{pile} + d) =	181.593	c+d
	u _s - <u>20</u> (n	or st cuse - corner cor	unin)		
					$\hat{\mathbf{y}}$
Vc = mir	nimum value = Eq. a:	2030.68 kips			
	Eq. b:	3046.02 kips			
	Eq. c:	3486.86 kips			
	φV _c =	1523.01 kips			
		_			I
Chec	k corner pile failure to edg	ge of slab:		,	·、 1
	D _{pile} /2+d/2 =	2.41 ft		, i	`
	_			i	
Diam	eter of corner failure = 2.	408 + 2 ft		i (
	=	4.41 ft			
		4.00		````	2.0
Dia. puno	ching shear calc above =	4.82		`	
N :	Communities also served				·
Diam	eter of punching shear call	culation is smaller tha	n the		
chec	k of corner punching failure	e is required	¢-		
		, oquii ou.			
	φVc used in design =	50.59 kips			
** φ\	/c = 50.6k ≥ Vu = 12.7k, Sh	ear Capacity OK			
· · · · ·	Maximum Pile Reaction =	101.20			
×* ۵\		ing Shear Capacity Ol	<		

ob Maure	epaus Swamp	Project No.	60632162	-	
Description	Gate Monolith	Computed by	JMH	Date	Dec-20
	KCS Gate Monolith			-	
Slab Conc. Check	Checked by	AML	Date	Dec-20	
				Re	ferences

3- Deep Beam One-Way Shear Capacity (ϕV_{c1}):

- -

For $(w/d) \ge 1.0$, a one-way (normal) shear investigation with loads outside the critical section (located at a distance d from the face of the column, b = footing width) and

$$v_c = 1.9\sqrt{f_c'} + 2500\rho_w \left(\frac{V_u d}{M_u}\right) \ge 2\sqrt{f_c'}$$
 (ACI Eq. 11-5)

which reduces for $\rho_w \approx 0.002$ and 3,000 psi $\leq f_c' \leq 4,000$ psi to $v_c = 1.9\sqrt{f_c'} + 0.1\sqrt{f_c'} (V_u d/M_u) \geq 2\sqrt{f_c'}$.

For $(w/d) < 1.0, 1.0 > M_u/V_u d > 0; \infty > V_u d/M_u \ge 1.0$ (no limits on $M_u, V_u d$, other than above)

$$v_c = \left(\frac{d}{w}\right) \left[3.5 - 2.5\left(\frac{M_u}{V_u d}\right)\right] \left[1.9\sqrt{f_c} + 0.1\sqrt{f_c}\left(\frac{V_u d}{M_u}\right)\right]$$

$$\leq 10\sqrt{f_c'} \quad (\text{ACI Eq. 13-2})$$

* Reinforcement Calculations:

Limit of Maximum Reinforcement	: 0.25 x ρ_b (Design Ci	riteria, EM 1110-2-2	104, 3-5)
where p_{b}	= 0.0285 for f'c = 4	,000psi, fy = 60,00	Opsi
Max Rebar	0.00713 *b * d		
Maximum Reinforcement	: 0.0071 * b * d =	3.80 in ²	per 1ft strip
A _{gross}	= 4.5 ft * 12 in/ft * 12	in strip = 648.00) in ²
Limits of Minimum Reinforcement	: 0.005 x Agross =	3.24 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
	(3*√(f' _c) *b*d)/f _y =	1.69 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
	(200*b*d)/f _y =	1.78 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
			_
Min Reinforcem	ent, temp & shrinkage:	1.62 in ²	per 1ft strip, per face
Min Re	inforcement, flexural:	1.78 in ²	per 1ft strip, per face

					Re	ferences	
Slab Conc. Check		Checked by	AML	Date	Dec-20		
		KCS Gate Monolith					
Descripti	ion	Gate Monolith	Computed by	JMH	Date	Dec-20	
Job .	Maure	paus Swamp	Project No.	60632162	-		

* Moment Calculations:

3.799 in²

3.70

0.9

60 ksi

4 ksi

1 ft strip

 A_s = f_y =

f'_c =

b =

d =

 $a = (A_s \times f_y) / (0.85 \times f'_c \times b)$ 5.587 in

 ϕ_{moment} =

=

=

φMn =

The minimum proposed reinforcement for to T&S Slab Rebar is #9 @ 6"(A = 2.0 in2) and the minimum proposed reinforcment for Top & Bot Slab Rebar is #9 @ 6"(A =2.0 in2).

Job Maur	M epaus Swamp	Project No.	60632162		
Description	GATE SUPPORT STRUCT	URES Computed by	JMH	Date	Dec-20
	KCS Gate Monolith				
S, M & T Chec	k for Pilaster River Road Gate	Checked by	AML	Date	Dec-20
+				Refe	rences
<u>~ Given Inform</u>	nation:				
	Pilaster Width:	2.50 ft		*NOIE: Even t	hough shear and
	Pilaster Thickness:	2.50 ft	4.0.0	moment capacit	ties far exceed the
	Clear Cover:	0.33 ft =	4.00 in	exerted shear	and moment on the
	Diameter Bar to Start:	0.08 ft =	1.00 in	pilaster, it has	been sized at 2.5 x
	Stirup Bar Dia:	0.05 ft =	0.625 in	2.5 to account	for possible higher
		20 5 10 10 10 10 10		stresses due to	o the swing gate
	Maximum Snear (V _u):	30.5 Kips per too	T	the next phase	lich will de analyzea in
Gata W/t	Traduced Moment (Mu):	155.02 kip-f1 per f	001	The next phase	
Bule WI.	Maximum Tonsion (T):	N/A kip ft per to	501		
	(0.) =	0.75 (ACT 318)			
	♥shear =	0.9 (ACT 318)			
	(Otennian =	0 75 (ACT 318)			
	f., noten =	60 ksi			
	f',=	4 ksi			
* Chaon Colou	· · ·				
<u>Sheur cuicu</u>					
Desig	n Shear Strength (φVn)≥Requ	ired Shear Strength (Vu)	(ACI Eq. 11-1)	
Shear	r Capacity (φV _c): φ _{shear} * 2 * √f	' _c * b * d		(ACI Eq. 11-3)	
	φ _{shear} = 0.75 f' _c = 4 ksi				
	b = 2 ft s	strip			
	d = 2.13 ft	25.50 in			
φ٧	/ _c = 58059.4 lbs				
	58.06 kips	** φVc=58.	1 ≥ Vu=30.5,	Shear Capacity O	к

DescriptionGATE SUPPORT STRUCTURESComputed byJMHDateKCS Gate Monolith	
KCS Gate MonolithS, M & T Check for Pilaster River Road GateChecked byAMLDateReference* Reinforcement Calculations:Limit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5)where $\rho_b =$ 0.0285 for f'_c = 4,000psi, fy = 60,000psiMax Rebar = 0.00711 *b * dMaximum Reinforcement: 0.00711 *b * d =Agross = 2.5 ft * 12 in/ft * 24 in strip = 720.00 in ² Limits of Minimum Reinforcement: $0.003 \times Agross =$ 2.16 $(21 f(t')) \times t \times t) = 0.003 \times Agross =$ 2.16 in ² (EM 1110-2-2104, 0.003 \times Agross = 2.16 in ² (21 f(t')) \times t \times t) = 0.003 \times Agross = 2.16 in ² (21 f(t')) \times t \times t) = 0.003 \times Agross = 2.16 in ² (21 f(t')) \times t \times t) = 0.003 \times Agross = 2.16 in ² (21 f(t')) = 0.003 \times Agross = 2.16 in ² (21 f(t')) = 0.003 \times Agross = 2.16 in ² (21 f(t')) = 0.003 \times Agross = $0.003 \times Agross =$ $0.003 \times Agross =$ (21 f(t')) = 0.003 \times Agross = $0.003 \times Agross =$ $0.003 \times Agross =$ (21 f(t')) = 0.003 \times Agross = $0.003 \times Agross =$ $0.003 \times Agross =$ (21 f(t')) = 0.003 \times Agross = $0.003 \times Agross =$ $0.003 \times Agross =$ (21 f(t')) = 0.003 \times Agross = $0.003 \times Agross =$ $0.003 \times Agross =$	Dec-20
S, M & T Check for Pilaster River Road GateChecked byAMLDate* Reinforcement Calculations:Limit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5)where $\rho_b =$ 0.0285 for $f'_c = 4,000psi$, fy = 60,000psiMax Rebar = 0.00713 *b * dMaximum Reinforcement: 0.0071 * b * d = 4.36 in ² per 2ft strip $A_{gross} = 2.5$ ft * 12 in/ft * 24 in strip = 720.00 in ² Limits of Minimum Reinforcement: $0.003 \times Agross =$ 2.16 in ² (EM 1110-2-2104, 10.2)	
Referenc* Reinforcement Calculations:Limit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5)where $\rho_b = 0.0285$ for $f'_c = 4,000$ psi, fy = 60,000 psiMax Rebar = 0.00713*b * dMaximum Reinforcement: $0.0071 * b * d = 4.36$ in ² per 2ft stripAgross = 2.5 ft * 12 in/ft * 24 in strip = 720.00 in ² Limits of Minimum Reinforcement: $0.003 \times Agross = 2.16$ in ² (EM 1110-2-2104, (2* f(f)) *b * b) for $f'_c = 0.003 \times Agross = 2.16$ in ²	Dec-20
* Reinforcement Calculations: Limit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5) where $\rho_b = 0.0285$ for f' _c = 4,000psi, fy = 60,000psi Max Rebar = 0.00713 *b * d Maximum Reinforcement: 0.0071 * b * d = 4.36 in ² per 2ft strip $A_{gross} = 2.5 \text{ ft} * 12 \text{ in/ft} * 24 \text{ in strip} = 720.00 \text{ in}^2$ Limits of Minimum Reinforcement: 0.003 x Agross = 2.16 in ² (EM 1110-2-2104, 10.2) in ²	es
Limit of Maximum Reinforcement: $0.25 \times \rho_b$ (Design Criteria, EM 1110-2-2104, 3-5) where $\rho_b = 0.0285$ for f' _c = 4,000psi, fy = 60,000psi Max Rebar = 0.00713 *b * d Maximum Reinforcement: 0.0071 * b * d = 4.36 in ² per 2ft strip $A_{gross} = 2.5 \text{ ft} * 12 \text{ in/ft} * 24 \text{ in strip} = 720.00 \text{ in}^2$ Limits of Minimum Reinforcement: 0.003 x Agross = 2.16 in ² (EM 1110-2-2104, (2* 5/17) + 12/17) = 1.24 \text{ in}^2	
where $\rho_b =$ 0.0285 for f'_c = 4,000psi, fy = 60,000psi Max Rebar = 0.00713 *b * d Maximum Reinforcement: 0.0071 *b * d = 4.36 in ² $A_{gross} = 2.5 \text{ ft * 12 in/ft * 24 in strip =}$ 720.00 in ² Limits of Minimum Reinforcement: 0.003 x Agross = 2.16 in ² (EM 1110-2-2104, (2* 5/17) + 5 + 5)/(1 + 24 + 5)/(1 + 24 + 5)/(1 + 24 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5)/(1 + 5 + 5 + 5)/(1 + 5 + 5 + 5)/(1 + 5 + 5 + 5)/(1 + 5 + 5 + 5)/(1 + 5 + 5 + 5)/(1 + 5 + 5 + 5)/(1 + 5 + 5 + 5)/(1 + 5 + 5 + 5)/(1 + 5 + 5 + 5 + 5)/(1 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +	
$Max Rebar = \underbrace{0.00713}_{b * d} * d$ $Maximum Reinforcement: \underbrace{0.0071}_{b * d} = \underbrace{4.36 \text{ in}^2}_{per 2ft strip}$ $A_{gross} = 2.5 \text{ ft } * 12 \text{ in/ft } * 24 \text{ in strip} = \underbrace{720.00}_{10} \text{ in}^2$ $Limits of Minimum Reinforcement: \underbrace{0.003}_{t * t + t} \times 4 \text{ in strip} = \underbrace{2.16}_{t * t + t} \text{ in}^2_{t + t + t} \times 4 \text{ in strip} = \underbrace{1.04}_{t * t + t + t + t} \times 4 \text{ in strip} = \underbrace{1.04}_{t * t + t + t + t + t + t + t + t + t + $	
Maximum Reinforcement: $0.0071 * b * d =$ $4.36 in^2$ per 2ft strip $A_{gross} = 2.5 ft * 12 in/ft * 24 in strip =$ 720.00 in^2Limits of Minimum Reinforcement: $0.003 \times Agross =$ $2.16 in^2$ (2* f(f)) * b * b) (f = 1.04 in^2(EM 1110-2-2104, for a range)	
$A_{gross} = 2.5 \text{ ft} * 12 \text{ in/ft} * 24 \text{ in strip} = $ Limits of Minimum Reinforcement: 0.003 x Agross = 2.16 in ² (EM 1110-2-2104, (27 f(f)) + 1 + 1) f(f) = 1.01 in ²	
Limits of Minimum Reinforcement: $0.003 \times \text{Agross} = 2.16 \text{ in}^2$ (EM 1110-2-2104,	
$(2 + f(f_{1}) + f_{2} + f_{1})/f_{1} = (1 - f_{1})/f_{1}$	2.9.3, temp. & shrinkage)
$(3^{7}\sqrt{(t_{c})}^{2})^{2}D^{2}d)/t_{y} = 1.94 In (ACI 318-14, 9.6.1.2, m)$	in for flexural members)
$(200*b*d)/f_y = 2.04$ in ² (ACI 318-14, 9.6.1.2, m	in for flexural members)
Min Reinforcement, temp & shrinkage: 1.08 in ² per 2ft strip, per f	ace
Min Reinforcement, flexural: 2.04 in ² per 2ft strip, per f	ace

* Moment Calculations:

* T =
$$A_s \times f_y$$

* C = 0.85 × f' . ×

* Assuming Tension = Compression \longrightarrow $A_s \times f_y = 0.85 \times f'_c \times a \times b$

= $\varphi \times T \times (d - (a / 2))$ = $\varphi \times A_s \times f_y \times (d - (a / 2))$

Job Maur	M epaus Swamp	Project No.	60632162	-		
Description	GATE SUPPORT STRUCTURES	Computed by	JMH	Date	Dec-20	
	KCS Gate Monolith					
S, M & T Chec	k for Pilaster River Road Gate	Checked by	AML	Date	Dec-20	
				Refe	rences	

* Capacity of Min Flexural Reinforcement:

Min reinforcement is sufficient.

* Capacity of Maximum Reinforcement:

φMn =	5626.9	kip-in
=	468.91	kip-ft

** φMn=468.9 ≥ Mu=133.8, Section OK

Maurepaus Swamp

T-WALL SECTION

KCS-5

AECOM Project: 60632162

Foundation, Wall & Slab

Computed by:	AML	Checked by:	JMH		
Date:	Dec-20	Date:	Dec-20		

Note: In this report, white boxes are for input data and colored boxes are calculated values.

Note: *Soil will be at TOW for the majority of the monolith. Therfore, we will just assume the entire wall will be covered for the calculations as this will make the results conservative

KCS-5.xlsm

Job	Maurepaus Swamp		Project No.	60632162		
Description	T-WALL SECTION		Computed by	AML	Date	Dec-20
	KCS-5				-	
	Assumptions		Checked by	JMH	Date	Dec-20
					F	References
Un	it Weight of Storm Water =	0.0624	kcf			
	Wet Unit Weight of Soil =	0.1200	kcf			
	Sat Unit Weight of Soil =	0.0576	kcf			
	Unit Weight of Concrete =	0.1500	kcf			
	Impact Load =	0.0000]k/ft			
	FS Wind force above SWL=	0.0500	ksf			
Constr	ruction Surcharge Pressure =	0.2500	ksf			
Unbalanced	Load for Stability Analysis:					
	F _{cap} (k/ft) =	0.00	(10y SWL Case; Force acts	s at bottom of slo	ab)	
	F _{cap} (k/ft) =	0.00	(100y SWL Case; Force ac	ts at bottom of s	slab)	
	F _{cap} (k/ft) =	0.00	(Water to TOW Case; For	ce acts at botton	n of slab)	
	K _o , Granular fill =	0.95	(for lateral soil forces)			
Assi	umed Reinforcement Cover =	0.25	ft			
	Assumed Wall $d_{bar} =$	0.08	ft			

Job	Maurepaus Swamp	Project No. 60632162
Descr	iption T-WALL SECTION	Computed by AML Date Dec-20
	KCS-5	
	Load Cases	Checked by JMH Date Dec-20
		References

No. of Load Cases 3 Update

No.	DCD LC N₀.	Description	FS Water El.	PS Water El.	Pile Design Over Stresses
1	1	Construction Surcharge	9.89	9.89	1.17
2	2a	Water to TOW (impervious cutoff)	16.13	9.89	1.33
3	2b	Water to TOW (pervious cutoff)	16.13	9.89	1.33

* Impact load is not applicable for this section, so it is excluded from the load combinations

* Forces induced by 10y water elevation are not applicable for this section, so they are excluded from the load combinations

*Earthquake and Wave Loads are to be determined and are excluded from these calculations

Job	Maurepau	s Swamp			- F	Project	No. <u>60632162</u>	-	
Desc	ription	T-WALL SI	ECTION		Co	mputed	by AML	Date	Dec-20
	Foundatio	on Load Ca	Iculation		- c	hecked	lby JMH	Date	Dec-20
					-			Re	eferences
				<u>Weight:</u>			FLOOD SI		PROTECTED SIDE
Wall	stem weight	= [(b ₁ × h ₁) +	- 0.5(h ₁ -h ₄)(b ₃ -b ₁)] γ _{conc.}	-		\uparrow	2	× z
		Wall ste	em weight =	0.73	(kip/f†)		SWL	<u>z</u>	
	V - 5(A							<u>B</u> /	ת וי
	$X_{cen} = [(A_r)]$	X X _{cen-Ar}) + ($A_{t} \times X_{cen-At}$)]/($A_r + A_t$)	1		E GR	ADE A	
			∧ _{cen} -	-1.5	1				GRADE
		Base slab v	veight = h ₂ ;	x B x v _{one} =				Ą	XXX
		Base sl	ab weight =	4.5	(kip/ft)		*	b2 X b3	× b4
			5		1		오		
			X _{cen} =	0]				
					-		<	B/2 / B	>
			<u>Soil Fo</u>	orce (Dry &	<u>Sat.):</u>	-			
				FS Soil	PS Soil				
			Water EL.	EL.	EL.	_			
		Dry	9.89	16.13	16.13	_			
	Тор	of Wall EL.	16.13	16.13	16.13				
		FS soi	l weight - (l	ha x h-) y					
		F.S. s	oil weight = (i	2 24	(kin/ft)	Drv			
		1.0.0	on weight -	1.07	(kip/ft)	TOW	<u>FLOOI</u>	<u>D SIDE</u>	PROTECTED SIDE
]			b1	
			X _{cen} =	: B/2 - b ₂ /2					×
			X _{cen} =	2.13]	Dry			BAT
				2.13	1	тоw		GRADE	1'
					-			XXX	
l	P.S. soil weigł	ht = [(b ₄ x h	₃) + (BAT x	$h_3^2)/2]\gamma_{soil}$			<u>ک</u> ک		GRADE
		P.S. 5	oil weight =	1.07	(kip/f†)	Dry			
				1.07	(kip/f†)	тоw		Soil Wt.	Soil Wt.
	$X_{cen} = [(A_r)]$	x X _{cen-Ar}) + ($A_{t} \times X_{cen-At}$)]/(A _r + A _t)			K ₀ x W _{Soil} x H _{soil}		K ₀ x W _{Soil} x H _{sc}
			X _{cen} =	-3.63	-	Dry	k	^{b2} *	b3 b4
				-3.63		TOW			

Job Ma	urepaus Swamp	Project No.	Project No. <u>60632162</u>				
Descriptio	on T-WALL SECTION	Computed by	AML	Date	Dec-20		
ĸ	S-5						
Foundation Load Calculation		Checked by	JMH	Date	Dec-20		
		-		Re	eferences		

Job	Maurepaus Swamp	Project No.	60632162	-	
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5				
	Foundation Loads	Checked by	JMH	Date	Dec-20
				Reference	s

Foundation Loads

				 X-Cent.
<u>Dead Loads:</u>	Wall stem weight =	0.73	(kip/ft)	-1.50
	Base slab weight =	4.5	(kip/ft)	0.00

<u>Soil Forces:</u>	Water EL.	FS Soil EL.	PS Soil EL.	Wt. of FS Soil (k/ft)	X-Cent.	Wt. of PS Soil (k/ft)	X-Cent.	FS Soil Lateral Force (k/ft)	Z-Cent.	PS Soil Lateral Force (k/ft)	Z-Cent.
Dry	9.89	16.13	16.13	2.236	2.13	1.069	-3.63	-2.219	-2.08	2.219	-2.08
100 Yr. Water El.	0.0	16.13	16.13	2.236	2.13	1.069	-3.63	-2.219	-2.08	2.219	-2.08
Top of Wall EL.	16.1	16.13	16.13	1.073	2.13	1.069	-3.63	-1.065	-2.08	2.219	-2.08
10 Yr. Water El.	0.0	16.13	16.13	2.236	2.13	1.069	-3.63	-2.219	-2.08	2.219	-2.08

<u>Water Forces:</u>	Water EL.	Wt. of FS Water (k/ft)	X-Cent.	FS Water Lateral Force (k/ft)	Z-Cent.
100 Yr. Water El.	0.0	0.000	0.00	0.000	3.30
Top of Wall EL.	16.1	1.163	2.13	-1.215	-2.08
10 Yr. Water El.	0.0	0.000	0.00	0.000	3.30

Wind Force:

0.05 ksf x monolith height =

ight =	0.312	k/ft	Construction
	0	k/ft	No Water
	-0.807	k/ft	100y SWL
	-0.807	k/ft	10y SWL

Z-Cent.	
-3.12	
-6.24	
1.83	
1.83	

(Apply to PS)

AECO	Μ		
Job	Maurepaus Swamp	Project No.	60632162
Description	T-WALL SECTION	Computed by	AML

T-WALL SECTION	Computed by	AML	Date	Dec-20
KCS-5				
Foundation Loads	Checked by	JMH	Date	Dec-20
	-		Reference	es

Surcharge Forces:	0.25 ksf * F.S. width =	1.438	k/ft	X _{Cen} =	2.13
	0.25 ksf * P.S. width =	0.688	k/ft	X _{Cen} =	-3.63
				· · · · · · · · · · · · · · · · · · ·	

Unbalanced Load:

100y SWL	0.00	k/ft in (+) X Direction, acting at bottom of slab (Z-coordinate = 0)
TOW	0.00	k/ft in (+) X Direction, acting at bottom of slab (Z-coordinate = 0)
10y SWL	0.00	k/ft in (+) X Direction, acting at bottom of slab (Z-coordinate = 0)

Z_{Cen} = _____ Z_{Cen} = _____

-6.24

Z_{Cen} =

Z_{Cen} :

Impact Load:

0.00 k/ft in (-) X Direction, acting at top of wall (Z-coordinate = TOW)

<u>Uplift Loads:</u>

Impervious:

T.O.W. :	-2.53	k/ft
100 Yr. Water El. :	4.01	k/ft
10 Yr. Water El. :	4.01	k/ft

AECO	M					
Job	Maurepaus Swamp	Project No.	60632162			
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20	
	KCS-5					
	Foundation Loads	Checked by	JMH	Date	Dec-20	
				References	;	

Pervious:

T.O.W.	-1.95	k/ft
100 Yr. Water El.	3.09	k/ft
10 Yr. Water El. :	3.09	k/ft

X_{Cen} = 1.67
AECOM

Job	Maurepa	aus Swamp			Proj	ject No.	60632162		
Descr	ription	T-WALL SECTION			Comp	uted by	AML	Date	Dec-20
		KCS-5							
	Shear &	Moment Calculation	n on Wall		. Cheo	cked by	JMH	Date	Dec-20
Note:	Shear is	calculated at distan	ce d from	the bottom	of the w	vall		ĸ	erences
INDIC:	Shear 13	d - wall thicknes	e - cover	- (1/2)d	1 21	1 _{f+}			
					14.10		00		
		Elev	ation of (aistance a =	14.10	INAVD	00		
			<u>Soil F</u>	orce (Dry & s	<u>Sat.):</u>	-			
			Water	FS Soil	PS Soil				
			EL.	EL.	EL.				
		Dry	9.89	16.13	16.13				
		Top of Wall EL.	16.13	16.13	16.13	1			
F.S	5. soil lat. ·	F.S. soil lat. for	rce at d = the wall = M = F M =	-0.24 -0.11 -0.60 -0.29 soil x H _{5oil} /3 0.65 0.31	(kip/ft) (kip/ft) (kip/ft) (kip/ft) (k-ft/ft) (k-ft/ft)	Dry TOW Dry TOW Dry TOW	FLOOD SIDE	BA	$\frac{PROTECTED SIDE}{\sum_{1}^{T}}$
		P.S. soil lat. for	ce = 0.5 K	$_0 \gamma_{soil} (H_{Soil})^2$			/	A	GRADE
		P.S. soil lat. fo	rce at d =	0.24	(kip/ft)	Dry	/	÷	
				0.24	(kip/f†)	TOW		soil X H _{soil}	F/
P.S	5. soil lat. [.]	force at bottom of	the wall =	0.60 0.60	(kip/ft) (kip/ft)	Dry TOW			
			M = F	soil x H _{Soil} /3		N			
			M =	-0.65	(K-††/††)	Dry			
				-0.65](K-††/f†)	IOW			

AECOM

Wind Force:

Job	Maurepaus	Swamp		Project No. 60	632162		
Description	T-WALL SE	CTION		Computed by	AML	Date	Dec-20
	KCS-5					_	
	LC1			Checked by	ЈМН	Date	Dec-20
			L C1: Constr	wation Curchanas		R	eference
Loads			LCI. CONSTR	uction Surcharge			
Louus							
Dead Loads:				Deselect All			
		Wall Stem Wt.	Base Slab Wt.				
Soil Forces:							
		F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil Force	🗖 P.S. Lat	. Soil Force	
	Dry						
10	Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Force	P.S. Lat	. Soil Force	
100	Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🖾 F.S. Lat. Soil Force	P.S. Lat	. Soil Force	
т	on of Wall El	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat. Soil Force	P.S. Lat	. Soil Force	
Water Forces							
		F.S. Water	🔲 F.S. Lat. Water				
10	Yr. Water El.						_
100	Yr. Water El.	F.S. Water	🖾 F.S. Lat. Water				_
Та	op of Wall EL.	F.S. Water	🔄 F.S. Lat. Water				J
Wind Force:							\leq
wind force.	Construction	P.S. Lat. Wind					
	No Water	F.S. Lat. Wind					
	INU WUIEF						
10	Yr. Water El.	F.S. Lat. Wind					
100	Yr. Water El.	F.S. Lat. Wind					J

Job	Maurepaus	Swamp		Project No.	60632162		
Description	T-WALL SE	CTION		Computed by	AML	Date	Dec-20
	KCS-5			Checked by	IMH	Data	Dec 20
	LCI			Checked by	JMH		eferences
/ave Force:						•	
10) Yr. Water El.	🔲 F.S. Lat. Wave					
100) Yr. Water El.	🗖 F.S. Lat. Wave					
т	op of Wall EL.	🛛 F.S. Lat. Wave					J
arthquake F	orce:						\leq
	MDE	Soil Ver. MDE	🗖 Soil Lat. MDE	Conc. Ver. MDE	🔤 Conc. Lat. MDE		
	OBE	Soil Ver. OBE	🔤 Soil Lat. OBE	Conc. Ver. OBE	🗖 Conc. Lat. OBE		
urcharge Fo	orces:						
		F.S. Surcharge	Force P.S. Sur	charge Force			
nbalanced L	.oad:						
10) Yr. Water Fl.	Lat. Unbalance					
100) Yr. Water El.	Lat. Unbalance					
Т	op of Wall EL.	🗖 Lat. Unbalance					
<u>.mpact Load:</u>	<u>.</u>	Lat. Impact for	rce				
<u>/plift Loads:</u>		10y SWL Uplift	Pressure				\mathcal{A}
	Tunnerviewe	🗖 100y SWL Upli	ft				
	Impervious	🗖 TOW Uplift Pro	essure				
		🗖 10y SWL Uplift	Pressure				
	Pervious	🗖 100y SWL Upli	ft				
		C TOW Uplift Pro	essure)

AECO	M				
Job	Maurepaus Swamp	Project No.	60632162		
Description	T-WALL SECTION	- Computed by	AML	Date	Dec-20
	KCS-5				
	LC1	Checked by	JMH	Date	Dec-20
				R	eferences

Fx	Fy	Fz	'X' Centroid	'Y' Centroid	'Z' Centroid	M×	My	Mz	NOTES:
(kip/ft)	(kip/ft)	(kip/ft)	(f†)	(f†)	(f†)	(kip-ft/ft)	(kip-ft/ft)	(kip-ft/ft)	
0.00	0.00	0.73	-1.50	0.00	0.00	0.00	1.10	0.00	Wall stem weight
0.00	0.00	4.50	0.00	0.00	0.00	0.00	0.00	0.00	Base slab weight
						0.00	0.00	0.00	F.S. soil weight
						0.00	0.00	0.00	P.S. soil weight
						0.00	0.00	0.00	F.S. lateral soil force
						0.00	0.00	0.00	P.S. lateral soil force
						0.00	0.00	0.00	Vertical water force
						0.00	0.00	0.00	Lateral water force
						0.00	0.00	0.00	Wind load
						0.00	0.00	0.00	FS wave load
						0.00	0.00	0.00	Soil Vertical EQ force
						0.00	0.00	0.00	Soil Lateral EQ force
						0.00	0.00	0.00	Con. Vertical EQ force
						0.00	0.00	0.00	Con. Lateral EQ force
0.00	0.00	1.44	2.13	0.00	0.00	0.00	-3.06	0.00	F.S. Surcharge load
0.00	0.00	0.69	-3.63	0.00	0.00	0.00	2.49	0.00	P.S. Surcharge load
						0.00	0.00	0.00	Unbalanced load
						0.00	0.00	0.00	Impact load
						0.00	0.00	0.00	Hydrostatic uplift
0.000	0.000	7.356				0.000	0.533	0.000	SUM.

		· · · · · · · · · · · · · · · · · ·		
escription	T-WALL S	ECTION		Computed by AML Date Dec-20
	KCS-5			Observation INVI Date Date Of
	LC1			Checked by JMH Date Dec-20
				References
hear and	Moment	on the Wo	all	V_{u} 0.00 (kips/ft)
nte: enter log	nd factors			Update (kips-ft/ft)
Soil F	orce			
Load F	actor	Unfact. V	Unfact. M	Factored V & M
FS	1.6			V _u = 0.000 (kips/ft)
PS	1.6			M _u = 0.000 (kips-ft/ft)
Water	Force:			Factored V & M
Load F	actor	Unfact. V	Unfact. M	V _u = 0.000 (kips/ft)
FS	1.6			M _u = 0.000 (kips-ft/ft)
	_			
Wind F	Force:			Factored V & M
Load F	^f actor	Unfact. V	Unfact. M	$V_{\rm u} = 0.000$ (kips/ft)
F5	1.6			M _u = 0.000 (kips-ft/ft)
Wave	Force			Eactored V & M
L oad F	Factor	Unfact, V	Unfact, M	V = 0.000 (kins/ft)
FS	1.6			$M_{ii} = 0.000$ (kips-ft/ft)
	1			
Earthquak	ke Force:			Factored V & M
	actor	Unfact. V	Unfact. M	V _u = 0.000 (kips/ft)
Load F	1.6			M _u = 0.000 (kips-ft/ft)
Load F				
Load F PS				
Load F PS Impact	Force:			Factored V & M
Load F PS Impact Load F	Force:	Unfact. V	Unfact. M	Factored V & M V _u = 0.000 (kips/ft)

	Maurepaus	Swamp		Project No. 60	0632162		
Description	T-WALL SE	CTION		Computed by	AML	Date	Dec-2
	KCS-5 LC2			Checked by	ЈМН	Date	Dec-20
			L C2: Watan to T())// (importations outoff)		Re	ferences
Loads				w (impervious curoff)			
Dead Loads:				Deselect All			
		🛛 Wall Stem Wt.	🗹 Base Slab Wt.				
Soil Forces:							_
	Dry	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil Force	P.S. La	t. Soil Force	
10 Y	/r. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil Force	P.S. La	t. Soil Force	
100 እ	/r. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat. Soil Force	P.S. La	t. Soil Force	
Τομ	o of Wall EL.	F.S. Soil Wt.	P.S. Soil Wt.	🔽 F.S. Lat. Soil Force	P.S. La	t. Soil Force	J
<u>Vater Forces:</u>		F.S. Water	🗖 F.S. Lat. Water				5
10 y 100 y	/r. Water El. /r. Water Fl.	F.S. Water	F.S. Lat. Water				
Τομ	o of Wall EL.	F.S. Water	🔽 F.S. Lat. Water				7
Wind Force:							\leq
(Construction	P.S. Lat. Wind F	orce				
	No Water	F.S. Lat. Wind					
10 X	r. Water El.	F.S. Lat. Wind					
100 Y	/r. Water El.	F.S. Lat. Wind					\mathcal{J}

ob	Maurepaus	Swamp		Project No.	60632162		
Description	T-WALL SE	CTION		Computed by	AML	Date	Dec-20
	KCS-5			Cheeked by	IML	Dete	Dec 20
	L02			checked by	JINH		Dec-20
'ave Force:						•	
10	Yr. Water El.	🗖 F.S. Lat. Wave					
100	Yr. Water El.	🗖 F.S. Lat. Wave					
т	op of Wall EL.	🔤 F.S. Lat. Wave					J
rthguake F	orce:						\leq
	MDE	Soil Ver. MDE	🖾 Soil Lat. MDE	Conc. Ver. MDE	Conc. Lat. MDE		
	OBE	Soil Ver. OBE	🖸 Soil Lat. OBE	Conc. Ver. OBE	Conc. Lat. OBE		
urcharge Fo	rces:						
		F.S. Surcharge	Force 🔽 P.S. Sur	charge Force			
balanced L	oad:						
							$\overline{}$
10	Yr. Water El.	Lat. Unbalance					
100	Yr. Water El.	🖾 Lat. Unbalance					
т	op of Wall EL.	Lat. Unbalance					$\overline{}$
nact Load.							
ipaci bodu.		🗖 Lat. Impact for	ce				
<u>plift Loads:</u>		10y SWL Uplift	Pressure				
	Time	🗖 100y SWL Upli	ft				
	Impervious	TOW Uplift Pro	essure				
		🛛 10y SWL Uplift	Pressure				
	Pervious	100y SWL Upli	ft				
		TOW Uplift Pro	essure				J

AECO	M				
Job	Maurepaus Swamp	Project No.	60632162	•	
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5				
	LC2	Checked by	JMH	Date	Dec-20
				Ref	erences

Fx	Fy	Fz	'X' Centroid	'Y' Centroid	'Z' Centroid	M×	My	Mz	NOTES:
(kip/ft)	(kip/ft)	(kip/ft)	(f†)	(f†)	(f†)	(kip-ft/ft)	(kip-ft/ft)	(kip-ft/ft)	
0.00	0.00	0.73	-1.50	0.00	0.00	0.00	1.10	0.00	Wall stem weight
0.00	0.00	4.50	0.00	0.00	0.00	0.00	0.00	0.00	Base slab weight
0.00	0.00	1.07	2.13	0.00	0.00	0.00	-2.28	0.00	F.S. soil weight
0.00	0.00	1.07	-3.63	0.00	0.00	0.00	3.88	0.00	P.S. soil weight
-1.07	0.00	0.00	0.00	0.00	-2.08	0.00	2.22	0.00	F.S. lateral soil force
2.22	0.00	0.00	0.00	0.00	-2.08	0.00	-4.62	0.00	P.S. lateral soil force
0.00	0.00	1.16	2.13	0.00	0.00	0.00	-2.47	0.00	Vertical water force
-1.21	0.00	0.00	0.00	0.00	-2.08	0.00	2.53	0.00	Lateral water force
						0.00	0.00	0.00	Wind load
						0.00	0.00	0.00	FS wave load
						0.00	0.00	0.00	Soil Vertical EQ force
						0.00	0.00	0.00	Soil Lateral EQ force
						0.00	0.00	0.00	Con. Vertical EQ force
						0.00	0.00	0.00	Con. Lateral EQ force
						0.00	0.00	0.00	F.S. Surcharge load
						0.00	0.00	0.00	P.S. Surcharge load
						0.00	0.00	0.00	Unbalanced load
						0.00	0.00	0.00	Impact load
0.00	0.00	-2.53	1.75	0.00	0.00	0.00	4.43	0.00	Hydrostatic uplift
-0.061	0.000	6.004				0.000	4.776	0.000	SUM.

	<u> </u>	·			
escription	T-WALL S	ECTION		Computed by AML Date Dec	-20
	KCS-5				
	LC2			Checked by Date Dec	-20
				Reference	es
hear and	Moment	on the W	all	V _u _0,01	(kips/ft)
te: enter loo	ad factors			Update 0.03	(kips-ft/f
	·				
Joad F	orce: Factor	Unfact V	Unfact M	Factored V & M	
FS	1.6	-0.113	0.310	$V_{\rm H} = 0.196$ (kips/ft)	
PS	1.6	0.235	-0.646	$M_{u} = -0.538$ (kips-ft/ft)	
Water	Force:	1		Factored V & M	
Load F	actor	Unfact. V	Unfact. M	V _u = -0.206 (kips/ft)	
FS	1.6	-0.129	0.354	M _u = 0.566 (kips-ft/ft)	
Wind F	Force:			Factored V & M	
Load F	actor	Unfact, V	Unfact. M	$V_{\rm u} = 0.000$ (kips/ft)	
FS	1			$M_{\rm u} = 0.000 (kips-ft/ft)$	
	•				
Wave	Force:			Factored V & M	
Load F	² actor	Unfact. V	Unfact. M	$V_u = 0.000$ (kips/ft)	
FS	1			M _u = 0.000 (kips-ft/ft)	
Earthquak	ke Force:			Factored V & M	
Load F	actor	Unfact. V	Unfact. M	V _u = 0.000 (kips/ft)	
PS	1			$M_{u} = 0.000 $ (kips-ft/ft)	
_	_				
Impact	Force	Linford V	1 1- 6 + - 44	Factored V & M	
Load F	actor	Unfact. V	UNTACT. M	$V_{u} = 0.000$ (kips/ff)	
-	1 1			$M_u = 0.000$ (kips-ft/ft)	

Job	Maurepaus	Swamp		Proj	ect No. 60	632162		
Description	T-WALL SE	CTION		Compu	ited by	AML	Date	Dec-20
	KCS-5			Chec	ked by	ЈМН	Date	Dec-20
							Re	ferences
			LC3: Water to	TOW (pervious	cutoff)			
Loads								
Dead Loads:				Deselect A	II			
		Wall Stem Wt.	Rase Slab Wt					
Soil Forces:								
	Dry	12 F.S. Soll Wt.	13 P.S. Soll WT.	E F.S. Lat.	Soil Force	12 P.S. L	at. Soil Force	
10) Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🖾 F.S. Lat.	Soil Force	P.S. L	.at. Soil Force	
100) Yr. Water El.	F.S. Soil Wt.	P.S. Soil Wt.	🗖 F.S. Lat	Soil Force	P.S. L	.at. Soil Force	
т	on of Wall FL	F.S. Soil Wt.	P.S. Soil Wt.	F.S. Lat.	Soil Force	P.S. L	.at. Soil Force	
Vater Forces	<u>s:</u>							く
10) Va Watas El	F.S. Water	🗖 F.S. Lat. Water	•				
100) Yr. Water El.	🔲 F.S. Water	🖪 F.S. Lat. Water					
т	op of Wall EL.	F.S. Water	🛛 F.S. Lat. Water	,				
<u>Ind Force:</u>	Construction	P.S. Lat. Wind F	orce					
	No Water	F.S. Lat. Wind						
		ESLat Wind						
10) Yr. Water El.		_					
100) yr. Water El.	Lar. Wind						ノ

Job	Maurepaus	Swamp		Project No.	60632162		
Description	T-WALL SE	CTION		Computed by	AML	Date	Dec-20
	KCS-5					.	D 00
	LC3			Checked by	JMH	Date _	Dec-20
Nave Force:						г	
10) Yr. Water El.	두 F.S. Lat. Wave					
100	Yr. Water El.	🗖 F.S. Lat. Wave					
т	op of Wall EL.	🗖 F.S. Lat. Wave					J
arthquake F	orce:						\leq
•	MDE	Soil Ver. MDE	🗖 Soil Lat. MDE	Conc. Ver. MDE	🖸 Conc. Lat. MDE		
	OBE	Soil Ver. OBE	🗖 Soil Lat. OBE	Conc. Ver. OBE	🗖 Conc. Lat. OBE		
Surcharge Fo	rces:						
-							_
		F.S. Surcharge	Force 🛛 🗖 P.S. Sur	charge Force			
Jnbalanced L	oad:						
							$\overline{}$
10	9 Yr. Water El.	Lat. Unbalance					-
100	9 Yr. Water El.	Lat. Unbalance					
т	op of Wall EL.	🗖 Lat. Unbalance					
Impact Load:							_
		🗖 Lat. Impact for	rce				J
<u>Jplift Loads:</u>		10y SWL Uplift	Pressure				
	Tmponyiour	🗖 100y SWL Upli	ft				
	Turber.mong	TOW Uplift Pro	essure				
		10y SWL Uplift	Pressure				
	Pervious	🗖 100y SWL Upli	ft				
		TOW Uplift Pro	essure				J

AECO	M				
Job	Maurepaus Swamp	Project No.	60632162	-	
Description	T-WALL SECTION	Computed by	AML	Date Dec	-20
	KCS-5				
	LC3	Checked by	JMH	Date Dec	-20
				Referen	ces

Fx	Fy	Fz	'X' Centroid	'Y' Centroid	'Z' Centroid	M×	My	Mz	NOTES:
(kip/ft)	(kip/ft)	(kip/ft)	(f†)	(f†)	(f†)	(kip-ft/ft)	(kip-ft/ft)	(kip-ft/ft)	
0.00	0.00	0.73	-1.50	0.00	0.00	0.00	1.10	0.00	Wall stem weight
0.00	0.00	4.50	0.00	0.00	0.00	0.00	0.00	0.00	Base slab weight
0.00	0.00	1.07	2.13	0.00	0.00	0.00	-2.28	0.00	F.S. soil weight
0.00	0.00	1.07	-3.63	0.00	0.00	0.00	3.88	0.00	P.S. soil weight
-1.07	0.00	0.00	0.00	0.00	-2.08	0.00	2,22	0.00	F.S. lateral soil force
2.22	0.00	0.00	0.00	0.00	-2.08	0.00	-4.62	0.00	P.S. lateral soil force
0.00	0.00	1.16	2.13	0.00	0.00	0.00	-2.47	0.00	Vertical water force
-1.21	0.00	0.00	0.00	0.00	-2.08	0.00	2.53	0.00	Lateral water force
						0.00	0.00	0.00	Wind load
						0.00	0.00	0.00	FS wave load
						0.00	0.00	0.00	Soil Vertical EQ force
						0.00	0.00	0.00	Soil Lateral EQ force
						0.00	0.00	0.00	Con. Vertical EQ force
						0.00	0.00	0.00	Con. Lateral EQ force
						0.00	0.00	0.00	F.S. Surcharge load
						0.00	0.00	0.00	P.S. Surcharge load
						0.00	0.00	0.00	Unbalanced load
						0.00	0.00	0.00	Impact load
0.00	0.00	-1.95	1.67	0.00	0.00	0.00	3.25	0.00	Hydrostatic uplift
-0.061	0.000	6.588				0.000	3.592	0.000	SUM.

		•				_
escription	T-WALL S	ECTION		Computed by	AML	Date Dec-20
	KCS-5					
	LC3			Checked by	JMH	Date Dec-20
						References
hear and	Moment	on the Wo	all		ſ	V u -0.01 (kips/ft)
ote: enter loa	d factors			Update		M _u 0.03 (kips-ft/f
Soil F	orce:				L	
Load F	actor	Unfact. V	Unfact. M	Factore	d V & M	
FS	1.6	-0.113	0.310	V _u =	0.196	(kips/ft)
PS	1.6	0.235	-0.646	M _u =	-0.538	(kips-ft/ft)
Water	Force:			Factore	4 V & M	
L oad F	actor	Unfact, V	Unfact. M	V. =	-0 206	(kins/ft)
FS	1.6	-0.129	0.354	M _u =	0.566	(kips-ft/ft)
	I					
Wind F	Force:			Factore	d V & M	_
Load F	actor	Unfact. V	Unfact. M	V _u =	0.000	(kips/ft)
FS	1			M _u =	0.000	(kips-ft/ft)
Wave I	Force:			Factore	d V & M	
Load F	actor	Unfact. V	Unfact. M	V ₁₁ =	0.000	(kips/ft)
FS	1			M _u =	0.000	(kips-ft/ft)
Earthquak	ke Force:	1 .		Factore	d V & M	
Load F	actor	Unfact. V	Unfact. M	V _u =	0.000	(kips/ft)
	1			M _u =	0.000	(kips-ft/ft)
PS				Factore	d V & M	
PS Impact	Force:					(kips/ft)
PS Impact Load F	Force:	Unfact. V	Unfact. M	V _u =	0.000	

AECOM

Job M	Maurepaus Swamp Project No. 60			60589133	_	
Descript	tion	T-WALL SECTION	Computed by	AML	Date	Dec-20
		KCS-5			_	
Summary of Foundation Loads		Checked by	JMH	Date	Dec-20	
					R	eferences

Load	F×	Fy	Fz	M×	My	Mz
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)
LC1	0.00	0.00	132.41	0.00	9.60	0.00
LC2	-1.09	0.00	108.07	0.00	85.96	0.00
LC3	-1.09	0.00	118.58	0.00	64.65	0.00

Job <u>Maurepa</u>	us Swamp	Project No60632162		
Description	T-WALL SECTION	Computed by AML	Date	Dec-20
	KCS-5		-	
Soil & Pile Information Required for CPGA		Checked by JMH	Date	Dec-20
			F	References

Pile Layout: 6 HP Piles

Row	<u>1</u>		Row	<u>2</u>	
pile no.	×	у	pile no.	×	У
1	3.00	-6.00	4	-3.00	-6.00
2	3.00	0.00	5	-3.00	0.00
3	3.00	6.00	6	-3.00	6.00

Tip Elevation:

(For CPGA, need Tip Elevation as a function of CPGA Axis at B.O. Slab, +Z points downward)

"TIP" in CPGA =	37.89	ft		
Pile Tip EL =	-28	NAVD89		
B.O.S. Elevation =	9.89	NAVD88		
A, need Tip Elevation as a function of C				

<u>Pile Properties & Attributes</u>

Note: All soil properties and pile capacities are taken from 95% submittial for Maurapaus Intake Strutture

Allowable Compression (AC) =	30.00	kips
Allowable Tension (AT) =	18.00	kips
ACC =	492.66	kips
ATT =	535.00	kips
AM1 =	2972.22	kip-in
AM2 =	994.44	kip-in

Job	Maurepaus Swamp		Project No. 6063	32162	
Descri	ption	T-WALL SECTION	Computed by A	ML Date	e Dec-20
		KCS-5			
	Soil & Pil	e Information Required for CPGA	Checked by JI	MH Date	Dec-20
					References

Es Value for CPGA Run:

Pile Spacing in

Direction of

Loading

GROUP FACTORS

3B 4B

5B

6B

7B

8B

From EM1110-2-

2906

D 0.33

0.38

0.45

0.56

0.71

1

Monolith width = 18 ft $E_s = 540.40 \text{ psi} =$

Group reduction is based on distance between piles in direction of loading. This includes distance due to battering and is taken over the distance 10 x d_{pile} (point of fixety).

Assume a batter of 6.00 B = d _{pile} = 13.6 in =	1.133 ft
Distance between piles at B.O. Slab =	6.00 ft
Average distance between piles over 10*apile = Average distance between piles in terms of pile width B =	6.96 B
Group Reduction "D" value for this distance =	0.70
Therefore, Es including group reduction =	0.38 ksi

T-WALL SECTION

KCS-5 Soil & Pile Information Required for CPGA

Description

Project No. 60632162

AML

JMH

Computed by

Checked by

Date Dec-20

Date Dec-20

References

Description	T-WALL SECTION	-	Computed by	АМІ	Date	Dec-20
Description	KCS-5	-			Date	Dec-20
	CPGA Input & Output Files	(Pile Analysis)	Checked by	ЈМН	Date	Dec-20
Input file:						
100 M	ONOLITH, TOW EL. 16.13,	TOS EL.12.89;	HP 14X73 PI	LES		
200 P	ROP 29000 729 261 21.4 1	.7 0 ALL				
300 S	OIL ES 0.3805 TIP 37.89	0 ALL				
400 P	IN ALL					
500 A	LLOW H 30 18 492.7 535 2	972.2 994.4 A	LL			
700 F	OVSTR 1.17 1.17 1					
800 F	OVSTR 1.33 1.33 2 3					
900 B.	ATTER 6 All					
1200	ANGLE 180 4 TO 6					
1400	PILE 1 3 -6 0					
1500	PILE 2 3 0 0					
1600	PILE 3 3 6 0					
1700	PILE 4 -3 -6 0					
1800	PILE 5 -3 0 0					
1900	PILE 6 -3 6 0					
4500	LOAD 1 0 0 132.4 0 9.6 0					
4600	LOAD 2 -1.1 0 108.1 0 86	0				
4700	LOAD 3 -1.1 0 118.6 0 64	.6 0				
9000	FOUT 1 2 3 4 5 6 7 KCS5P	.DOC				
9100 H 9200 H	PFO ALL PLB ALL					

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by	ЈМН	Date	Dec-20

CPGA RESULTS without Load Factors (pinned connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 15-DEC-20 RUN TIME: 12:13:58

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.12.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 6 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX

	Х	Y	Z
WITH DIAGONAL COORDINATES = (-3.00 ,	-6.00 ,	0.00)
(3.00 ,	6.00 ,	0.00)

PILE PROPERTIES AS INPUT

Е	Il	I2	A	C33	B66
KSI	IN**4	IN**4	IN**2		
0.29000E+05	0.72900E+03	0.26100E+03	0.21400E+02	0.17000E+01	0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

Descripti	on	T-WALL SE	ECTION	_	Compute	d by	AML	Date	Dec-20
		KCS-5				_		_	
		CPGA Inpu	it & Output Files	<u>(</u> Pile Analysi	s) Checke	d by _	JMH	Date	Dec-20
	SOIL I	DESCRIPTIONS	AS INPUT						
ES	ESOII	L LENGT	'H L	LU					
	K/IN^	^∠ ໂ⊊+00 ຫ	FT 0 37890F+	0.2 0 00000)F+00				
	0.00000	100 1	0.3703021	02 0.00000	100				
ESOIL	(ORIGINAI	L) RGROU	IP RCYCLIC						
K/IN	1**2								
0.380	J50E+00	0.1000)E+01 0.1000E+	01					
THIS SC	DIL DESCH	RIPTION APPL	IES TO THE FC	LLOWING PILE	IS -				
ALI	_								
* * * * * * *	* * * * * * * * *	* * * * * * * * * * * *	*****	*******	* * * * * * * * * * * * * *	****	******		
	PILE S	STIFFNESSES	AS CALCULATED	FROM PROPER	RTIES				
0.1796	58E+02 (0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0	0000E+00		
0.0000)0E+00 (0.23229E+02	0.00000E+00	0.00000E+00	0.00000E+00	0.0	0000E+00		
0.0000)0E+00 (J.00000E+00	0.22888E+04	0.00000E+00) 0.00000E+00	0.0	0000E+00		
0.0000)0E+00 (J.00000E+00	0.00000E+00	0.00000E+00) 0.00000E+00	0.0	0000E+00		
0.0000	JUE+UU (J.00000E+00	0.00000E+00	0.00000E+00) 0.00000E+00	0.0	0000E+00		
0.0000	JOE+00 (J.00000E+00	0.00000E+00	0.00000E+00) 0.00000E+00	0.0	UUUUE+UU		
THIS MA	ATRIX API	PLIES TO THE	FOLLOWING PI	LES -					
1									
-									
******	* * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	*******	* * * * * * * * * * * * * *	* * * * *	******		
	PILE (JEOMETRY AS	INPUT AND/OR	GENERATED					
NUM	х	Y	Z	BATTER ANG	GLE LENGTH	FIXIT	Y		
	FT	FT	FT		FT				
1	3.00	-6.00	0.00	6.00 C	0.00 38.41	P			
2	3.00	0.00	0.00	6.UU C	38.41	P			
3	3.00	6.00	0.00	6.00 L	.00 38.41	P			
4	-3.00	-0.00	0.00	6 00 100	0.00 38.41	r P			
с С	-3.00	0.00	0.00	6 00 100	0.00 20.41	r r			
0	-3.00	0.00	0.00	0.00 100	0.41	Ľ			

230.48

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by	JMH	Date	Dec-20

APPLIED LOADS

LOAD	PX	PY	ΡZ	MX	MY	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0.0	0.0	132.4	0.0	9.6	0.0 1.17 1.17
2	-1.1	0.0	108.1	0.0	86.0	0.0 1.33 1.33
3	-1.1	0.0	118.6	0.0	64.6	0.0 1.33 1.33

ORIGINAL PILE GROUP STIFFNESS MATRIX

 0.47605E+03
 -0.40967E-05
 0.34106E-12
 0.0000E+00
 -0.79540E+05
 0.14748E-03

 -0.40967E-05
 0.13937E+03
 0.26884E-04
 0.0000E+00
 0.96784E-03
 -0.32969E-11

 0.22737E-12
 0.26884E-04
 0.13364E+05
 0.0000E+00
 0.29104E-10
 -0.96784E-03

 0.00000E+00
 0.00000E+00
 0.46188E+08
 0.00000E+00
 -0.11642E-08

 -0.79540E+05
 0.96784E-03
 0.29104E-10
 0.0000E+00
 0.17320E+08
 -0.34842E-01

 0.14748E-03
 -0.32969E-11
 -0.96784E-03
 -0.11642E-08
 -0.34842E-01
 0.18259E+07

6 PILES 3 LOAD CASES

LOAD	CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD	CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.

PILE CAP DISPLACEMENTS

0.0 22.9

-0.1 0.0 22.9

-0.1 0.0 22.9

0.0

0.0

0.0

3.6

3.6

3.6

-0.1

4

5

6

Maurepaus Swamp Project No. 60632162 Description T-WALL SECTION Computed by AML Dec-20 Date KCS-5 CPGA Input & Output Files (Pile Analysis) ЈМН Checked by Date Dec-20 LOAD CASE DY RY R7 DX DZ RX IN IN IN RAD RAD RAD 1 0.4775E-02 -0.1969E-08 0.9907E-02 0.1364E-27 0.2858E-04 0.5411E-11 0.3285E-01 -0.2056E-08 0.8089E-02 0.1424E-27 0.2104E-03 0.5650E-11 2 3 0.2221E-01 -0.2078E-08 0.8874E-02 0.1439E-27 0.1467E-03 0.5710E-11 ELASTIC CENTER INFORMATION ELASTIC CENTER IN PLANE X-Z Х Ζ FΤ \mathbf{FT} 0.00 0.00 ********** PILE FORCES IN LOCAL GEOMETRY M1 & M2 NOT AT PILE HEAD FOR PINNED PILES * INDICATES PILE FAILURE # INDICATES CBF BASED ON MOMENTS DUE TO (F3*EMIN) FOR CONCRETE PILES B INDICATES BUCKLING CONTROLS LOAD CASE -1 F2 F3 M1 M2 PILE F1 M3 ALF CBF K K K IN-K IN-K IN-K 0.0 0.0 -1.8 0.1 21.8 0.0 0.62 0.04 1 0.0 21.8 2 0.1 0.0 -1.8 0.0 0.62 0.04 3 0.1 0.0 21.8 0.0 -1.8 0.0 0.62 0.04

0.0 0.65 0.04

0.0 0.65 0.04

0.0 0.65 0.04

Descri	ption	T-W	ALL SECTIO	NC		с	ompu	ted by	AML	Date	Dec-20
		KCS	-5		-			_			
		CPG	A Input & C	Output Files (Pile Analysis)		Check	ed by	JMH	Date	Dec-20
LOAD	CASE -	2									
PILE	F1	F2	F3	Ml	М2	М3	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	0.6	0.0	13.5	0.0	-17.7	0.0	0.34	0.03			
2	0.6	0.0	13.5	0.0	-17.7	0.0	0.34	0.03			
3	0.6	0.0	13.5	0.0	-17.7	0.0	0.34	0.03			
4	-0.6	0.0	23.0	0.0	19.1	0.0	0.58	0.05			
5	-0.6	0.0	23.0	0.0	19.1	0.0	0.58	0.05			
6	-0.6	0.0	23.0	0.0	19.1	0.0	0.58	0.05			
LOAD	case -	3									
PILE	F1	F2	F3	Ml	М2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	0.4	0.0	16.5	0.0	-11.6	0.0	0.41	0.03			
2	0.4	0.0	16.5	0.0	-11.6	0.0	0.41	0.03			
3	0.4	0.0	16.5	0.0	-11.6	0.0	0.41	0.03			
4	-0.4	0.0	23.6	0.0	13.2	0.0	0.59	0.05			
5	-0.4	0.0	23.6	0.0	13.2	0.0	0.59	0.05			
6	-0.4	0.0	23.6	0.0	13.2	0.0	0.59	0.05			
* * * * *	******	*******	******	****	* * * * * * * * * * * *	* * * * * *	* * * * * *	* * * * * * *	******	*	
	PILE	FORCES	IN GLOBAI	GEOMETRY							

LOAD CASE - 1

PILE	PX K	PY K	PZ K	MX IN-K	MY IN-K	MZ IN-K
1	3.6	0.0	21.5	0.0	0.0	0.0
2	3.6	0.0	21.5	0.0	0.0	0.0
3	3.6	0.0	21.5	0.0	0.0	0.0
4	-3.6	0.0	22.6	0.0	0.0	0.0
5	-3.6	0.0	22.6	0.0	0.0	0.0
6	-3.6	0.0	22.6	0.0	0.0	0.0

Description		T-WALL SEC	TION	_	c	computed by	AML	Date	Dec-20
		KCS-5				· · · -		-	
		CPGA Input	& Output File	s (Pile Analy	sis)	Checked by	JMH	Date	Dec-20
LOAD CASE	- 2	2							
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	2.8	0.0	13.2	0.0	0.0	0.0			
2	2.8	0.0	13.2	0.0	0.0	0.0			
3	2.8	0.0	13.2	0.0	0.0	0.0			
4	-3.2	0.0	22.8	0.0	0.0	0.0			
5	-3.2	0.0	22.8	0.0	0.0	0.0			
6	-3.2	0.0	22.8	0.0	0.0	0.0			
LOAD CASE	_ <	3							
LOAD CADE		, ,							
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	3.1	0.0	16.2	0.0	0.0	0.0			
2	3.1	0.0	16.2	0.0	0.0	0.0			
3	3.1	0.0	16.2	0.0	0.0	0.0			
4	-3.5	0.0	23.4	0.0	0.0	0.0			
5	-3.5	0.0	23.4	0.0	0.0	0.0			
6	-3.5	0.0	23.4	0.0	0.0	0.0			

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by	JMH	Date	Dec-20

CPGA RESULTS without Load Factors (fixed connection)

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 15-DEC-20 RUN TIME: 12:15:14

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARE NOT FULLY DEVELOPED FOR UNSUPPORTED PILES. WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.12.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 6 PILES AND 3 LOAD CASES IN THIS RUN.

PILE PROPERTIES AS INPUT

E	I1	I2	A	C33	B66
KSI	IN**4	IN**4	IN**2		
0.29000E+05	0.72900E+03	0.26100E+03	0.21400E+02	0.17000E+01	0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

Job Maurepa	us Swamp		Project No. 60632162							
Description	T-WALL SE	CTION	-	Computed	by AML	Date	Dec-20			
	KCS-5		-			_				
	CPGA Inpu	t & Output Files	(Pile Analysis)	Checked	by JMH	Date	Dec-20			
*****	*****	* * * * * * * * * * * * * * *	*****	* * * * * * * * * * * * *	*******	*				
SOIL I	DESCRIPTIONS	AS INPUT								
ES ESOII	L LENGI	H L	LU							
K/IN**	2	FT	FT							
0.38050)E+00 T	0.37890E+0	2 0.00000E	+00						
ESOIL (ORIGINAI K/IN**2) RGROU	P RCYCLIC								
0.38050E+00	0.1000	E+01 0.1000E+0	1							
THIS SOIL DESCR	RIPTION APPL	IES TO THE FOL	LOWING PILES	-						
ΔΤ.Τ.										
1111										
****	****	* * * * * * * * * * * * * * *	****	* * * * * * * * * * * * *	*****	*				
PILE S	STIFFNESSES	AS CALCULATED	FROM PROPERT	IES						
0.35937E+02 (.00000E+00	0.00000E+00	0.00000E+00	0.16971E+04	0.00000E+00					
0.00000E+00 0	.46458E+02	0.00000E+00 -	0.28362E+04	0.00000E+00	0.00000E+00					
0.00000E+00 0	0.00000E+00	0.22888E+04	0.00000E+00	0.00000E+00	0.00000E+00					
0.00000E+00 -0	.28362E+04	0.00000E+00	0.34630E+06	0.00000E+00	0.00000E+00					
0.16971E+04 0	.00000E+00	0.00000E+00	0.00000E+00	0.16028E+06	0.00000E+00					

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5	-			
	CPGA Input & Output Files (Pile Analysis)	Checked by	JMH	Date	Dec-20

THIS MATRIX APPLIES TO THE FOLLOWING PILES -

1

PILE GEOMETRY AS INPUT AND/OR GENERATED

NUM	X FT	Y FT	Z FT	BATTER	ANGLE	LENGTH FT	FIXITY
1	3.00	-6.00	0.00	6.00	0.00	38.41	F
2	3.00	0.00	0.00	6.00	0.00	38.41	F
3	3.00	6.00	0.00	6.00	0.00	38.41	F
4	-3.00	-6.00	0.00	6.00	180.00	38.41	F
5	-3.00	0.00	0.00	6.00	180.00	38.41	F
6	-3.00	6.00	0.00	6.00	180.00	38.41	F

```
230.48
```

APPLIED LOADS

LOAD	PX	PY	ΡZ	MX	МҮ	MZ OVERSTRESS
CASE	K	K	K	FT-K	FT-K	FT-K COM TEN
1	0.0	0.0	120 4	0.0	0.0	0 0 1 17 1 17
T	0.0	0.0	132.4	0.0	9.6	0.0 1.1/ 1.1/
2	-1.1	0.0	108.1	0.0	86.0	0.0 1.33 1.33
3	-1.1	0.0	118.6	0.0	64.6	0.0 1.33 1.33

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5	_			
	CPGA Input & Output Files (Pile Analysis)	Checked by	JMH	Date	Dec-20

ORIGINAL PILE GROUP STIFFNESS MATRIX

0.58095E+03	-0.36771E-05	0.34106E-12	-0.82036E-04	-0.68867E+05	0.98336E-04
-0.36771E-05	0.27875E+03	0.26672E-04	-0.16786E+05	0.10422E-02	-0.18190E-11
0.34106E-12	0.26672E-04	0.13367E+05	0.20369E-04	0.00000E+00	-0.96018E-03
-0.82036E-04	-0.16786E+05	0.20369E-04	0.48219E+08	-0.12164E-01	-0.69849E-09
-0.68867E+05	0.10422E-02	0.00000E+00	-0.12164E-01	0.18406E+08	-0.41620E-01
0.98336E-04	-0.13642E-11	-0.96018E-03	-0.69849E-09	-0.41620E-01	0.26266E+07

6 PILES 3 LOAD CASES

LOAD CASE	1.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD CASE	2.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
LOAD CASE	3.	NUMBER	OF	FAILURES	=	0.	NUMBER	OF	PILES	IN	TENSION	=	0.
* * * * * * * * * * *	* * * * * *	* * * * * * * *	***	******	* * * * :	* * * * *	******	***	*****	****	******	* * * * *	****

PILE CAP DISPLACEMENTS

LOAD						
CASE	DX	DY	DZ	RX	RY	RZ
	IN	IN	IN	RAD	RAD	RAD
1	0.1333E-02	-0.9929E-09	0.9905E-02	-0.3447E-12	0.1125E-04	0.3749E-11
2	0.8541E-02	-0.1009E-08	0.8087E-02	-0.3181E-12	0.8802E-04	0.4031E-11
3	0.5569E-02	-0.1031E-08	0.8872E-02	-0.3374E-12	0.6295E-04	0.4032E-11

ELASTIC CENTER INFORMATION

ELASTIC	CENTER	IN	PLANE	X-Z	Х	Z
					FT	FT
					0.00	0.00

					-						
Descrip	tion	T-W/	ALL SECTIO	ON	_	С	omput	ed by	AML	Date	Dec-2
		KCS	-5				Chaol	a d hu		Data	Dee
		CPG	A input & C	utput Files	(Plie Analysis)		Check	ea by	JIVIH	Date	Dec-2
	PILE	FORCES	IN LOCAL	GEOMETRY							
		M1 & M2	NOT AT PI	LE HEAD FO	OR PINNED PIL	ES					
		* INDICA	TES PILE	FAILURE							
		# INDICA	ATES CBF B	ASED ON MO	OMENTS DUE TO						
		B INDICA	(F3*E) TES BUCKL	MIN) FOR (ING CONTRO	CONCRETE PILE DLS	S					
LOAD (case -	1									
PILE	F1	F2	F3	М1	М2	M3	ALF	CBF			
	K	ĸ	K	IN-K	IN-K	IN-K					
1	0.0	0.0	21.9	0.0	1.4	0.0	0.63	0.04			
2	0.0	0.0	21.9	0.0	1.4	0.0	0.63	0.04			
3	0.0	0.0	21.9	0.0	1.4	0.0	0.63	0.04			
4	-0.1	0.0	22.0	0.0	-6.9	0.0	0.65	0.05			
6	-0.1	0.0	22.8	0.0	-6.9	0.0	0.65	0.05			
	CACE	2									
LUAD	CASE -	2									
PILE	F1	F2	F3	M1	M2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	0.4	0.0	14.3	0.0	27.0	0.0	0.36	0.04			
2	0.4	0.0	14.3	0.0	27.0	0.0	0.36	0.04			
3	0.4	0.0	14.3	0.0	27.0	0.0	0.36	0.04			
4	-0.5	0.0	22.2	0.0	-31.5	0.0	0.56	0.06			
5	-0.5	0.0	22.2	0.0	-31.5	0.0	0.56	0.06			
0	0.0	0.0	22.2	0.0	51.5	0.0	0.00	0.00			
LOAD (case -	3									
PILE	F1	F2	F3	M1	М2	MЗ	ALF	CBF			
	K	K	K	IN-K	IN-K	IN-K					
1	0.3	0.0	17.0	0.0	17.6	0.0	0.43	0.04			
2	0.3	0.0	17.0	0.0	17.6	0.0	0.43	0.04			
3	0.3	0.0	17.0	0.0	17.6	0.0	0.43	0.04			
4	-0.4	0.0	23.1	0.0	-22.5	0.0	0.58	0.05			
5	-0.4	0.0	23.1	0.0	-22.5	0.0	0.58	0.05			
6	-0.4	0.0	23.1	0.0	-22.5	0.0	0.58	0.05			

PILE FORCES IN GLOBAL GEOMETRY

vamp

Project No. 60632162

Description		T-WALL SEC	ΓΙΟΝ	-	Co	omputed by	AML	Date	Dec-20
		CPGA Input 8	Output Files	Pile Analy	/sis) (Checked by	ЈМН	Date	Dec-20
LOAD CASE	- 1								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	К	K	IN-K	IN-K	IN-K			
1	3.6	0.0	21.6	0.0	1.4	0.0			
2	3.6	0.0	21.6	0.0	1.4	0.0			
3	3.6	0.0	21.6	0.0	1.4	0.0			
4	-3.6	0.0	22.5	0.0	6.9	0.0			
5	-3.6	0.0	22.5	0.0	6.9	0.0			
6	-3.6	0.0	22.5	0.0	6.9	0.0			
LOAD CASE	- 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	2.8	0.0	14.1	0.0	27.0	0.0			
2	2.8	0.0	14.1	0.0	27.0	0.0			
3	2.8	0.0	14.1	0.0	27.0	0.0			
4	-3.1	0.0	22.0	0.0	31.5	0.0			
5	-3.1	0.0	22.0	0.0	31.5	0.0			
6	-3.1	0.0	22.0	0.0	31.5	0.0			
LOAD CASE	- 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	3.1	0.0	16.7	0.0	17.6	0.0			
2	3.1	0.0	16.7	0.0	17.6	0.0			
3	3.1	0.0	16.7	0.0	17.6	0.0			
4	-3.4	0.0	22.8	0.0	22.5	0.0			
5	-3.4	0.0	22.8	0.0	22.5	0.0			
6	-3.4	0.0	22.8	0.0	22.5	0.0			

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5	-		_	
	CPGA Input & Output Files (Concrete De	sign) Checked by	JMH	Date	Dec-20
Input file:					
100 M	ONOLITH, TOW EL. 16.13, TOS EL.12.8	39; HP 14X73 PILE	lS		
200 P	ROP 29000 729 261 21.4 1.7 0 ALL				
300 S	OIL ES 0.3805 TIP 37.89 0 ALL				
400 P	IN ALL				
500 A	LLOW H 30 18 492.7 535 2972.2 994.4	1 ALL			
700 F	OVSTR 1 1 1				
800 F	OVSTR 1 1 2 3				
900 B.	ATTER 6 All				
1200	ANGLE 180 4 TO 6				
1400	PILE 1 3 -6 0				
1500	PILE 2 3 0 0				
1600	PILE 3 3 6 0				
1700	PILE 4 -3 -6 0				
1800	PILE 5 -3 0 0				
1900	PILE 6 -3 6 0				
4500	LOAD 1 0 0 211.9 0 15.4 0				
4600	LOAD 2 -1.7 0 172.9 0 137.5 0				
4700	LOAD 3 -1.7 0 189.7 0 103.4 0				
9000	FOUT 1 2 3 4 5 6 7 KCS5SC.DOC				
9100 : 9200 :	PFO ALL PLB ALL				

Job Maur	epaus Swamp	Project No. 60632162			
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5	_			
	CPGA Input & Output Files (Concrete Design)	Checked by	JMH	Date	Dec-20

CPGA RESULTS with Load Factors

CPGA - CASE PILE GROUP ANALYSIS PROGRAM RUN DATE: 15-DEC-20 RUN TIME: 12:16:01

FOR PILES WITH UNSUPPORTED HEIGHT:

- A. CPGA CANNOT CALCULATE PMAXMOM FOR NH TYPE SOIL
- B. THE ALLOWABLE STRESS CHECKS, ASC AND AST, ARENOT FULLY DEVELOPED FOR UNSUPPORTED PILES.WORK IS IN PROGRESS TO COMPLETE THIS ASPECT OF CPGA.

ELASTIC CENTER LOCATION IS NOT COMPUTED FOR 3-DIMENSIONAL PROBLEMS.

MONOLITH, TOW EL. 16.13, TOS EL.12.89; HP 14X73 PILES DATA UNKNOWN - REJECTED.

THERE ARE 6 PILES AND 3 LOAD CASES IN THIS RUN.

ALL PILE COORDINATES ARE CONTAINED WITHIN A BOX X Y Z ----- -----WITH DIAGONAL COORDINATES = (-3.00 , -6.00 , 0.00) (3.00 , 6.00 , 0.00)

PILE PROPERTIES AS INPUT

 E
 I1
 I2
 A
 C33
 B66

 KSI
 IN**4
 IN**2
 0.29000E+05
 0.72900E+03
 0.26100E+03
 0.21400E+02
 0.17000E+01
 0.00000E+00

THESE PILE PROPERTIES APPLY TO THE FOLLOWING PILES -

ALL

Project No. 60632162 T-WALL SECTION Description Computed by AML Dec-20 Date KCS-5 CPGA Input & Output Files (Concrete Design) Checked by JMH Date Dec-20 SOIL DESCRIPTIONS AS INPUT ES ESOIL LENGTH L LU FT K/IN**2 FT 0.38050E+00 T 0.37890E+02 0.00000E+00 ESOIL (ORIGINAL) RGROUP RCYCLIC K/IN**2 0.38050E+00 0.1000E+01 0.1000E+01 THIS SOIL DESCRIPTION APPLIES TO THE FOLLOWING PILES -AT.T. PILE STIFFNESSES AS CALCULATED FROM PROPERTIES 0.17968E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.23229E+02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.22888E+04 0.00000E+00 THIS MATRIX APPLIES TO THE FOLLOWING PILES -1 PILE GEOMETRY AS INPUT AND/OR GENERATED NUM Х Y Z BATTER ANGLE LENGTH FIXITY FT FТ FТ FT 0.00 38.41 3.00 -6.00 0.00 6.00 1 Ρ 2 3.00 0.00 0.00 6.00 0.00 38.41 Ρ 3 3.00 6.00 0.00 6.00 0.00 38.41 Ρ -3.00 -6.00 0.00 6.00 180.00 38.41 4 Ρ 5 -3.00 0.00 0.00 6.00 180.00 38.41 Ρ -3.00 0.00 6.00 180.00 38.41 6.00 Ρ 6

230.48

AE	COM
Job	Maurepaus Swamp

Job	Maurepaus Swamp					Projec	60632162			
Descript	tion	Т- К(T-WALL SECTION			Computed by		AML	Date _	Dec-20
		CI	CPGA Input & Output Files (C		oncrete Design)	Check	ed by	JMH	Date _	Dec-20
	PILE C	CAP I	DISPLACEMENT	S						
LOAD										
CASE	DX		DY	DZ	RX	RY		RZ		
	IN		IN	IN	RAD	RAD		RAD		
1	0.7661E-	-02 -	-0.3152E-08	0.1586E-01	0.2183E-27	0.4585E-	-04 (0.8661E-11		
2	0.5305E-	-01 -	-0.3289E-08	0.1294E-01	0.2278E-27	0.3389E-	-03 (0.9040E-11		
3	0.3609E-	-01 -	-0.3326E-08	0.1419E-01	0.2303E-27	0.2374E-	-03 (0.9139E-11		
*****		. 		* * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • •	* * * * * * * * * * *	· • • • • •	* * * * * * * * * * * * * * *		
* * * * * *	Ē	ELASI	FIC CENTER I	NFORMATION	* * * * * * * * * * * * * *	* * * * * * * * * *		* * * * * * * * * * * * * *		
					-					
ELASTI	C CENTER	IN H	PLANE X-Z	X	2					
				FT.	E.L.					
*****	********	****	***********	**********	*****	* * * * * * * * *	****	* * * * * * * * * * * *		
	BITE F	ORCE	ES IN LOCAL	GEOMETRY						
	M1	- & I	12 NOT AT PI	LE HEAD FOR	PINNED PILES					
	*	INDI	ICATES PILE	FAILURE						
	#	IND	ICATES CBF B	ASED ON MOME	ENTS DUE TO					
			(F3*E	MIN) FOR CON	NCRETE PILES					
	В	INDI	ICATES BUCKL	ING CONTROLS	5					
LOAD C	CASE -	1								
PILE	F1	F2	F3	M1	M2 1	M3 ALF	CBF			
	K	K	K	IN-K	IN-K I	N-K				
1	0.1	0.0	35.0	0.0	-2.9	0.0 1.17	0.07	*		
2	0.1	0.0	35.0	0.0	-2.9	0.0 1.17	0.07	*		
3	0.1	0.0	35.0	0.0	-2.9	0.0 1.17	0.07	*		
4	-0.2	0.0	36.6	0.0	5.7	0.0 1.22	0.08	*		
5	-0.2	0.0	36.6	0.0	5.7	0.0 1.22	0.08	*		
6	-0.2	0.0	36.6	0.0	5.7	0.0 1.22	0.08	*		

Job	Maure	paus Swa	mp		_		Proje	ct No.	60632162	2		
Descri	ption	T-WA	ALL SECTIO	ON	_	с	ompu	ted by	AML	_	Date _	Dec-20
	l.	KCS	-5		_							
		CPG.	A Input & C	output Files	(Concrete D)esign)	Check	ed by_	JMH	_	Date _	Dec-20
LOAD	CASE -	2										
PILE	F1	F2	F3	M1	М2	MЗ	ALF	CBF				
	K	K	K	IN-K	IN-K	IN-K						
1	0.9	0.0	21.6	0.0	-28.5	0.0	0.72	0.07				
2	0.9	0.0	21.6	0.0	-28.5	0.0	0.72	0.07				
3	0.9	0.0	21.6	0.0	-28.5	0.0	0.72	0.07				
4	-1.0	0.0	36.8	0.0	30.9	0.0	1.23	0.11		*		
5	-1.0	0.0	36.8	0.0	30.9	0.0	1.23	0.11		*		
LOAD	CASE -	3										
PILE	F1	F2	F3	M1	M2	МЗ	ALF	CBF				
	K	K	K	IN-K	IN-K	IN-K						
1	0.6	0.0	26.3	0.0	-18.9	0.0	0.88	0.07				
2	0.6	0.0	26.3	0.0	-18.9	0.0	0.88	0.07				
3	0.6	0.0	26.3	0.0	-18.9	0.0	0.88	0.07				
4	-0.7	0.0	37.8	0.0	21.5	0.0	1.26	0.10		*		
	0 7	0.0	37.8	0.0	21.5	0.0	1.26	0.10		*		
5	-0.7											

PILE FORCES IN GLOBAL GEOMETRY

LOAD CAS	SE - 1					
PILE	PX	PY	ΡZ	MX	MY	MZ
	K	K	K	IN-K	IN-K	IN-K
1	5.8	0.0	34.5	0.0	0.0	0.0
2	5.8	0.0	34.5	0.0	0.0	0.0
3	5.8	0.0	34.5	0.0	0.0	0.0
4	-5.8	0.0	36.2	0.0	0.0	0.0
5	-5.8	0.0	36.2	0.0	0.0	0.0
6	-5.8	0.0	36.2	0.0	0.0	0.0

Description		T-WALL SECT	FION		Cor	nputed by	AML	Date	Dec-20
		KCS-5							
		CPGA Input 8	Output File	s (Concrete D	esign) Cl	necked by	JMH	Date _	Dec-20
LOAD CASE	- 2								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	4.5	0.0	21.2	0.0	0.0	0.0			
2	4.5	0.0	21.2	0.0	0.0	0.0			
3	4.5	0.0	21.2	0.0	0.0	0.0			
4	-5.0	0.0	36.5	0.0	0.0	0.0			
5	-5.0	0.0	36.5	0.0	0.0	0.0			
6	-5.0	0.0	36.5	0.0	0.0	0.0			
LOAD CASE	- 3								
PILE	PX	PY	ΡZ	MX	MY	MZ			
	K	K	K	IN-K	IN-K	IN-K			
1	4.9	0.0	25.9	0.0	0.0	0.0			
2	4.9	0.0	25.9	0.0	0.0	0.0			
3	4.9	0.0	25.9	0.0	0.0	0.0			
4	-5.5	0.0	37.4	0.0	0.0	0.0			
5	-5.5	0.0	37.4	0.0	0.0	0.0			
6	-5.5	0.0	37.4	0.0	0.0	0.0			

Job Maure	ob Maurepaus Swamp		60632162	_	
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5				
Summ	ary of Shear & Moment	Checked by	ЈМН	Date	Dec-20
					eferences

Load	V _{u,max}	M _{u,max}
Case	(kip/ft)	(kip/ft)
LC1	0.00	0.00
LC2	-0.01	0.03
LC3	-0.01	0.03

Job Maurepaus Swamp

Limits of Minimum Reinforcement:

Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5	_			
She	ear & Moment Check for Wall	Checked by	JMH	Date	Dec-20
				Re	ferences
Given Info	ormation:				
	Wall Thickness:	1,50 ft			
	Clear Cover:	0.25 ft			
	Diameter Bar to Start:	0.08 ft			
	Maximum Shear (V _u):	0.01 kips per foot			
	Maximum Moment (M _u):	0.03 kip-ft per fo	ot		
	φ _{shear} =	0.75 (ACI 318)			
	$\varphi_{moment} =$	0.9 (ACI 318)			
	f _{y, rebar} =	60 ksi			
	f' _c =	4 ksi			
Shear Cal	<u>culations:</u>				
Des	sign Shear Strength (φVn)≥Re	quired Shear Streng	gth (V _u)	(ACI Eq. 11-1)
Shear	Capacity (φV _c): φ _{shear} * 2 * √f'	. * b * d		(ACI Eg. 11-3	5)
	0.75				-
	$\varphi_{\text{shear}} = 0.75$				
	$r_c = 4$ KSI b = 1 ft et	nin			
	$d = \frac{1}{121} ft$	ιp			
	φV _c = 16507.1 lbs				
	16.51 kips	** φVc=16.5	≥ Vu=0, Sł	near Capacity OK	
Reinforcer	nent calculations:				
Limit of A	Maximum Reinforcement: 0.25	x ρ _b (Design Crite	ria. EM 1110-2	2-2104, 3-5)	
	where $\rho_{\rm b} = 0$.0285 for f', = 4,00	Opsi, fy = 60,	.000psi	
	Max Rebar = 0.0	00713 *b * d			
—			101 2		
/	Maximum Reinforcement: C	0.00/1 * b * d =	1.24 in ⁻	per 1ft strip	
		+ + 10 : /(+ + 10 :		00 :2	
	A _{gross} = 1.5 f	T 15 IN/TT ^ 15 IN S	Trip =216		

Project No.

60632162

1.5 ft * 12 in/ft * 12 in strip = 216.00 in² 0.003 x Agross = 0.65 in² (EM 1110-2-2104, 2.9.3, temp. & shrinkage) (3*√(f'_c) *b*d)/f_y = 0.55 in² (ACI 318-14, 9.6.1.2, min for flexural members) (200*b*d)/f_y = 0.58 in² (ACI 318-14, 9.6.1.2, min for flexural members)

Min Reinforcement, temp & shrinkage:	0.32	in²	per 1ft strip, per face
Min Reinforcement, flexural:	0.58	in²	per 1ft strip, per face

AECOM

Job Maur	epaus Swamp	Project No.	60632162	-		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20	
	KCS-5					
Shea	r & Moment Check for Wall	Checked by	JMH	Date	Dec-20	
				Re	ferences	

* Moment Calculations:

* T = A_s × f_y * C = 0.85 × f'_c × a × b * Assuming Tension = Compression → A_s × f_y = 0.85 × f'_c × a × b * φMn = φ × T × (d - (a / 2))

= φ x A_s x f_y x (d - (α / 2))

* Capacity of Min Flexural Reinforcement:

φM _n =	440.8	kip-in
=	36.73	kip-ft

* Capacity of Maximum Reinforcement:

a = (A_s x f_y) / (0.85 x f'_c x b) = 1.823 in

φMn =	909.7	kip-in
=	75.81	kip-ft

PROTECTED SIDE

FLOODED SIDE

T&S WALL REBAR

The minimum proposed reinforcement for T&S Wall Rebar is #6 @ 9" (A = 0.59 in²) and the minimum proposed reinforcement for F.S. & P.S. Wall Rebar is #6 @ 9"(A=0.59 in²).

A Job	Maure	M Daus Swamp	Project No.	60632162		
Descri	ption	T-WALL SECTION	Computed by	AML	Date	Dec-20
		KCS-5				
	Slab		Checked by	JMH	Date	Dec-20
					Re	eferences

Job Maure	M paus Swamp	Project No.	60632162		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5				
Slab C	alculation	Checked by	JMH	Date	Dec-20
				Ref	erences

Shear and Moment Calculations:

1) Sign Convention:

2) Find Equations for each loading to use in shear and moment calculations: (Moving a distance "X" from the protected side to the wall stem across the slab)

Self Weight:	w _{weight} =	-4.32 kips/ft	
	V _{weight} =	-4.32 X	
	M_{weight} =	-4.32 X² / 2	
Soil Load:	w _{soil} =	-3.73 kips/ft	
	V _{soil} =	-3.73 X	
	M _{soil} =	-3.73 X² / 2	
Const. Surcharge:	w _{EQ} =	-0 kips/ft	
	V _{EQ} =	-0 X	
	M _{EQ} =	-0 X² / 2	
Uplift Load:	w _{uplift} =	0.37 X Kips/ft	
	V _{uplift} =	0.37 X² / 2	
	M _{uplift} =	0.37 X^3 / 6	
Conc. EQ:	w _{EQ} =	-0 kips/ft	
	V _{EQ} =	-0 X	
	M _{EQ} =	-0 X² / 2	
Pile P2:	V _{pile} =	37.4 Kips	(after x = 2ft)
	M _{pile} =	37.4 (X - 2 ft)	
^			

Rz = Self Weight + Soil Load + Surch. - Pile Reaction 1 - Uplift

 $R_z = 4.14$ kips

Job Maure	paus Swamp	Project No.	60632162		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5				
Slab C	alculation	Checked by	JMH	Date	Dec-20
				Ref	erences

Shear and Moment Calculations:

↑ → **`**). 1) Sign Convention:

2) Find Equations for each loading to use in shear and moment calculations: (Moving a distance "X" from the flood side to the wall stem across the slab)

Self Weight:	w _{weight} = -4.32 kips/ft V _{weight} = -4.32 X M _{weight} = -4.32 X ² / 2			
Soil Load:	$w_{soil} = -0 \text{ kips/ft}$ $V_{soil} = -0 \times$ $M_{soil} = -0 \times^2 / 2$			
Const. Surcharge:	$w_{EQ} = -2.4 \text{ kips/ft}$ $V_{EQ} = -2.4 \times$ $M_{EQ} = -2.4 \times^2 / 2$			
Uplift Load:	w _{uplift} = 0 V _{uplift} = 0 M _{uplift} = 0		Water Load:	$w_{uplift} = -0 \text{ kips}$ $V_{uplift} = -0 \times$ $M_{uplift} = -0 \times^2 / 2$
Conc. EQ:	$w_{EQ} = -0 \text{ kips/ft}$ $V_{EQ} = -0 \text{ X}$ $M_{EQ} = -0 \text{ X}^2 / 2$			
Pile P2:	V _{pile} = 34.5 Kips M _{pile} = 34.5 (X - 2 ft)	(after x = 2ft)		

~

A=COM Job Maurepaus Swamp

Job <u>Mau</u>	repaus Swamp	Project No.	Project No. 60632162		
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5				
Slab	Conc. Check	Checked by	/JMH	Date	Dec-20
				Re	ferences
* Given Infor	rmation:				
	Slab Thickness:	3.00 ft			
	Slab Width:	10.00 ft			
	Clear Cover:	0.75 ft			
	Diameter Bar to Start:	0.09 ft			
	Diameter of Pile:	1.15 ft			
	·		Load Fact.		
	Maximum Pile Reaction:	37.40 kips	1 37.40	kips	
	Maximum Shear:	3.67 kips	I	-	
I	Maximum Moment (Top):	2.60 kip-ft			
Max	(imum Moment (Bottom):	3.26 kip-ft			
	φ _{shear} =	0.75 (ACI 318)		
	$\varphi_{moment} =$	0.9 (ACI 318)		
	f _{y, rebar} =	60 ksi			
	f' _c =	4 ksi			
<u>* Shear Calc</u>	<u>ulations:</u>				

1- Shear Capacity:

Design Shear Strength $(\phi V_n) \ge$ Required Shear Strength (V_u)

Maurepaus Swamp Project No. 60632162 Job Description **T-WALL SECTION** Computed by AML Date Dec-20 KCS-5 Slab Conc. Check Checked by JMH Date Dec-20 References 2- Punching Shear Capacity (ACI 318-14 Table 22.6.5.2): Vc = minimum value = Eq. a: $4 \times J(f'_c) \times b_0 \times d$ for $\beta_c < 2.0$ Eq. b: $(2 + (4 / \beta_c)) \times \sqrt{(f'_c)} \times b_0 \times d$ for $\beta_c > 2.0$ Eq. c: $((a_s \times d) / b_0 + 2) \times J(f'_c) \times b_0 \times d$ b₀ / d effect based on a_s (interior column: $a_s = 40$, edge column: $a_s = 30$, corner column: $a_s = 20$) d for piles = 26.203 in (Slab thickness - 9" pile embed - cover - 0.5d_{bar}) where β_c = Long side / Short side = b_0 = Perimeter of Critical Section = $\pi^*(D_{pile} + d)$ = 125.673 a_s = 20 (worst case - corner column) Vc = minimum value = Eq. a: 833.07 kips 1249.61 kips Eq. b: 1285.02 kips Eq. c: φV_c = 624.81 kips Check corner pile failure to edge of slab: $D_{pile}/2+d/2 =$ 1.67 ft /2 + d/2 D_{pile} Diameter of corner failure = 1.667 + 2 ft 3.67 ft 2.00 Dia. punching shear calc above = 3.33 Diameter of punching shear calculation is smaller than the diameter of this corner failure area. Therefore, no recheck of corner punching failure is required. φVc used in design = 30.10 kips ** φVc = 30.1k≥ Vu = 3.7k, Shear Capacity OK Maximum Pile Reaction = 37.40 ** φVc=625k≥ Vu=37k, Punching Shear Capacity OK

ob Maure	epaus Swamp	Project No.	60632162	-	
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5			-	
Slab	Conc. Check	Checked by	JMH	Date	Dec-20
				Re	ferences

3- Deep Beam One-Way Shear Capacity (ϕV_{c1}):

- -

For $(w/d) \ge 1.0$, a one-way (normal) shear investigation with loads outside the critical section (located at a distance d from the face of the column, b = footing width) and

$$v_c = 1.9\sqrt{f_c'} + 2500\rho_w \left(\frac{V_u d}{M_u}\right) \ge 2\sqrt{f_c'}$$
 (ACI Eq. 11-5)

which reduces for $\rho_w \approx 0.002$ and 3,000 psi $\leq f_c' \leq 4,000$ psi to $v_c = 1.9\sqrt{f_c'} + 0.1\sqrt{f_c'} (V_u d/M_u) \geq 2\sqrt{f_c'}$.

For (w/d) < 1.0, $1.0 > M_u/V_u d > 0$; $\infty > V_u d/M_u \ge 1.0$ (no limits on $M_u, V_u d$, other than above)

$$v_c = \left(\frac{d}{w}\right) \left[3.5 - 2.5\left(\frac{M_u}{V_u d}\right)\right] \left[1.9\sqrt{f_c} + 0.1\sqrt{f_c}\left(\frac{V_u d}{M_u}\right)\right]$$

$$\leq 10\sqrt{f_c'} \quad (\text{ACI Eq. 13-2})$$

* Reinforcement Calculations:

Limit of Maximum Reinforcement: 0.25 x ρ_b (Desig	n Criteria, EM 1110-2-2	104, 3-5)
where $\rho_b = 0.0285$ for f' _c	= 4,000psi, fy = 60,000	Dpsi
Max Rebar = 0.00713 *b * d		
Maximum Reinforcement: 0.0071 * b * d	= 2.26 in ²	per 1ft strip
A _{gross} = 3 ft * 12 in/ft * 1	2 in strip = 432.00	in ²
Limits of Minimum Reinforcement: 0.003 × Agros	s = 1.30 in ²	(EM 1110-2-2104, 2.9.3, temp. & shrinkage)
(3*√(f' _c) *b*d)/f	_y = 1.00 in ²	(ACI 318-14, 9.6.1.2, min for flexural members)
(200*b*d)/1	$y = 1.06 \text{ in}^2$	(ACI 318-14, 9.6.1.2, min for flexural members)
Min Reinforcement, temp & shrinka	ge: 0.65 in ²	per 1ft strip, per face
Min Reinforcement, flexur	al: 1.06 in ²	per 1ft strip, per face

AECOM

Job Maure	epaus Swamp	Project No.	60632162	-	
Description	T-WALL SECTION	Computed by	AML	Date	Dec-20
	KCS-5				
Slab (Conc. Check	Checked by	ЈМН	Date	Dec-20
				Re	ferences

* Moment Calculations:

* T = $A_s \times f_y$ * C = 0.85 x f'_c x a x b * Assuming Tension = Compression \longrightarrow A_s x f_y = 0.85 x f'_c x a x b * ϕ Mn = $\phi \times T \times (d - (a / 2))$ = $\varphi \times A_s \times f_y \times (d - (a / 2))$ Δ PROTECTED SIDE FLOODED SIDE * Capacity of Min Flexural Reinforcement: $\nabla^{\mathbb{A}}$ 1.057 in² A_s = 4 60 ksi f_y = 4 ksi f'_c = ₫ ⊿ 1 ft strip b = 4 2.203 d = 4 4 0.9 $\varphi_{moment} =$ Δ T&S SLAB REBAR TOP & BOT $a = (A_s \times f_y) / (0.85 \times f'_c \times b)$ SLAB REBAR 1.555 in = GRADE 4 HOOK BARS FULL φ**M**_n = 1465.1 kip-in 122.10 kip-ft = 4" CLR. (TYP) * Capacity of Maximum Reinforcement:

> $A_{s} = 2.260 \text{ in}^{2}$ $f_{y} = 60 \text{ ksi}$ $f'_{c} = 4 \text{ ksi}$ b = 1 ft stripd = 2.20

> > 0.9

The minimum proposed reinforcement for to T&S Slab Rebar is #6 @ 6"(A = 0.88 in2) and the minimum proposed reinforcment for Top & Bot Slab Rebar is #7 @ 6"(A =1.2in2).

a = $(A_s \times f_y) / (0.85 \times f'_c \times b)$ = 3.324 in

φMn =	3023.8	kip-in	
=	251.98	kip-ft	

 ϕ_{moment} =

** φMn=252 ≥ Mu=2.6, Section OK	ТОР
** φMn=252 ≥ Mu=3.3, Section OK	Bottom

The addition of WSLP flood protection at Airline Hwy will change the loads experienced by the Conveyance Channel Box Culverts. The prevailing alternative at this location is an embankment solution where the road is elevated to the Design Flood EL +16.13, as opposed to construction of a flat gated closure or bridge over flood control features. What follows is a preliminary update of the pile foundation to account for additional weight of soil (traffic loads were previously included). This should provide a reasonable estimate of additional number of piles and/or length of pile required for the purpose of the Rough Order of Magnitude Cost Estimate. The Maurepas Airline Culverts will be fully designed for the new soil conditions when the Project moves from Preliminary into Full Maurepas-WSLP design.

- 1) 95% Design soil pressure from calculations:
 - Soil Info:
 - Assumed soil cover was 5'-9"
 - **γ**_{soil} = 110 pcf
 - Pressure on roof slab was calculated as 632.5 psf (low water table condition)
 - Pile Info:
 - 18" x 18" PPC Piles are assumed
 - Max. reaction from 95% Airline Hwy SAP2000 model = 19.136k per foot of culvert mono
 - 19.14k/ft * 5' pile tributary width = 95.7 kips
 - Ultimate Pile Capacity Required = 95.7 kips * FOS 2.0 = 192 kips
 - Current Tip EL -76.0; Pile Butt EL -11.0; Total Pile Length = 65'
- 2) Anticipated soil pressure from elevated road:
 - Soil to TOW EL +16.13
 - Current TO Box EL +0.30
 - New pressure = (16.13' 0.3') * 110 pcf = 1,741.3 psf
 - Added pressure = 1741.3 psf 632.5 psf = 1,108.8 psf

3) Current Pile Tributary Area:

• A center pile will have the largest tributary area. This area = $9.75' \times 5' = 48.75$ ft²

- 4) Added Load on Pile:
 - 48.75 ft² * 1,108.8 psf = 54,054 lb = 54 kips per pile
 - Ultimate Pile Capacity Required = (95.7 kips + 54 kips) * FOS 2.0 = 299.4 kips
 - Must adjust pile capacity curves in 95% calculations for lower Butt elevation than what is assumed in the curve. Assumed Butt EL +4, so must remove capacity of top 15' of pile
- 5) If size and number of piles is unchanged, new required tip EL:
 - Tip EL -80 Capacity = 299 kips ~20 kips = 279 kips. Not enough, need more length but pile capacity curves stop here and required PPC pile is becoming quite long (will need splice).
- 6) Pile grid is very tight in culvert's long direction (5' spacing). In the short direction the piles are located directly beneath walls, creating load paths directly from wall into slab and foundation. To avoid re-arrangement of piles that may drastically affect stress patterns in the concrete, try a larger pile instead of adding more piles. This is also advisable over adding piles because group effects of a tight pile grid will start to become significant; this reduces the overall pile capacity because piles are within each other's influence zones.
- 7) If piles increased from 18" square to 20" or 24" square PPC:
 - 20" Option:
 - Capacity at EL -11 = ~25 kips. Therefore, required capacity = 300 kip + 25 kip = 325 kip
 - ~EL -78 meets this requirement. Therefore, could use 20" PPC Piles with Tip EL -80
 - 24" Option:
 - Capacity at EL -11 = ~40 kips. Therefore, required capacity = 300 kip + 40 kip = 340 kip
 - ~EL -67 meets this requirement. Therefore, could use 24" PPC Piles with Tip EL -70
- 8) Additional note on load changes: The added depth of fill will somewhat reduce the affects of traffic loads on the culvert, as these loads dissipate within the soil column. This load reduction is ignored in this check to provide a little conservatism in the tip elevations.

References:

EXCERPTS FROM 95% CALCULATIONS & PLANS

Des	scription:	Airline Hwy Crossi Load Calculations	ing under Road	Computed By: BCB Date: Aug-12 Page: of Checked By: PB. Date: 9/13 Sheet: of
* E>	ternal Dry So	il Pressure:		For image, see S Lat Const and S Dry Unb
			γ _{soil, dry} = 110 pcf	F C C C C C C C C C C C C C C C C C C C
			q _{surcharge} = 250 psf	(LL_Surcharge)
			$K_0 = 0.8$	Geotechnical Rep
		Lateral So	il Pressure = K ₀ * (q _{surch}	harge + γ _{soil dry} * h) EM 1110-2-2502. Ed 3-
		Sail donth	Latoral Proceuro	
	Elevation	(ft)	(nef)	
		0	200	Full Soil Column (S. Vert):
		3.88	541.00	Vertical Soil Pressure, roof = $v_{roll det}$ * h
	0	4 25	574.00	
		5.00	640.00	- 052.5 psi
	0.30	5.75	706.00	
	-0.10	6.15	740.83	Vertical Soil Pressure, base slab = $y = x^2 + b^2$
	-0.29	6 34	758.25	- 1710 5 nsf
	-9.50	15.55	1568.40	- 1/10.5 μ3i
	-9.88	15.93	1601.40	5' Soil Column (S. Dry Unhal):
	-10.25	16 30	1634.40	Vertical Soil Pressure, hase slab = v* h
	-11.00	17.05	1700.40	$\frac{1}{2} = \frac{1}{2} $
	11.00	17.05	1 1700.40	= 565.0 psi
* Sc	oil Forces whe	n water at Maximu	um Water Table:	For image, see S_Lat_MaxW
			γ _{soil, dry} = 110 pcf	
			$\gamma_{soil, effective} = 47.6 \text{ pcf}$	
			$\gamma_{\text{soil, effective}} = 47.6 \text{ pcf}$ $K_0 = 0.8$	
		Lateral Soi	$\begin{array}{rl} \gamma_{soil,\;effective} = & 47.6 \; \text{pcf} \\ K_0 = & 0.8 \\ \text{il Pressure} = & K_0 * \left[\gamma_{soil,\;dl} \right. \end{array}$	· _{Iry} * (h-h _{w)} + γ _{soil, effective} * (h _w)]
	Flevation	Lateral Soi	$\gamma_{\text{soil, effective}} = 47.6 \text{ pcf}$ $K_0 = 0.8$ il Pressure = $K_0 * [\gamma_{\text{soil, d}}]$ Pressure (pcf)	ry * (h-h _{w)} + γ _{soil, effective} * (h _w)]
	Elevation	Lateral Soi Soil depth (ft)	$Y_{\text{soil, effective}} = 47.6 \text{ pcf}$ $K_0 = 0.8$ il Pressure = $K_0 * [Y_{\text{soil, d}}]$ Pressure (psf)	: Iry * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Proscure roof = μ * h
	Elevation 6.05	Lateral Soi Soil depth (ft) 0.00 5.75	$Y_{\text{soil, effective}} = 47.6 \text{ pcf}$ $K_0 = 0.8$ il Pressure = K_0 * [Y_{\text{soil, d}}] Pressure (psf) 0.0 255.4	: _{Iry} * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h
	Elevation 6.05 0.30	Lateral Soi Soil depth (ft) 0.00 5.75 6 15	$\begin{array}{rcl} \gamma_{soil, effective} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 & * \left[\gamma_{soil, d} \right] \\ \hline & & Pressure \left(\text{psf} \right) \\ \hline & & 0.0 \\ & & 256.4 \\ & & 271.5 \end{array}$: _{Iry} * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf
	Elevation 6.05 0.30 -0.10	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.24	$\gamma_{soil, effective} = 47.6 \text{ pcf}$ $K_0 = 0.8$ il Pressure = $K_0 * [\gamma_{soil, d}]$ <u>Pressure (psf)</u> 0.0 256.4 271.5 270.0	• $\mu_{ry} * (h-h_{w}) + \gamma_{soil, effective} * (h_{w})]$ Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf Vertical Soil Pressure, slob line ways * b
	Elevation 6.05 0.30 -0.10 -0.29 9.50	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34		: $r_y * (h-h_w) + \gamma_{soil, effective} * (h_w)]$ Vertical Soil Pressure, roof = $\gamma_{soil, effective} * h$ = 273.7 psf Vertical Soil Pressure, slab lip = $\gamma_{soil, effective} * h$
	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 & * \left[\gamma_{\text{soil, d}} \right] \\ \hline & & 0.0 \\ & & 256.4 \\ & & 271.5 \\ & & 279.0 \\ & & 629.6 \\ & & 643.9 \end{array}$	$\frac{1}{1}$ 1
	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 & * \left[\gamma_{\text{soil, d}} \right] \\ \hline & & 0.0 \\ & & 256.4 \\ & & 271.5 \\ & & 279.0 \\ & & 629.6 \\ & & 643.9 \\ & & 658.1 \end{array}$: _{Iry} * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf Vertical Soil Pressure, slab lip = γ _{soil, effective} * h = 740.2 psf
	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 & * \left[\gamma_{\text{soil, d}} \right] \\ \hline & & 0.0 \\ & & 256.4 \\ & & 271.5 \\ & & 279.0 \\ & & 629.6 \\ & & 643.9 \\ & & 658.1 \\ & & 686.7 \end{array}$	$I_{ry} * (h-h_{w}) + \gamma_{soil, effective} * (h_{w})]$ Vertical Soil Pressure, roof = $\gamma_{soil, effective} * h$ = 273.7 psf Vertical Soil Pressure, slab lip = $\gamma_{soil, effective} * h$ = 740.2 psf
	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05	$\begin{array}{rcl} \gamma_{soil,effective} &=& 47.6 \ pcf \\ K_0 &=& 0.8 \\ \mbox{il Pressure} &=& K_0 * [\gamma_{soil,d} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	r _{Iry} * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf Vertical Soil Pressure, slab lip = γ _{soil, effective} * h = 740.2 psf
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 wil Forces whe	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 & * \left[\gamma_{\text{soil, d}} \right] \\ \hline & & 0.0 \\ & & 256.4 \\ & & 271.5 \\ & & 279.0 \\ & & 629.6 \\ & & 643.9 \\ & & 658.1 \\ & & 686.7 \end{array}$	r _{Iry} * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf Vertical Soil Pressure, slab lip = γ _{soil, effective} * h = 740.2 psf For image, see S_Lat_MinW
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 & * \left[\gamma_{\text{soil, d}} \right] \\ \hline & & 0.0 \\ & & 256.4 \\ & & 271.5 \\ & & 279.0 \\ & & 629.6 \\ & & 643.9 \\ & & 658.1 \\ & & 686.7 \\ \hline & & & & \\ \hline & & & & & \\ \hline & & & & &$	r I _{ry} * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf Vertical Soil Pressure, slab lip = γ _{soil, effective} * h = 740.2 psf For image, see S_Lat_MinW
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 bil Forces whe	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 & * \left[\gamma_{\text{soil, d}} \right] \\ \hline & & Pressure \left(\text{psf} \right) \\ & & 0.0 \\ & & 256.4 \\ & & 271.5 \\ & & 279.0 \\ & & 629.6 \\ & & 643.9 \\ & & 658.1 \\ & & 686.7 \\ \hline & & & & & \\ & & & & & & \\ & & & & &$	r Iry * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf Vertical Soil Pressure, slab lip = γ _{soil, effective} * h = 740.2 psf For image, see S_Lat_MinW
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 * [\gamma_{\text{soil, d}} \\ \hline & & \text{Pressure (psf)} \\ & & 0.0 \\ & & 256.4 \\ & & 271.5 \\ & & 279.0 \\ & & 629.6 \\ & & 643.9 \\ & & 658.1 \\ & & 686.7 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	ry * (h-h _{w)} + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf Vertical Soil Pressure, slab lip = γ _{soil, effective} * h = 740.2 psf For image, see S_Lat_MinW
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi	$\begin{array}{rcl} \gamma_{soil, effective} &= & 47.6 \ \text{pcf} \\ K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 &* \left[\gamma_{soil, d}\right] \\ \hline & & Pressure (psf) \\ \hline & & 0.0 \\ & & 256.4 \\ & & 271.5 \\ & & 279.0 \\ & & 629.6 \\ & & 643.9 \\ & & 658.1 \\ & & 686.7 \\ \hline & & Water Table: \\ \hline & & \gamma_{soil, dry} &= & 110 \ \text{pcf} \\ \hline & & \gamma_{soil, effective} &= & 47.6 \ \text{pcf} \\ \hline & & K_0 &= & 0.8 \\ \hline & & \text{il Pressure} &= & K_0 &* \left[\gamma_{soil, effective} &$	For image, see S_Lat_MinW For image, see S_Lat_MinW For 1110-2-2502. Fr 3-
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ & K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 &* \left[\gamma_{\text{soil, d}} \right] \\ \hline & Pressure \left(psf \right) \\ & 0.0 \\ & 256.4 \\ & 271.5 \\ & 279.0 \\ & 629.6 \\ & 643.9 \\ & 658.1 \\ & 686.7 \\ \hline & & & \\ \gamma_{\text{soil, dry}} &= & 110 \ \text{pcf} \\ \hline & \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ & K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 &* \left[\gamma_{\text{soil, dry}} \right] \end{array}$	$I_{ry} * (h-h_w) + \gamma_{soil, effective} * (h_w)]$ $Vertical Soil Pressure, roof = \gamma_{soil, effective} * h$ $= 273.7 \text{ psf}$ $Vertical Soil Pressure, slab lip = \gamma_{soil, effective} * h$ $= 740.2 \text{ psf}$ For image, see S_Lat_MinW $I_{ry} * h_w + \gamma_{soil, effective} * (h-h_w)]$ EM 1110-2-2502, Eq 3-
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 oil Forces whe	Lateral Soi Soil depth (ft) 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi Soil depth (ft)	$Y_{soil, effective} = 47.6 \text{ pcf}$ $K_0 = 0.8$ il Pressure = $K_0 * [Y_{soil, d}]$ Pressure (psf) 0.0 256.4 271.5 279.0 629.6 643.9 658.1 686.7 Ysoil, effective = 47.6 pcf $Y_{soil, effective} = 47.6 pcf$ $K_0 = 0.8$ il Pressure = $K_0 * [Y_{soil, did}]$ Pressure (psf)	ry * (h-h _w) + γ _{soil, effective} * (h _w)] Vertical Soil Pressure, roof = γ _{soil, effective} * h = 273.7 psf Vertical Soil Pressure, slab lip = γ _{soil, effective} * h = 740.2 psf For image, see S_Lat_MinW
* Sa	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 oil Forces when Elevation 6.05	Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi <u>Soil depth (ft)</u> 0.00	$Y_{soil, effective} = 47.6 \text{ pcf}$ $K_0 = 0.8$ il Pressure = $K_0 * [Y_{soil, d}]$ Pressure (psf) 0.0 256.4 271.5 279.0 629.6 643.9 658.1 686.7 Ysoil, effective = 47.6 pcf $Y_{soil, dry} = 110$ pcf Ysoil, effective = 47.6 pcf $K_0 = 0.8$ il Pressure = $K_0 * [Y_{soil, di}]$ Pressure (psf) 0.0	$Iry * (h-h_w) + \gamma_{soil, effective} * (h_w)]$ $Vertical Soil Pressure, roof = \gamma_{soil, effective} * h$ $= 273.7 \text{ psf}$ $Vertical Soil Pressure, slab lip = \gamma_{soil, effective} * h$ $= 740.2 \text{ psf}$ For image, see S_Lat_MinW $Iry * h_w + \gamma_{soil, effective} * (h-h_w)]$ EM 1110-2-2502, Eq 3-
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 oil Forces when Elevation 6.05 0.30	Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= 47.6 \ \text{pcf} \\ K_0 &= 0.8 \\ \text{il Pressure} &= K_0 * [\gamma_{\text{soil, d}} \\ \hline & Pressure (psf) \\ \hline & 0.0 \\ 256.4 \\ 271.5 \\ 279.0 \\ 629.6 \\ 643.9 \\ 658.1 \\ 686.7 \\ \text{im Water Table:} \\ \gamma_{\text{soil, dry}} &= 110 \ \text{pcf} \\ \gamma_{\text{soil, dry}} &= 110 \ \text{pcf} \\ \gamma_{\text{soil, effective}} &= 47.6 \ \text{pcf} \\ K_0 &= 0.8 \\ \text{il Pressure} &= K_0 * [\gamma_{\text{soil, du}} \\ \hline & Pressure (psf) \\ \hline & 0.0 \\ 506.0 \end{array}$	$Iry * (h-h_w) + \gamma_{soil, effective} * (h_w)]$ $Vertical Soil Pressure, roof = \gamma_{soil, effective} * h$ $= 273.7 \text{ psf}$ $Vertical Soil Pressure, slab lip = \gamma_{soil, effective} * h$ $= 740.2 \text{ psf}$ For image, see S_Lat_MinW $Iry * h_w + \gamma_{soil, effective} * (h-h_w)]$ EM 1110-2-2502, Eq 3- $Vertical Soil Pressure, roof = \gamma_{soil, dry} * h$ $= 632.5 \text{ psf}$
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 oil Forces when Elevation 6.05 0.30 -0.10	Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15	$\begin{array}{rcl} \gamma_{soil, effective} &= 47.6 \ pcf \\ K_0 &= 0.8 \\ \mbox{il Pressure} &= K_0 * [\gamma_{soil, d} \\ \hline \mbox{Pressure} (psf) \\ 0.0 \\ 256.4 \\ 271.5 \\ 279.0 \\ 629.6 \\ 643.9 \\ 658.1 \\ 686.7 \\ \mbox{im Water Table:} \\ \gamma_{soil, dry} &= 110 \ pcf \\ \gamma_{soil, effective} &= 47.6 \ pcf \\ K_0 &= 0.8 \\ \mbox{il Pressure} &= K_0 * [\gamma_{soil, div} \\ \hline \mbox{Pressure} (psf) \\ 0.0 \\ 506.0 \\ 540.8 \\ \end{array}$	$Iry * (h-h_w) + \gamma_{soil, effective} * (h_w)]$ $Vertical Soil Pressure, roof = \gamma_{soil, effective} * h$ $= 273.7 \text{ psf}$ $Vertical Soil Pressure, slab lip = \gamma_{soil, effective} * h$ $= 740.2 \text{ psf}$ For image, see S_Lat_MinW $Iry * h_w + \gamma_{soil, effective} * (h-h_w)]$ EM 1110-2-2502, Eq 3- $Vertical Soil Pressure, roof = \gamma_{soil, dry} * h$ $= 632.5 \text{ psf}$
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 oil Forces when Elevation 6.05 0.30 -0.10 -0.29	Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34	$\begin{array}{rcl} \gamma_{soil, effective} &= 47.6 \ pcf \\ K_0 &= 0.8 \\ \mbox{il Pressure} &= K_0 * [\gamma_{soil, d} \\ \hline Pressure (psf) \\ 0.0 \\ 256.4 \\ 271.5 \\ 279.0 \\ 629.6 \\ 643.9 \\ 658.1 \\ 686.7 \\ \mbox{im Water Table:} \\ \gamma_{soil, dry} &= 110 \ pcf \\ \gamma_{soil, effective} &= 47.6 \ pcf \\ K_0 &= 0.8 \\ \mbox{il Pressure} &= K_0 * [\gamma_{soil, div} \\ \hline Pressure (psf) \\ 0.0 \\ 506.0 \\ 540.8 \\ 558.3 \\ \mbox{im States} \\ \end{array}$	$I_{ry} * (h-h_{w}) + \gamma_{soil, effective} * (h_{w})]$ $Vertical Soil Pressure, roof = \gamma_{soil, effective} * h$ $= 273.7 \text{ psf}$ $Vertical Soil Pressure, slab lip = \gamma_{soil, effective} * h$ $= 740.2 \text{ psf}$ For image, see S_Lat_MinW $I_{ry} * h_{w} + \gamma_{soil, effective} * (h-h_{w})]$ EM 1110-2-2502, Eq 3- $Vertical Soil Pressure, roof = \gamma_{soil, dry} * h$ $= 632.5 \text{ psf}$
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 oil Forces when Elevation 6.05 0.30 -0.10 -0.29 -9.50	Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34 15.55	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= 47.6 \ \text{pcf} \\ & K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 &* \left[\gamma_{\text{soil, d}} \right] \\ \hline & Pressure \left(\text{psf}\right) \\ & 0.0 \\ & 256.4 \\ & 271.5 \\ & 279.0 \\ & 629.6 \\ & 643.9 \\ & 658.1 \\ & 686.7 \\ \text{im Water Table:} \\ \hline & \gamma_{\text{soil, dry}} &= & 110 \ \text{pcf} \\ \hline & \gamma_{\text{soil, dry}} &= & 110 \ \text{pcf} \\ \hline & \gamma_{\text{soil, effective}} &= & 47.6 \ \text{pcf} \\ \hline & K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 &* \left[\gamma_{\text{soil, dry}} \right] \\ \hline & 0.0 \\ & 506.0 \\ & 540.8 \\ & 558.3 \\ & 1368.4 \\ \end{array}$	$I_{ry} * (h-h_{w}) + \gamma_{soil, effective} * (h_{w})]$ $Vertical Soil Pressure, roof = \gamma_{soil, effective} * h$ $= 273.7 \text{ psf}$ $Vertical Soil Pressure, slab lip = \gamma_{soil, effective} * h$ $= 740.2 \text{ psf}$ For image, see S_Lat_MinW $I_{ry} * h_{w} + \gamma_{soil, effective} * (h-h_{w})]$ EM 1110-2-2502, Eq 3- $Vertical Soil Pressure, roof = \gamma_{soil, dry} * h$ $= 632.5 \text{ psf}$
* So	Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88 -10.25 -11.00 oil Forces when Elevation 6.05 0.30 -0.10 -0.29 -9.50 -9.88	Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34 15.55 15.93 16.30 17.05 n water at Minimu Lateral Soi <u>Soil depth (ft)</u> 0.00 5.75 6.15 6.34 15.55 15.93	$\begin{array}{rcl} \gamma_{\text{soil, effective}} &= 47.6 \ \text{pcf} \\ & K_0 &= & 0.8 \\ \text{il Pressure} &= & K_0 &* \left[\gamma_{\text{soil, d}} \right] \\ \hline & Pressure \left(\text{psf}\right) \\ & 0.0 \\ & 256.4 \\ & 271.5 \\ & 279.0 \\ & 629.6 \\ & 643.9 \\ & 658.1 \\ & 686.7 \\ \hline & & \\$	$Iry * (h-h_{w}) + \gamma_{soil, effective} * (h_{w})]$ $Vertical Soil Pressure, roof = \gamma_{soil, effective} * h$ $= 273.7 \text{ psf}$ $Vertical Soil Pressure, slab lip = \gamma_{soil, effective} * h$ $= 740.2 \text{ psf}$ For image, see S_Lat_MinW $Iry * h_{w} + \gamma_{soil, effective} * (h-h_{w})]$ EM 1110-2-2502, Eq 3- $Vertical Soil Pressure, roof = \gamma_{soil, dry} * h$ $= 632.5 \text{ psf}$ $Vertical Soil Pressure, slab lip = \gamma_{soil, effective} * h$

TABLE: Jo	oint Reactions	a second and a second		Serie State
Joint	OutputCase	CaseType	F1	F3
Text	Text	Text	Kip	Кір
le 1	2b_truck4	LinStatic	-0.005343	11.434
le 1	3b_truck4	LinStatic	-0.032	8.872
e 1	Ser-3-Truck 4	LinStatic	-0.032	8.872
e 2	2b_truck4	LinStatic	-0.034	16.998
e 2	3b_truck4	LinStatic	-0.048	11.721
e 2	Ser-3-Truck 4	LinStatic	-0.048	11.721
le 3	2b_truck4	LinStatic	-0.015	16.36
le 3	3b_truck4	LinStatic	-0.021	11.03
e 3	Ser-3-Truck 4	LinStatic	-0.021	11.03
e 4	2b_truck4	LinStatic	0.001289	16.908
e 4	3b_truck4	LinStatic	0.001289	11.656
e 4	Ser-3-Truck 4	LinStatic	0.001289	11.656
e 5	2b_truck4	LinStatic	0.014	17.844
e 5	3b_truck4	LinStatic	0.02	12.514
e 5	Ser-3-Truck 4	LinStatic	0.02	12.514
e 6	2b_truck4	LinStatic	0.035	19.136
e 6	3b_truck4	LinStatic	0.049	13.859
e 6	Ser-3-Truck 4	LinStatic	0.049	13.859
e 7	2b_truck4	LinStatic	0.003822	14.45
e 7	3b_truck4	LinStatic	0.03	11.888
e 7	Ser-3-Truck 4	LinStatic	0.03	11.888

If All reactions are calculated on perfoot basis with respect to the longitudial pile spacing. Therefore we must multiply the vertical reaction by the longitudial pile spacing. The smallest pile spacing under Areline Hwy is $5^20''$, the anticipated maximum pile reaction is then going to be 19.136 × 5 = 95,68 kips

Using a Factor of Sabety = 2.0, Uttimate Pile Corpacily Regulard = 192 Kips

TABLE 1

Canadian National Rail Road Crossing

Concrete Piles with butt elevation +4.0 ft.

actual butte clouation = - 9.75

RECON	MEND	ED	ULTI	MATE	E SINGI	ĿE		
COMPRE	ESSIVE	ARE						
PREC	CAST CO	ONC	CRETH	E PILE	ES (kips))		
Tip Depth]	Pile Siz	ze (Inc	hes)			
(ft)	14	1.	16	18	20	24		
50	105		120	135	150	181		
60	147		170	195	218	265		
70	173		199	230	258	316		
80	211		243	279	312	380		
		*	22.6	27.4	31.0	38.1		$\mathcal{H} \to \mathcal{H}$
		a	220.4	251.6	281	341.9	=7 use 12	5 8 1
		TA	BLE 2					

x=0.65

US HWY. 61

Concrete Piles with butt elevation +4.0 ft.

actual but elevation = -11.0

RECOM	MEND	ED UL	ГІМАТ	E SING	LE					
COMPRES	SSIVE C	CAPAC	ITIES (DF SQU	ARE					
PRECA	AST CO	NCRE	TE PILI	ES (kips	5)					
Tip Depth		Pile Size (Inches)								
(ft)	14	16	18	20	24					
50	96	113	131	149	188					
60	146	171	198	224	279					
70	197	226	257	287	347					
80	227	261	299	334	407					
	**	14.3	16.7	19.0	23.8					
		246.7	282.3	315	383.Z					

=> use 18" pile

BOTT	BOTTOM SLAB REINFORCING BAR SCHEDULE										
MARK	NO. REQ'D.	LENGTH	A	в	С	PIN DIA.					
401	432	39'-6"	-	-	-	-					
402	108	29'-0"	-	-	-	-					
403	540	43'-6"	-	-	-	-					
501	838	6'-3"	1'-1"	2'-7"	-	3 3/4"					
502	838	5'-5 1/2"	1'-11 1/2"	3'-6"	-	3 3/4"					
503	3352	6'-1"	2'-7"	3'-6"	-	3 3/4"					
504	419	52'-3"	-	-	-	-					
505	419	52'-3"	-	-	-	-					
506	3216	2'-0*	-	-	-	-					

				URS	3500 N. Causeway Blvd., Suite 900 Metairia, Louisiana 70002 (504) 837–6328	LOUISIANA COA RESTORAT COASTAL ENGI 450 LA BATON ROCC	STAL PROTECTION AND TON AUTHORITY NEERING DIVISION LUREL STREET 3E, LOUISIANA 70802
REV.	DATE	DESCRIPTION	ВΥ			DRAWN BY: SDC III	DESIGNED BY: BCB

95% DESIGN DRAWINGS

NOTES:

							CON
				URS	3500 N. Causeway Blvd., Suite 900 Metairie, Louisiana 70002 (504) 837–6326	LOUISIANA COAS RESTORAT COASTAL ENGI 450 LA BATON ROLC	STAL PROTECTION AND ION AUTHORITY NEERING DIVISION UREL STREET EL LOUISIANA 70802
REV.	DATE	DESCRIPTION	ВΥ			DRAWN BY: SDC III	DESIGNED BY: BCB

References:

95% Maurepas Inlet Structure Geotech Information and Pile Capacity Curves

CRITICAL BUCKLING-LOAD: CRGA MANUAL PG 40 -FOR CONSTANT ES, UNSUPPORTED LENGTH (CONSERVATIVE)

> PCR= $n \sqrt{E_s EI}$ where N = 1 - PINNED= $1 \sqrt{(0.5404 \text{ ksc})(29,000 \text{ ksc})(904 \text{ in}^4)} = 3763.8 \text{ kmss}$

of of Page: Sheet: Jul-13 Date: Date: 10001876 LBR Computed By: Checked By: Project #: Desc.: HP14x89 - Lateral Load vs. Maximum Moment Maurepas Freshwater Diversion For Pile Structural Check :dol

	23.482												
imum Moment	y = 1.3171x ² + 31.024x - 3 R ² = 0.9997						1			4			
ateral Load vs Max												1	
HP14x89, La												1	
	2250	0007	<u>و</u> 1750	1200 1200	ii) tu	1250	VI r	numi 1001	Vax 750		500		750
Maximum	(in-kips)	14.702 41 727	74.687	113.767 155.378	198.52	251.398 304.99	361.114	419.316 751 755	1131.07	1587.535	2079.189		
Applied	-ateral Load (kips) 0	- c	1 m ·	4 v	9 9 1	~ 8	6	10 بر	20	25	30		

INLET STRUCTURE COMPRESSIVE PILE CAPACITIES

		Quality			Date: 28 Fe	eb 2013	
	IE QMS - A	Americas		Detail	Check		
Pr	Project Name oject Location roject Number	Lake Maurepas Diver St. John the Baptist F 10001876	sion Parish, LA	Client PM PIC	CPRA Naveen Chillara Mike Patorno		
Identifying Information	Assigned Chec Work Product 0 Work Product 1 ☑ This Detail □ This Detail Specific Instruct Submitted by:	(This section i eker: Graham Forsyth Driginator: Ignacio Ha o be Checked: Pile o Check is a check for co Check is only a techni ctions: Enter specific	s to be completed by e mrouch apacities prrectness, complete cal edit for format, sp instructions for the w	the Project Manager or Comments F ness and technical accu pelling, grammar, pagina pork product.	the PM's Designee.) Required by: June 18, 2013 racy. tion and readability. $q/3 \approx 1.5$		
Project Manager Signature Date (This Section is to be completed by the Checker.) Date							
Comments	Select: A. ⊠ or B. □	Checker has no comm Comments have been Marked o Commer Other; Sp	ents. provided on: directly on work produ at and Disposition For pecify: Discussed with the signature	uct rm 3-5 ch originator	<u>6/18/2013</u>		
-	(This section	is to be completed by	the Checker after ve	rification of comment in	corporation, if box B is checked of	f above	
Verification	(This section is to be completed by the Checker after verification of comment incorporation, if box B is checked off a Select: C. □ Verification of comment incorporation has been performed by Checker. There are no outstanding issues or D. □ Verification of comment incorporation has been performed by Checker. Unresolved issues have been submitted to the Project Manager or Designee for final resolution. <u>and</u> E. □ Checker asserts that the work product review is complete. 						
		Che	cker Signature		Date		
			APPROVAL and	DISTRIBUTION			
Ø	Detail Check is	complete. Valen	~		9/35//3 Click here to enter a date.		
	Project	Manager or Designe	e Signature		Date		

Coastal Protection and Restoration	Project No.			
Authority	10001863	Pile Capacities: Intake Structure	HP - 14X73	
Lake Maurepas Diversion Canal				

Coastal Protection and Restoration	Project No.			
Authority	10001863	Pile Capacities: Intake Structure	HP - 14X89	
Lake Maurepas Diversion Canal				

Coastal Protection and Restoration	Project No.			
Authority	10001863	Pile Capacities: Intake Structure	HP - 14X102	
Lake Maurepas Diversion Canal				

Lake Maurepas Diversion Canal	Coastal Protection and Restoration Authority Lake Maurepas Diversion Canal	Project No. 10001863	Pile Capacities: Lake Maurepas PPCP - 14 inch
-------------------------------	--	-------------------------	---

with PPCP	- 14 inc	h						
300	350 4	100 450	0 500					
	Skin F	riction						
-		te Capacity						
	Tensic	n						
-	End Bearing							
load test 1.5 for ten load test.	sion and co	mpression v	with					
y, tons								
	U	RS	Appendix E					

Coastal Protection and Restoration Authority Lake Maurepas Diversion Canal	Project No. 10001863	Pile Capacities: Lake Maurepas PPCP - 16 inch
--	-------------------------	---

Coastal Protection and Restoration Authority Lake Maurepas Diversion Canal	Project No. 10001863	Pile Capacities: Lake Maurepas PIPE PILE - 18 inch
--	-------------------------	--

Maurepas Swamp WSLP

Steel Gates

AECOM Project: 60632162

SECTION 2

AECOM

Date: Dec-20

Job	Maurepas Swamp	Project No. 60589133	
	WSLP		
Description	Steel Gates	Computed by	Date Dec-20
	AECOM Project: 60632162		
	Table of Contents	Checked by	Date Dec-20
			References

TABLE OF CONTENTS

- 1- River Road Gate
- 2- CN Gate
- 3- KCS Gate

Maurepaus Swamp

River Road Crossing

Steel Roller Gate Design

AECOM Project : 60632162

1555 Poydras Street Suite 1200 New Orleans, LA 70112 (504) 586-8111

Computed by:	SJW	Checked by:	JMH
Date:	20-Dec	Date:	20-Dec

PROJECT	Project #	60632162	Sheet	of
Maurepas Swamp	Computed By	SJW	Date	December-20
River Road Roller Gate Design	Checked By	JMH	Date	December-20

General Info/Assumptions:

- Steel roller gate is being designed using USACE ETL 1110-2-584, "Design of Hydraulic Steel Structures" (30 June 2014), including Appendix F, "Closure Gates".
- 2) Top of Gate is EL +16.13. Top of slab is at EL +10.49.
- 4) As per EM 1110-2-584, skin plate is designed as a fixed end beam spanning between intercostals. In order to ensure that the flat plate theory is applicable, deflection will be limited to 0.4 times thickness.
- 5) Also per same EM, intercostals are designed as simple beams spanning between girders.
- 6) Also per same EM, girders are designed as simple beams, spanning between hinges on one side of the opening and bearings on the other.
- 7) A992, Grade 50 steel used for all steel members
- 8) For the 15% Design, two (2) load cases are examined. The specific cases have been chosen because engineering judgement dictates they will likely be the worst case conditions for the gate
 - Case 1) Water to TOW EL 16.13:

Flood water to Top of Wall EL 16.13

- Case 2) Construction with Wind:
 - 50 psf wind load on Protected Side of gate

EXTRACT FROM ETL 1110-2-584 30 Jun 14

 Impact, IM3, Extreme Load. May be neglected unless the Engineer has reason to believe this load may exist.

• Earthquake, not considered for the design of closure gates, but should be considered for gate support columns and walls.

• Environmental, W, Wind, See ASCE for recurrence interval, in lieu of site-specific data, use 15 psf during operation and up to 50 psf when not in operation (fully closed or fully open).

F.4.2. Design Load Cases. The following load cases shall be evaluated using the load factors listed in Table F-1.

Case 1: Strength I, Gate not operating:

$$\Sigma \gamma i Q_m = \gamma_{D2} D + \gamma_{Hs2} H_{s2}$$
 (F-1)

• Case 2: Strength I, Gate not operating, Gate subjected to the upper level Wind pressure of up to 50 psf:

$$\Sigma \gamma_i Q_{ni} = \gamma_{D2} D + \gamma_{EV2} W_2$$
 (F-2)

• Case 3: Strength II, Gate operating, Hinged gate subjected to Dead and Wind (lower level of 15 psf), operating load is treated as a reaction:

$$\Sigma \gamma_i Q_{n_i} = \gamma_{D2} D + \gamma_{EV2} W_1 \tag{F-3}$$

• Case 4: Strength II, Gate operating, Wheeled gate subjected to Dead and Operating load:

$$\Sigma \gamma_i Q_{ni} = \gamma_{D2} D + \gamma_{EV2} Q_2 \tag{F-4}$$

	Load	Cases				Loads/Loa	ad Factors			
Y	Limit State	Description	γD	γG	γHs	γHd	γQ	γεν	γΙΜ	γEQ
THAT THE -	Strength I	Gate Closed	0	0	1.4	0	0	0	0	0
1010 UNSE	Strength I	Gate Closed	1.2	0	0	0	0	1.3	0	0
CONST. + WIN	Strength II	Gate Open	1.2	0	0	0	0	1.3	0	0
	Strength II	Gate Open	0	0	0	0	1.3	0	0	0

Table F-1. Load Factors for Closure Gates.

F.4.3. Design for Individual Members. The following paragraphs include a brief description of design assumptions and design considerations.

F.4.3.1. Skin plate. Skin plates shall be sized such that the maximum calculated stress is less than the yield limit state of $\alpha \phi F_y$. Skin plates shall be designed for hydrostatic loading only. Stresses shall be determined based on small deflection thin plate theory and by using Equation F-1. Deflection shall be limited to 0.4 of the plate thickness to prevent the development of significant membrane stresses. More than one thickness of plate may be desirable for taller gates. The minimum plate thickness shall be $\frac{1}{4}$ in. Appendix C provides additional guidance on skin plate design.

	PROJECT/	ORNO									
	COMPLITED		0 114/				_ CA	LCULAT	ION NO		C-202
	VERIFIED B	мат <u> </u>							DATE_		C-202
	SCALE		JIVIH						DATE_	3	OF
								SH	EET NO		_ 0.
$\wedge \Lambda$	= (128)	2)(4	$2)^2$		0	2/0	1				
MAX, TOF	0.20.				8,1	268-		-b-t	+	_	
		8								_	-
MA											
 MAND	= 238.	4)(4	2)	5	20	3694	11	-Ft			
Vary Dal		0			-1		10		-		
		D		_							-
									_	_	
										_	
							_				-
			_				_			_	
							_				
 										_	
										_	
							_				-
 				_							
										_	-

 $\overline{\nu}$

PROJECT Maurepas Swamp River Road Roller Gate Desi	gn					Cc	Project # omputed By Checked By	60632162 SJW JMH		Sheet Date Date	t .	Dec Dec	of <u>cember</u> cember	<u>r-20</u> -20	-		
Top&Bottom Girder Design Load Case:	Water to T.O. Wall								Referer AISC S	nce: teel Co	nst Man	iual 15t	th Ed.				
MATERIAL PROPERTIES	Material:	A992	F _y = E =	50 29000	ksi ksi			φ = α =	0.9	for bei	nding JSACE	ETL 11	110-2-5	584			
Top Girder Design																	
		A	Danth	Web	F	lange	Nominal		E	lastic P	ropertie	s	Ander M.				
Top Girder	Designation	Area	d Depth	t _w	b _f		Wt. Per ft.		AXIS X-	x l r	7		S	r r	h₀	J	C _w
		in ²	in	in	in	in	lb	in ⁴	in ³	in	in ³	in ⁴	in ³	in	in	in ⁴	in ⁶
						•	· · · ·							<u> </u>	<u> </u>		
	W16x100	29.4	16.97	0.585	10.425	0.985	100	1490	175	7.1	198	186	35.7	2.51	16	7.73	11900
		b _f /2t _f = h/t _w =	5.3 29.0	< <	9.2 90.6	= 0.38√(E / = 3.76√(E / F	F _y) - _{y)}			(AISC	Table I	34.1a)					
			<u>Co</u>	mpact Sect	ion												
Following AISC Section F2 - L	Doubly Symmetric Comp	act I-shap	ed Member	s													
1) Yield:	M _n = M _p =	= F _y Z _x =	9,900.0	k-in =	825.0	k-ft			(F2-1)							
2) Lateral-Torsional Buck	ling: L _b =	11.000	ft =	132	in											
		$L_p =$	1.76r _y v(E /	F _y) =	106.39	in				(F2-5)							
		L _r =	1.95r _{ts} * E/	/(0.7F _y) * √{(J	J*c / S _x h ₀) + √[(J*c / S _x	h ₀) ² + 6.76(0	.7*Fy / E) ²]}									
			$r_{ts}^2 = r_{ts} =$	√(I _y * C _w) / S 2.92	S _x =	8.50											
		L _r =	392.46	in													

$$M_{n} = C_{b} * \{M_{p} - (M_{p} - 0.7*F_{y}*S_{x}) * [(L_{b} - L_{p}) / (L_{r} - L_{p})] \le M_{p}$$
(F2-2)

Conservatively setting $C_b = 1$

M_n = 9,562.0 k-in = **796.8 k-ft**

3) Moment Factoring & Check:

	M _{max} = 29.38 k-ft			
	$\phi \alpha M_n = 609.58 \text{ k-ft}$	\longrightarrow	ок	
		(c+ +) ⁴) / (00 (+ c+)		
4) Deflection Check:	Simple Beam ∆ _{max} = Max allowable defler	$(5^*W^*I^*) / (384^*E^*I_x)$		0.1 in
		allow - L/240 -		2.1 111
Distribut	ed load = <u>133.22</u> lb/ft =	11.10 lb/in		
Spar	$1 \text{ length} = 42 \pi = 600 \pi$	504 IN		
	$\Delta_{max} = 0.216$ in	——> ОК		

Bottom Girder Design

				Web	F	lange	Nominal		EI	astic P	ropertie	es					
Bottom Girder	Designation	Area	Depth	Thickness	Width	Thickness	Wt. Per ft.		Axis X-X	<		l A	xis Y-	Y			
		A	d	tw	bf	tf		I	S	r	Z	Ι	S	r	h_0	J	C _w
		in2	in	in	in	in	lb	in4	in3	in	in ³	in4	in3	in	in	in ⁴	in ⁶
	W24x176	51.7	25.24	0.75	12.89	1.34	176	5680	450	10.5	511	479	74.3	3.04	24	23.9	68400

$b_f/2t_f =$	4.8	<	9.2	= 0.38√(E / F _y)

(AISC Table B4.1a)

 $h/t_w = 33.7 < 90.6 = 3.76\sqrt{(E / F_y)}$

Compact Section

Following AISC Section F2 - Doubly Symmetric Compact I-shaped Members...

1) Yield:
$$M_n = M_p = F_y Z_x = 25,550.0 \text{ k-in} = 2,129.2 \text{ k-ft}$$
 (F2-1)
2) Lateral-Torsional Buckling:
 $L_b = 11.000 \text{ ft} = 132 \text{ in}$
 $L_p = 1.76r_y \sqrt{(E / F_y)} = 128.85 \text{ in}$ (F2-5)
 $L_r = 1.95r_{ts} * E/(0.7F_y) * \sqrt{(J*c / S_xh_0)} + \sqrt{[(J*c / S_xh_0)^2 + 6.76(0.7*Fy / E)^2]}$
 $r_{ts}^2 = \sqrt{(I_y * C_w) / S_x} = 12.72$
 $r_{ts} = 3.57$
 $L_r = 448.85 \text{ in}$
(b) $Lp < Lb < Lr$
 $M_n = C_b * \{M_p - (M_p - 0.7*F_y*S_x) * [(L_b - L_p) / (L_r - L_p)] \le M_p$ (F2-2)

Conservatively setting C_b = 1

$$M_n = 25,453.7 \text{ k-in} = 2,121.1 \text{ k-ft}$$

3) Moment Factoring & Check:

	M _{max} =284.83 k-ft			
	$\phi \alpha M_n = 1,622.67$ k-ft	>	ок	
4) Deflection Check:	Simple Beam Δ_{max} =	(5*w*l ⁴) / (384*E*l _x)		
	Max allowable deflect	tion $\Delta_{\text{allow}} = L/240 =$		2.1 in
Distribu	uted load = 1291.76 lb/ft =	107.65 lb/in		
Spa	an length = 42 ft =	504 in		
	Δ _{max} = 0.549 in	—> ОК		

<u>PROJECT</u> Maurepas Swamp River Road Roller Gate De	esign					Cc	Project # omputed By Checked By	SJW JMH		Sheet Date Date		De De	of cembe cembe	r-20 r-20	- -		
<u>Top&Bottom Girder Desi</u> Load Case	gn e: Construction + wind lo	bad							Referer AISC S	nce: teel Cor	nst Mar	nual 15	ith Ed.				
MATERIAL PROPERTIES	Material:	A992	F _y = E =	50 29000	ksi ksi			φ = α =	0.9 0.85	for ber	nding JSACE	ETL 1	110-2-5	584			
Top Girder Design																	
		Area	Depth	Web Thickness	F Width	lange Thickness	Nominal		Axis X	Elastic (-X	Propert	ties	Axis Y-	Y			
Top Girder	Designation	A	d	t _w	b _f	t _f	Wt. Per ft.	I	S	r	Z	I	S	r	h ₀	J	C _w
		in ²	in	in	in	in	lb	in⁴	in³	in	in ³	in⁴	in ³	in	in	in ⁴	in⁵
	W16x100	29.4	16.97	0.585	10.425	0.985	100	1490	175	7.1	198	186	35.7	2.51	16	7.73	11900
		$b_f/2t_f = h/t_w =$	5.3 29.0	<	9.2 90.6	= 0.38√(E /) = 3.76√(E /)	Fy) Fy)			(AISC	Table I	B4.1a)					
			<u>Co</u>	mpact Sect	<u>ion</u>												
Following AISC Section F2	- Doubly Symmetric Comp	act I-shap	ed Member	<u>`S</u>													
	1) Yield:	M _n = M _p =	= F _y Z _x =	9,900.0	k-in =	825.0	k-ft			(F2-1)							
	2) Lateral-Torsional Bucl	kling: L _b =	11.000]ft =	132	in											
		L _p =	1.76r _y v(E /	' F _y) =	106.39	in				(F2-5)							
		L _r =	1.95r _{ts} * E/	/(0.7F _y) * √{(.	J*c / S _x h ₀)	+ √[(J*c / S _x	h ₀) ² + 6.76(0.	7*Fy / E)	2]}								
			$r_{ts}^2 =$ $r_{ts} =$	√(I _y * C _w) / S 2.92	S _x =	8.50											
		L _r =	392.46	in													

$$M_{n} = C_{b} * \{M_{p} - (M_{p} - 0.7*F_{y}*S_{x}) * [(L_{b} - L_{p}) / (L_{r} - L_{p})] \le M_{p}$$
(F2-2)

Conservatively setting $C_b = 1$

M_n = 9,562.0 k-in = **796.8 k-ft**

3) Moment Factoring & Check:

	M _{max} =	28.27 k-ft			
	φαM _n =	609.58 k-ft	\longrightarrow	ок	
4) Deflection Check:	S	imple Beam Δ _{max} :	= (5*w*l ⁴) / (384*E*l _x)		
	Ν	lax allowable defle	ection $\Delta_{\text{allow}} = L/240 =$		2.1 in
Distribu Spa	ted load = n length =	128.19 lb/ft = 42 ft =	10.68 lb/in 504 in		
	Δ _{max} =	0.208 in	──> ОК		

Bottom Girder Design

				Web	F	lange	Nominal		I	Elastic I	Propert	ies					
Bottom Girder	Designation	Area	Depth	Thickness	Width	Thickness	Wt. Per ft.		Axis X	-X		ŀ	۲-۱ Axis	Y			
		A	d	tw	bf	tf		Ι	S	r	Z	Ι	s	r	h ₀	J	C _w
		in2	in	in	in	in	lb	in4	in3	in	in ³	in4	in3	in	in	in ⁴	in ⁶
	W24x176	51.7	25.24	0.75	12.89	1.34	176	5680	450	10.5	511	479	74.3	3.04	24	23.9	68400

 $b_f/2t_f = 4.8 < 9.2 = 0.38\sqrt{(E / F_y)}$

(AISC Table B4.1a)

 $h/t_w = 33.7 < 90.6 = 3.76\sqrt{(E / F_y)}$

Compact Section

Following AISC Section F2 - Doubly Symmetric Compact I-shaped Members...

1) Yield:

$$M_n = M_p = F_y Z_x = 25,550.0 \text{ k-in} = 2,129.2 \text{ k-ft}$$
 (F2-1)

2) Lateral-Torsional Buckling:

$$L_{b} = \underbrace{11.000}_{L_{p}} \text{ft} = 132 \text{ in}$$

$$L_{p} = 1.76r_{y} V(E / F_{y}) = 128.85 \text{ in} \qquad (F2-5)$$

$$L_{r} = 1.95r_{ts} * E/(0.7F_{y}) * \sqrt{\{(J^{*}c / S_{x}h_{0}) + \sqrt{[(J^{*}c / S_{x}h_{0})^{2} + 6.76(0.7^{*}Fy / E)^{2}]\}}$$

$$r_{ts}^{2} = \sqrt{(I_{y} * C_{w}) / S_{x}} = 12.72$$

$$r_{ts} = 3.57$$

$$L_{r} = 448.85 \text{ in}$$

$$M_n = C_b * \{M_p - (M_p - 0.7*F_y*S_x) * [(L_b - L_p) / (L_r - L_p)] \le M_p$$
(F2-2)
Conservatively setting $C_b = 1$
$$M_n = 25,453.7 \text{ k-in } = 2,121.1 \text{ k-ft}$$

3) Moment Factoring & Check:

AECOM Imagine it. Delivered.

	1			
1	1			
1	12	-		2
	Grand Contraction	_	-	

	 	1								the second s					 	 	 	
0	2.5							-			7							
1																		
								-										
							and the second se	other Designation of the local division of t	-			and share to share the same of	the Colorest States	and the owner where the party of the local division of the local d	 and the second s	 and the second s	 or said the said of the said o	

AE

E

6

COM	Imagine it.	JOB TITLE			
	Delivered.	PROJECT/JOB NO.		CALCULATION NO.	
		COMPUTED BY	SJW	DATE	DEC-2020
		VERIFIED BY	JMH	DATE	DEC-2020
		SCALE		SHEET NO5	OF
CHr.					
MIE	K WIND	LOAD STAB	Lity:		
		EL. 16.13	56 PSF		
		NTV-100			
		WIGT 00	()		
			C N		
		N24×170			
		11-1110			
			K 2.82		
1049		SERL		· ·	
0-11					
		Å			
		Y			
		4			
GA	TE WT	W/6 5% IN	CREACE =	H.010.2 b	
		10 -			
	CENTROI	+ (V) =			
		449-			
	Findle	17 + 17	16 25 2 7		
	100	× 2	6×-2	DV-11	1"
		(100+176			1
AS	SUME G	ATE CLOCED	BUT I MI ATCH	ED CUDIE	the left
141	Allo Loll +	COTO DOLLA		SUB ED	10 15 PS
VV	NY LOAL	A CALL ALAR	ATION LOAD F	ER FILL SEC	. F.45
	URRICANE	-WIND WOU	LP NOT BE A	HONED TO R	TINC IBE
	A INALIAN	THE PART			
	Upura	THEN UTTIE			
DIA	pre all		312 1- 0		
r TO	FUE OVI	at an obev	NG = 15 1897>	< 40 × (16.13-10	2.49/
			= 3,38	416	

EL

3.

N

EL

COM	Ima	iver	it.		JOB 1	ITLE																		
	Dei	IVEIC	<i>.</i>		PROJ	ECT/	JOB N	10								C/	ALCUL	ATIO	NO.		DE	C-20	20	
					COM	PUTE	DBY				SJ	W							DATE		DF	C-20	20	
					VERI	FIED	BY				JM	H							DATE	-	C	OF	=	
					SCAL	E												SHEE	T NO.		0		_	
-DOV	FD	-	DA	Xiz	C	٨	De	_	D	100	T		•											
	PP	40	KA	111	6	A	121	-	L	210	P.I.	F	10		-									
	-		au	0	22	16	~	11		11	-	-					-				1			
			17	,01	0.2	-11	X	11	- 1		111	-	-	1.	3(2		t.()	V	0	Ð		
			3,	3	34	b	\times	2.9	32'	×D	17	2		-		-			-		-			
			-											_					-			- 10	DC	
-P -	- (GA	TE		STA	BI	E	U	ND	E	R	DP	ER	AT	tio	NI	M	N	ΛN	D	H	DA	22	
	(AA	D	H	iG	te	R	5	M	HEA	1	UN	11	47	CH	E	2							
			-	T			-		14.															
			4	50	TE		-		D	٨	11	IA	VC	Þ	AT.	1	Ato	At	ED					
		>	2	OF	H L		>11		Y	K	W		13	C	st-	-		- 11	-1					
			1	V	VH.	EN	C	-11	28	D	-													
	-								-															
b) c	1		Ð	0				-																
VIS	KIN	1	IL	0	-																			
_										1														
1			1		101	11		-+	01	N/ N	ALA	-PI							-			V.	1	2
L 16.13	5		p-1	=	10.	1		1.	10.1	VV - V	NR	14	-					-A	92	UN	e	14	1	F
0.43'		- 1	Ľ	Acceleration						/			_						P	N	ML	M	AL	100
1		d	Fi	XP	F					4									1		PE	R	ET	L
2671			a	6	1																			
										-	t	>	4			-	11	1)		9	1	4		-
			A								1	A	0	1	-9	×	-1.	.1	-	2	02	-7	18	T
T	F	C		-			1			1														
1.54	b	=1:	2.9					1									_	. 1						
Invo	1			T	5			10	ID	F.		E	64	1p	Œ	×	b.(54)	3	61	P	R	-
L- 10-1	-	-		111				0	- pr	-7		0		_										

-ASSUME R. FIXED @ FINHERCOSTALS & @ 6 FROM & WEB

AECOM Imagine it. Delivered.

JOB TITLE			
PROJECT/JOB NO.		CALCULATION NO	
COMPUTED BY	SJW	DATE_	DEC-2020
VERIFIED BY	JMH	DATE_	DEC-2020
SCALE		SHEET NO.	7 OF

		-			 	 	 	 				 	 				
									·								
				: i											. 1		
						 		 						1			
								-	_	_							
	-		 		 	 	 	 				 					
				_													
			 1.00			 					 					· · · · ·	

	Project # Computed By Checked By	60632162 SJW JMH	Sheet Date Date	of
	**Nloto: Intoroactal		LC1 only	
ect. F.4.3.2	note. Intercostan	s designed using	LCTONIY	
62.61 k-in	(F9-3))		
-2.39	(F9-12	?)		
154.95 ksi	(F9-10))		
k-in k-in				
see sketch				
$\frac{20000}{\left(d/A_{f}\right)F_{y}} =$	158	in		
				0.43
			1	¥
	ect. F.4.3.2 62.61 k-in -2.39 154.95 ksi <u>k-in</u> see sketch $\frac{20000}{(d/A_f)F_y} =$	$\frac{1}{Computed By}$ Computed By checked By ect. F.4.3.2 **Note: Intercostals 62.61 k-in (F9-3) -2.39 (F9-12) 154.95 ksi (F9-10) k-in k-in see sketch $\frac{20000}{(d/A_f)F_y} = 158$	$\frac{\text{Project #}_{Computed By} \underbrace{\text{SJW}}_{SJW}}{\text{SJW}}$ ect. F.4.3.2 $(F9-3)$ 62.61 k-in (F9-3) -2.39 (F9-12) 154.95 ksi (F9-10) $\frac{\text{k-in}}{\text{k-in}}$ see sketch $\frac{20000}{(d/A_f)F_y} = 158 \text{ in}$.	$\frac{Project \#}{Computed By SJW} Date Date Date Date SJW} Date Date Date Date Date Date Date Date$

 $P_{1} = \frac{1}{2} \gamma Y^{2} = R_{T}$ Y = 2.04 ft $M_{max} = (Rt(Y-0.46)-P1^{*}Y/3) = 0.1 \text{ ft-k /ft}$ Intercostal Spacing = 3.67 ft o/c $M_{max} = (Int. \text{ Spacing*Mmax}) = 5.4 \text{ k-in}$

CHECK TRIAL SECTION

 $\begin{array}{lll} M_{max} = & 5.4 \ \text{k-in} \\ \alpha \varphi \text{Mn} = & 47.9 \ \text{k-in} \end{array} \rightarrow$

→ Use 1/4" thick x 4" long intercostals

ок

Maurepaus Swamp

CN Railroad Crossing

Steel Roller Gate Design

AECOM Project : 60632162

1555 Poydras Street Suite 1200 New Orleans, LA 70112 (504) 586-8111

Computed by:	SJW	Checked by:	JMH
Date:	20-Dec	Date:	20-Dec

General Info/Assumptions:

- Steel roller gate is being designed using USACE ETL 1110-2-584, "Design of Hydraulic Steel Structures" (30 June 2014), including Appendix F, "Closure Gates".
- 2) Top of Gate is EL +16.13. Top of slab is at EL +11.98.
- 4) As per EM 1110-2-584, skin plate is designed as a fixed end beam spanning between intercostals. In order to ensure that the flat plate theory is applicable, deflection will be limited to 0.4 times thickness.
- 5) Also per same EM, intercostals are designed as simple beams spanning between girders.
- 6) Also per same EM, girders are designed as simple beams, spanning between hinges on one side of the opening and bearings on the other.
- 7) A992, Grade 50 steel used for all steel members
- 8) For the 15% Design, two (2) load cases are examined. The specific cases have been chosen because engineering judgement dictates they will likely be the worst case conditions for the gate
 - Case 1) Water to TOW EL 16.13:

Flood water to Top of Wall EL 16.13

- Case 2) Construction with Wind:
 - 50 psf wind load on Protected Side of gate

EXTRACT FROM ETL 1110-2-584 30 Jun 14

 Impact, IM3, Extreme Load. May be neglected unless the Engineer has reason to believe this load may exist.

• Earthquake, not considered for the design of closure gates, but should be considered for gate support columns and walls.

• Environmental, W, Wind, See ASCE for recurrence interval, in lieu of site-specific data, use 15 psf during operation and up to 50 psf when not in operation (fully closed or fully open).

F.4.2. Design Load Cases. The following load cases shall be evaluated using the load factors listed in Table F-1.

Case 1: Strength I, Gate not operating:

$$\Sigma \gamma i Q_m = \gamma_{D2} D + \gamma_{Hs2} H_{s2}$$
 (F-1)

• Case 2: Strength I, Gate not operating, Gate subjected to the upper level Wind pressure of up to 50 psf:

$$\Sigma \gamma_i Q_{ni} = \gamma_{D2} D + \gamma_{EV2} W_2$$
 (F-2)

• Case 3: Strength II, Gate operating, Hinged gate subjected to Dead and Wind (lower level of 15 psf), operating load is treated as a reaction:

$$\Sigma \gamma_i Q_{n_i} = \gamma_{D2} D + \gamma_{EV2} W_1 \tag{F-3}$$

• Case 4: Strength II, Gate operating, Wheeled gate subjected to Dead and Operating load:

$$\Sigma \gamma_i Q_{ni} = \gamma_{D2} D + \gamma_{EV2} Q_2 \tag{F-4}$$

	Load	Cases	Loads/Load Factors											
x	Limit State	Description	γD	γG	γHs	γHd	γQ	γEV	γIM	γEQ				
THAT TALE -	Strength I	Gate Closed	0	0	1.4	0	0	0	0	0				
1010 UNSE	Strength I	Gate Closed	1.2	0	0	0	0	1.3	0	0				
raist + WIN	Strength II	Gate Open	1.2	0	0	0	0	1.3	0	0				
Conten	Strength II	Gate Open	0	0	0	0	1.3	0	0	0				

Table F-1. Load Factors for Closure Gates.

F.4.3. Design for Individual Members. The following paragraphs include a brief description of design assumptions and design considerations.

F.4.3.1. Skin plate. Skin plates shall be sized such that the maximum calculated stress is less than the yield limit state of $\alpha \phi F_y$. Skin plates shall be designed for hydrostatic loading only. Stresses shall be determined based on small deflection thin plate theory and by using Equation F-1. Deflection shall be limited to 0.4 of the plate thickness to prevent the development of significant membrane stresses. More than one thickness of plate may be desirable for taller gates. The minimum plate thickness shall be $\frac{1}{4}$ in. Appendix C provides additional guidance on skin plate design.

-

<u>PROJECT</u> Maurepas Swamp CN Roller Gate Design						Co	Project # mputed By Checked By	60632162 SJW JMH		Sheet Date Date		Dec Dec	of ember ember	-20 -20			
<u>Top&Bottom Girder Design</u> <u>Load Case:</u>	Water to T.O. Wall								Referer AISC S	nce: Steel Cor	nst Mar	nual 15th	h Ed.				
MATERIAL PROPERTIES	Material:	A992	F _y = E =	50 29000	ksi ksi			φ = α =	0.9	for ber from U	nding JSACE	ETL 11	10-2-5	84			
Top Girder Design																	
Top Girder	Designation	Area	Depth	Web Thickness	F Width	lange Thickness	Nominal Wt. Per ft.		E Axis X-	Elastic Pi X	ropertie	A	xis Y-Y	(h.		C
	0	A in ²	a in	in	in	ч in	lb	in ⁴	in ³	r in	in ³	in ⁴	s in ³	in	in	J in ⁴	in ⁶
	W24x68	20.1	23.73	0.415	8,965	0.585	68	1830	154	9.55	177	70.4	15.7	1.87	23	1.87	9430
		$b_f/2t_f =$ $h/t_w =$	7.7 57.2 <u>Co</u>	< < mpact Sect	9.2 90.6 <u>ion</u>	= 0.38√(E / I = 3.76√(E / F	= _y) - _{y)}			(AISC	Table I	B4.1a)					
Following AISC Section F2 - Do	oubly Symmetric Comp	act I-shap	ed Member	<u>s</u>													
1)	Yield:	M _n = M _p =	= F _y Z _x =	8,850.0	k-in =	737.5	k-ft			(F2-1)							
2)	Lateral-Torsional Buck	ling: L _b =	12.500	ft =	150	in											
		$L_p =$	1.76r _y v(E /	F _y) =	79.263	in				(F2-5)							
		L _r = L _r =	$1.95r_{ts} * E/r_{ts}^{2} = r_{ts} = 226.28$	(0.7F _y) * √{(J √(I _y * C _w) / S 2.30 in	J*c / S _x h ₀] S _x =) + √[(J*c / S _x 5.29	n ₀) ² + 6.76(0.	.7*Fy / E) ²]}									

$$M_{n} = C_{b} * \{M_{p} - (M_{p} - 0.7*F_{y}*S_{x}) * [(L_{b} - L_{p}) / (L_{r} - L_{p})] \le M_{p}$$
(F2-2)

Conservatively setting $C_b = 1$

M_n = 7,185.3 k-in = **598.8 k-ft**

3) Moment Factoring & Check:

	M _{max} =	46.60 k-ft			
	$\phi \alpha M_n =$	458.06 k-ft	\longrightarrow	ок	
4) Deflection Check:	Si Mi	mple Beam Δ _{max} : ax allowable defle	= (5*w*l ⁴) / (384*E*I _x) ection Δ _{allow} = L/240 =		4.85 in
Distribut Spar	ed load =	39.55 lb/ft = 97.08 ft =	3.30 lb/in 1165 in		
	$\Delta_{max} =$	1.490 in	> ОК		

Bottom Girder Design

				Web	F	lange	Nominal		E	lastic P	ropertie	es					
Bottom Girder	Designation	Area	Depth	Thickness	Width	Thickness	Wt. Per ft.		Axis X-2	X		A	∖xis Y-`	Y			
		A	d	tw	bf	tf		I	S	r	Z	I	S	r	h_0	J	C _w
		in2	in	in	in	in	lb	in4	in3	in	in ³	in4	in3	in	in	in ⁴	in ⁶
	W36x194	57	36.49	0.765	12.115	1.26	194	12100	664	14.6	767	375	61.9	2.56	35	22.2	116000

$b_f/2t_f =$	4.8	<	9.2	= 0.38√(E / F _y)

(AISC Table B4.1a)

 $h/t_w = 47.7 < 90.6 = 3.76\sqrt{(E / F_y)}$

Compact Section

Following AISC Section F2 - Doubly Symmetric Compact I-shaped Members...

1) Yield:
$$M_n = M_p = F_yZ_x = 38,350.0 \text{ k-in} = 3,195.8 \text{ k-ft}$$
 (F2-1)
2) Lateral-Torsional Buckling:
 $L_b = 12.500 \text{ ft} = 150 \text{ in}$
 $L_p = 1.76r_yV(E / F_y) = 108.51 \text{ in}$ (F2-5)
 $L_r = 1.95r_{ts} * E/(0.7F_y) * \sqrt{(J^*c / S_xh_0) + \sqrt{[(J^*c / S_xh_0)^2 + 6.76(0.7^*Fy / E)^2]}}$
 $r_{ts}^2 = \sqrt{(I_y * C_w) / S_x} = 9.93$
 $r_{ts} = 3.15$
 $L_r = 331.12 \text{ in}$
(b) $Lp < Lb < Lr$
 $M_n = C_b * \{M_p - (M_p - 0.7^*F_y*S_x) * [(L_b - L_p) / (L_r - L_p)] \le M_p$ (F2-2)

Conservatively setting $C_b = 1$

3) Moment Factoring & Check:

	M _{max} = 955.61 k-ft		
	$\phi \alpha M_n = 2,265.28 \text{ k-ft}$	\longrightarrow	ок
Deflection Check:	Simple Beam Δ_{max} =	= (5*w*l ⁴) / (384*E*l _x)	
	Max allowable defle	ction $\Delta_{\text{allow}} = L/240 =$	4.8541667 in
Distribut	ed load = 811.11 lb/ft =	67.59 lb/in	
Spar	ו length =97.08 ft =	1165 in	
]	Δ _{max} = 4.620 in	—> ОК	7

<u>PROJECT</u> Maurepas Swamp River Road Roller Gate Des	sign					Co	Project # omputed By Checked By	60632162 SJW JMH		Sheet Date Date		Dec Dec	of cembe cembe	r-20 r-20	- -		
Top&Bottom Girder Desig Load Case:	<u>n</u> <u>Construction + wind Ic</u>	oad							Referer AISC S	nce: teel Cor	nst Man	nual 15t	h Ed.				
MATERIAL PROPERTIES	Material:	A992	F _y = E =	50 29000	ksi ksi			φ = α =	0.9) for ber from U	nding ISACE	ETL 11	10-2-;	584			
Top Girder Design																	
		Area	Depth	Web Thickness	F Width	lange Thickness	Nominal		Axis X	Elastic F -X	Properti	es A	∖xis Y-	Y	$\left \right $		
Top Girder	Designation	A	d	t _w	b _f	t _f	Wt. Per ft.	1	S	r	Z	I	S	r	h ₀	J	C _w
		in	in	in	in	in	lb	in⁼	l in	in	in	in	in	in	in	in ⁻	in°
	W24x68	20.1	23.73	0.415	8.965	0.585	68	1830	154	9.55	177	70.4	15.7	1.87	23	1.87	9430
		$b_f/2t_f = h/t_w =$	7.7 57.2	< <	9.2 90.6	= 0.38√(E / I = 3.76√(E / F	F _y) - _{y)}			(AISC	Table I	B4.1a)					
			<u>Co</u>	mpact Sect	<u>ion</u>												
Following AISC Section F2 -	Doubly Symmetric Comp	act I-shap	ed Member	<u>ˈS</u>													
	1) Yield:	M _n = M _p =	= F _y Z _x =	8,850.0	k-in =	737.5	k-ft			(F2-1)							
:	2) Lateral-Torsional Bucl	kling: L _b =	12.500]ft =	150) in											
		L _p =	1.76r _y v(E /	' F _y) =	79.263	in				(F2-5)							
		L _r =	1.95r _{ts} * E	/(0.7F _y) * √{(、	J*c / S _x h ₀) + √[(J*c / S _x	h ₀) ² + 6.76(0.	7*Fy / E) ²	}								
			$r_{ts}^{2} =$ $r_{ts} =$	√(I _y * C _w) / S 2.30	6 _x =	5.29											
		L _r =	226.28	in													

$$M_{n} = C_{b} * \{M_{p} - (M_{p} - 0.7*F_{y}*S_{x}) * [(L_{b} - L_{p}) / (L_{r} - L_{p})] \le M_{p}$$
(F2-2)

Conservatively setting $C_b = 1$

M_n = 7,185.3 k-in = **598.8 k-ft**

3) Moment Factoring & Check:

	M _{max} =	80.28 k-ft				
	φαM _n =	458.06 k-ft		\rightarrow	ок	
4) Deflection Check:	S	imple Beam Δ _{max}	$= (5^* w^* l^4) / (3)$	84*E*I _x)		
	N	lax allowable def	ection $\Delta_{\text{allow}} =$	L/240 =		4.85 in
	_					
Distribut	ted load =	68.14 lb/ft =	5.68	lb/in		
Spai	n length =	97.08 ft =	1165	in		
	_					
	∆ _{max} =	2.566 in	\longrightarrow	ОК]	

Bottom Girder Design

				Web	F	lange	Nominal		E	lastic F	Properti	es					
Bottom Girder	Designation	Area	Depth	Thickness	Width	Thickness	Wt. Per ft.		Axis X-	·Х		ŀ	∖xis Y-`	Y			
		А	d	tw	bf	tf		I	S	r	Z	Ι	S	r	h ₀	J	C _w
		in2	in	in	in	in	lb	in4	in3	in	in ³	in4	in3	in	in	in ⁴	in ⁶
	W36x194	57	36.49	0.765	12.115	1.26	194	12100	664	14.6	767	375	61.9	2.56	35	22.2	116000

 $b_f/2t_f = 4.8 < 9.2 = 0.38\sqrt{(E / F_y)}$

(AISC Table B4.1a)

 $h/t_w = 47.7 < 90.6 = 3.76\sqrt{(E / F_y)}$

Compact Section

Following AISC Section F2 - Doubly Symmetric Compact I-shaped Members...

1) Yield:

$$M_n = M_p = F_y Z_x = 38,350.0 \text{ k-in} = 3,195.8 \text{ k-ft}$$
 (F2-1)

2) Lateral-Torsional Buckling:

$$\begin{split} L_{b} &= \boxed{12.500} \text{ ft} = 150 \text{ in} \\ L_{p} &= 1.76 r_{y} \forall (E \ / \ F_{y}) = 108.51 \text{ in} \\ L_{r} &= 1.95 r_{ts} * E / (0.7 F_{y}) * \sqrt{(J^{*}c \ / \ S_{x}h_{0}) + \sqrt{[(J^{*}c \ / \ S_{x}h_{0})^{2} + 6.76(0.7^{*}Fy \ / \ E)^{2}]} \\ r_{ts}^{2} &= \sqrt{(I_{y} * C_{w}) \ / \ S_{x}} = 9.93 \\ r_{ts} &= 3.15 \\ L_{r} &= 331.12 \text{ in} \end{split}$$

$$M_{n} = C_{b} * \{M_{p} - (M_{p} - 0.7*F_{y}*S_{x}) * [(L_{b} - L_{p}) / (L_{r} - L_{p})] \le M_{p}$$
(F2-2)
Conservatively setting $C_{b} = 1$

2,961.1 k-ft

3) Moment Factoring & Check:

M_n = 35,533.8 k-in =

 \bigcirc

			Del	ivere	d.	I	PROJ	ECT/.	JOB N	10					_		_	_ CA	LCUL	ATIO	N NO					
							COMF	PUTE	DBY				SJW								DATE		DEC-2	2020		
						`	VERI	FIED	BY				JMH								DATE		DEC-	2020		
	1						SCAL	E					1							SHEE	T NO		7	OF		
						h																				
	K)	5	HI	EC	R	RI	ES	[S	A	DC	E	41	2	EL	DA	TA	T	01]:	-						
											10	6														
										K	V	VZ	76	0	4	NE	TI	PLI	FT	FOR	_ W	VAJ	EK	1	0 -	T-0.
Alac	FE	pec	F	ON																			1		-a-	Fin
TOP	CP	<no< td=""><td>15</td><td>D.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>=</td><td>64</td><td>DCF</td><td>16.1</td><td>3'-</td><td>11.0</td><td>18'-</td><td>-1.5</td><td>X</td><td>2</td><td>_!· </td><td>15</td></no<>	15	D.											=	64	DCF	16.1	3'-	11.0	18'-	-1.5	X	2	_!· 	15
										L	-10	26	xlau					-		- 1	0		\backslash	-		
	. /	1		¥	X	T				K	V	100	11	1		1	=	2,	51	24	.8	lb				
1.5	2		-							-			-													
1		Y_		UPI	LIFT		-																			
				r	1		1																			
							SA	Y-	1	d	=	N	8.	5												
								1	2	- W	56															
	4	In																								
			AP	20	Χ.	W	Τ.	OF	(A	TE	-														
	-		-	=(68	316	#1	+10	H	10/50	Hx	97	08	G	TT			-(61	De	pg)				
	-		-		T	1/4			1-1		6		1.		KIF.	11						/				
					T	12	×	1.	15	h X	47	108	3 L	X	90	10 Ft	3	(Sk	M	R)				
					L														-							
			-	= '	29	,5	549	3-	1	6	×1	.0	5	Fo	2	MI	SC	S	TIF	Fe	res	25	W	ELD	5,	ET
					-															6		-				
				=	3	1,1	Q 2	6-	2	12	2	> [2,	50	54	8	1	0	6	R	/					

4x4 = 1 in

Delivere

EL.

(

 \bigcirc

Imagine it.	JOB TITLE			
	PROJECT/JOB NO.		CALCULATION NO	
	COMPUTED BY	SJW	DATE	DEC-2020
	VERIFIED BY	JMH	DATE	DEC-2020
	SCALE		SHEET NO	OF
CHECK	NEWER LOAD C	tabe talle		-
MERK	VIND FORD 3	ABLIYO		
		50.000		
	HL. 16.19	50 PSF		
	W24×68			
		K		
		K		
	W36×194			
		2 2071	-)	
	SEAL	2.01		
8				
		K X Y		
	<z td="" <=""><td></td><td></td><td></td></z>			
ATE MT	Mitthout EX	INCORACE	= 29.548.	TIL
ALE VAL-	Walling of the	10-10-01		
CT. ITO				
GENIR	PIP V7 Da			
F	23.71	36517		
68	× == + 94	× -2		5911
	100 marsh			
	(00) (11)			
Accuse	A A TE A A CPA	Dust Ind	TOUT NO	
ABSUME	OFTE CLUSO	BUT MILA	INTED, SOF	sect 10
15 DSF	WIND LOAD (E	TD. OPERATI	ON LOAD DER	FIL SEC.
11- prichas	E VAND I MINT	ANT DE A	1) DAFN IN	Calific

 \bigcirc

4x4 = 1 in

AECOM	Imagine it.	JOB TITLE		÷
	Delivered.	PROJECT/JOB NO.		CALCULATION NO
		COMPUTED BY	SJW	DATEDEC-2020
		VERIFIED BY	JMH	DATE DEC-2020
		SCALE		
	$\sigma = (1$	101 3 1 FF	$(12"/1) \times (1/11"/-$	
		101531610	A12 11912	L=75277 pci
		0.065	IN.	20,0.101
			20	54 KCI < 2875 4/1
				V OP

Ø

0

Į.

4x4 = 1 in

<u>PROJECT</u> Maurepas Swamp CN Roller Gate Design			Project # Computed By Checked By	<u>60632162</u> <u>SJW</u> JMH	Sheet Date Date	of Dec-20 Dec-20
Limit States M _{max} ≤ αφM _n	ETL 1110-2-584, Sec	t. F.4.3.2	** <u>Note:</u> Intercostals	designed using LC1	only	
Mn = Mp = FySx =		62.61 k-in	(F9-3)			
2) Lateral Torsional Buckling (stem is B = - 2.3 $(d/L_b)^*(Iy/J)^{0.5}$	in compression)	-3.85	(F9-12)			
$M_n = M_{cr} = \frac{1.95E}{L_b} \sqrt{I_y J} (B + \sqrt{1} + \sqrt{1})$	$+B^{2}$)	158.83 k-in	(F9-10)			
Yielding Controls	Mn = 62.6 αφMn = 47.9	k-in k-in				
See AISC Eqn. F1-2						
Lb = (unbraced length of intercostals) = [2.28 ft	see sketch below				
$\frac{76 b_f}{\sqrt{F_y}} =$	= 72 in	$\frac{20000}{\left(d/A_{f}\right)}F_{y} =$	158 in	I		
Lc = 6.02	ft					

Since Lb < Lc	no lateral stiffening	required.
---------------	-----------------------	-----------

For LC1, Water to T.O.W.:

Max moment occurs at zero shear point (Y) $P_{1} = \frac{1}{2} \gamma Y^{2} = R_{T}$ Y = 1.11 ft $M_{max} = (\text{Rt}(Y-0.46)-\text{P1*Y}/3) = 0.015 \text{ ft-k /ft}$ $Intercostal \text{ Spacing} = \underbrace{4.17}_{0.73} \text{ ft o/c}$ $M_{max} = (\text{Int. Spacing*Mmax}) = 0.73 \text{ k-in}$

CHECK TRIAL SECTION

 $\begin{array}{ll} M_{max} = & 0.7 \ \text{k-in} \\ \alpha \varphi \text{Mn} = & 47.9 \ \text{k-in} \end{array} \rightarrow \label{eq:max}$

→ Use 1/4" thick x 4" long intercostals

ок

Maurepaus Swamp

KCS Railroad Crossing

Steel Swing Gate Design

AECOM Project : 60632162

Computed by:	SJW	Checked by:	JMH
Date:	20-Dec	Date:	20-Dec

General Info/Assumptions:

- 1) Steel swing gate is being designed using USACE ETL 1110-2-584, "Design of Hydraulic Steel Structures" (30 June 2014), including Appendix F, "Closure Gates".
- 2) Top of Gate is EL +16.13. Sill is at EL +9.89.
- 3) Assume Main Girder Flanges 11" wide and 5" gap at bottom. Therefore, top & bottom hinges at approximately:

16.13' - (11" flange / 2) / 12" per ft = Top Hinge Elevation = 15.672 ft9.89' + (5" gap + 11" / 2) / 12" per foot = Bottom Hinge Elevation = 10.77 ft

- 4) As per EM 1110-2-584, skin plate is designed as a fixed end beam spanning between intercostals. In order to ensure that the flat plate theory is applicable, deflection will be limited to 0.4 times thickness.
- 5) Also per same EM, intercostals are designed as simple beams spanning between girders.
- 6) Also per same EM, girders are designed as simple beams, spanning between hinges on one side of the opening and bearings on the other.
- 7) A992, Grade 50 steel used for all steel members
- 8) For the 15% Design, two (2) load cases are examined. The specific cases have been chosen because engineering judgement dictates they will likely be the worst case conditions for the gate

Case 1) Water to TOW EL 16.13:

Flood water to Top of Wall EL 16.13

Case 2) Construction with Wind:

50 psf wind load on Protected Side of gate

EXTRACT FROM ETL 1110-2-584 30 Jun 14

 Impact, IM3, Extreme Load. May be neglected unless the Engineer has reason to believe this load may exist.

• Earthquake, not considered for the design of closure gates, but should be considered for gate support columns and walls.

• Environmental, W, Wind, See ASCE for recurrence interval, in lieu of site-specific data, use 15 psf during operation and up to 50 psf when not in operation (fully closed or fully open).

F.4.2. Design Load Cases. The following load cases shall be evaluated using the load factors listed in Table F-1.

Case 1: Strength I, Gate not operating:

$$\Sigma \gamma i Q_m = \gamma_{D2} D + \gamma_{Hs2} H_{s2}$$
 (F-1)

• Case 2: Strength I, Gate not operating, Gate subjected to the upper level Wind pressure of up to 50 psf:

$$\Sigma \gamma_i Q_{ni} = \gamma_{D2} D + \gamma_{EV2} W_2$$
 (F-2)

• Case 3: Strength II, Gate operating, Hinged gate subjected to Dead and Wind (lower level of 15 psf), operating load is treated as a reaction:

$$\Sigma \gamma_i Q_{n_i} = \gamma_{D2} D + \gamma_{EV2} W_1 \tag{F-3}$$

• Case 4: Strength II, Gate operating, Wheeled gate subjected to Dead and Operating load:

$$\Sigma \gamma_i Q_{ni} = \gamma_{D2} D + \gamma_{EV2} Q_2 \tag{F-4}$$

	Load	Loads/Load Factors								
Y	Limit State	Description	γD	γG	γHs	γHd	γQ	γεν	γΙΜ	γEQ
THAT THE -	Strength I	Gate Closed	0	0	1.4	0	0	0	0	0
TON CASE	Strength I	Gate Closed	1.2	0	0	0	0	1.3	0	0
CONST. + WIN	Strength II	Gate Open	1.2	0	0	0	0	1.3	0	0
	Strength II	Gate Open	0	0	0	0	1.3	0	0	0

Table F-1. Load Factors for Closure Gates.

F.4.3. Design for Individual Members. The following paragraphs include a brief description of design assumptions and design considerations.

F.4.3.1. Skin plate. Skin plates shall be sized such that the maximum calculated stress is less than the yield limit state of $\alpha \phi F_y$. Skin plates shall be designed for hydrostatic loading only. Stresses shall be determined based on small deflection thin plate theory and by using Equation F-1. Deflection shall be limited to 0.4 of the plate thickness to prevent the development of significant membrane stresses. More than one thickness of plate may be desirable for taller gates. The minimum plate thickness shall be $\frac{1}{4}$ in. Appendix C provides additional guidance on skin plate design.

			Page	of
PROJECT	Project #	60632162	Sheet	of
Maurepas Swamp	Computed By	SJW	Date	Dec-20
KCS Railroad Crossing Swing Gate Design	Checked By	JMH	Date	Dec-20

Reference: AISC Steel Const Manual 15th Ed.

SWING GATE DESIGN
Note: Although we are confident in the results of this spreadsheet, engineers using it should be sure to check all design calculations.

REACTIONS

These calculations were made with the assumption that wide flange beams will be used as girders. The section centroid is calculated using this shape. If any other shape is to be used for the girders, please calculate the centroid and enter it.

MATERIAL PROPERTIES

	Designation			Web	Fla	nge		Elastic Properties					
Girder		Area	Depth	Thickness	Width	Thickness	Nominal WL Per	Ax	is X-X			∖xis Y-Y	,
		A	d	t _w	b _f	t _f	<u>п.</u>	I	S	r	1	S	r
		in ²	in	in	in	in	lb	in ⁴	in ³	in	in ⁴	in ³	in
Тор	W18x106	31.1	18.73	0.59	11.2	0.94	106	1910	204	7.84	220	39.4	2.66
Bottom	W18x106	31.1	18.73	0.59	11.2	0.94	106	1910	204	7.84	220	39.4	2.66

PROJECT	Project #	60632162	Sheet	of
Maurepas Swamp	Computed By	SJW	Date	Dec-20
KCS Railroad Crossing Swing Gate Design	Checked By	JMH	Date	Dec-20

SKIN PLATE DESIGN

The skin plate is designed as a fixed end beam, spanning between intercostals. In order to ensure that the flat plate theory is applicable, deflection will be limited to 0.4 of thickness.

Critical Load Case:	4a/4b - V	Vater to Top of Wall	Material:	A992 S	Steel	F _y =	50	ksi
TRY	1/4"	Skin Plate				φ = α =	0.9	from USACE ETL 1110-2-584
t =		0.25 in	Skin Plate	Thicknes	s			
I = t ³ /12 =		0.00130 in4 /in	Moment of	f Inertia				
S = 21/t =		0.0104 in3 /in	Section Me	odulus				
$F_{b} = \alpha \phi F_{y} =$		38.25 ksi	ETL 1110-	2-584, Se	ect. F.4.3.1			
h =		4.39	Water dep	th @ 6 in	above bottom flan	ge		
$P_{max} = \gamma_w h =$		0.281 ksf		→ 0.0	0020 kli/in		Water Pres	sure @ 6 in. above bottom flange
$M_{max} = S F_b =$		0.398 in-k/in	Max. mom	ent that s	kin plate can carry			
Δ_{max} = 0.4 t =		0.1 in	Max. defle	ction is lin	nited to 0.4 of thickr	ness		See ETL
FIND MAX. ALLOWAE	B <mark>LE SPACIN</mark> Lmax = (I <mark>G B/W INTERCOST</mark> 12*Mmax/Pmax) ^{0.5}	ALS USING M	<u>OMENT E</u>	<u>:Q.</u>			
	L _{max} =	49.5 in			4.13 ft			
FIND MAX. ALLOWAE	l max = 3	884EI*Amax/Pmax	ALS USING DI	EFLECTIO	<u>UN CRITERIA</u>			
	L _{max} =	29.4 in		⇒	2.45 ft		Smaller valu	ue controls maximum spacing
TRY	L	= 2.417 ft Intercostal Space	ing					
FIND BENDING STRE	SS AND DE	FLECTION IN SKIN	PLATE					
	M =	0.137 in-k /in						
	f _b =	13.13 ksi	<	F_{b}	ок			
	Δ =	0.095 in	<	Δ_{max}	ок			
TRY	2.417	ft Spacing						

Skin plate thickness and spacing are designed for hydrostatic loading only, per ETL Sect. F.4.3.1.

<u>PROJECT</u> Maurepas Swamp KCS Railroad Crossing Swing Gate Design		Project # Computed By Checked By	60632162 SJW JMH	Sheet Date Date	of Dec-20 Dec-20
Limit States M _{max} ≤ αφM _n ETL 1110-2-584, Sea	ct. F.4.3.2	** <u>Note:</u> Intercostals	s designed using	LC1 only	
1) Yielding					
Mn = Mp = FySx =	62.61 k-in	(Eqn. AISC	F9-3)		
2) Lateral Torsional Buckling (stem is in compression) B = - 2.3 $(d/L_b)^*(Iy/J)^{0.5}$	-1.80	(Eqn. AISC	F9-12)		
$M_n = M_{cr} = \frac{1.95E}{L_b} \sqrt{I_y J} (B + \sqrt{1 + B^2})$	150.57 ksi	(Eqn. AISC	F9-10)		
Yielding Controls $Mn =$ 62.6 $\alpha\phi Mn =$ 47.9	k-in k-in				
See AISC Eqn. F1-2					
Lb = (unbraced length of intercostals) = 4.88 ft	see sketch				
$\frac{76 b_f}{\sqrt{F_y}} = 72 \text{ in}$	$\frac{20000}{\left(\frac{d}{A_f}\right)F_y} =$	158	in		
Lc = 6.02 ft					
Since Lb < Lc no lateral stiffening required.					
For LC1, Water to T.O.W.:					0.47

Max moment occurs at zero shear point (Y) $P_{1} = \frac{1}{2} \gamma Y^{2} = R_{T}$ Y = 3.61 ft $M_{max} = (\text{Rt}(Y-0.46)-\text{P1*Y}/3) = 0.8 \text{ ft-k /ft}$ Intercostal Spacing = 2.42 ft o/c $M_{max} = (\text{Int. Spacing*Mmax}) = 23.4 \text{ k-in}$

CHECK TRIAL SECTION

M _{max} =	23.4 k-in		
αφMn =	47.9 k-in	\rightarrow	ок

→ Use 1/4" thick x 4" long intercostals

PROJECT	Project #	60632162	Sheet	of
Maurepas Swamp	Computed By	SJW	Date	Dec-20
KCS Railroad Crossing Swing Gate Design	Checked By	JMH	Date	Dec-20

GIRDER DESIGN

Girders are designed as simple beams, spanning between hinges on one side and wall bearings on the other side of the opening.

	Critical Load Case:	Top of Wall	Case		Material:	A992 Steel	F _y =	50	ksi				
				Web	Fla	ande			Flas	stic Prop	erties		
		Area	Depth	Thickness	Width	Thickness	Nominal Wt. Per	Ax	(is X-X		4	Axis Y-Y	
Girder	Designation	Α	d	t _w	b _f	tr	ft.		S	r		S	r
		in ²	in	in	in	in	lb	in ⁴	in ³	in	in ⁴	in ³	in
Тор	W18x106	31.1	18.73	0.59	11.2	0.94	106	1910	204	7.84	220	39.4	2.66
Bottom	W18x106	31.1	18.73	0.59	11.2	0.94	106	1910	204	7.84	220	39.4	2.66
	Span =	19.833	ft	From cente	erline of bea	ring to center	line of hinge		φ=	0.9	for ben from U	ding SACE E	TL
	DESIGN OF TOP GIRI	DER							u -	0.00	1110-2	-584	
		b _f /2t _f =	6.0	<	9.2	= 0.38√(E/F	y)						
		d/t _w =	31.7	<	90.6	= 3.76√(E/F	y)	AISC Table E	34.1a				
			Co	ompact Sect	tion								
		<u>i ksi</u>				ETL Sect. F.	4.3.1.						
	Mmax (R_T) = 1/8* R_T *Span ² 20.5 ft-k					245.6	in-k						
		f _b = Mmax/S	<u>1.20</u>	<u>ksi</u>	<	F_{b}	ок						
			$\frac{76 b_{f}}{\sqrt{F_{y}}}$	= 120			$\frac{20000}{\left(d/A_{f}\right)F_{y}} =$	225	5				
		L _c =	10.03	\$ ft	Use Lb < Lo	C		see sketch (l girders)	_b = 9.67	7 ft, unbi	aced ler	ngth for	
	DESIGN OF BOTTOM	GIRDER											
		$b_f/2t_f =$	6.0	<	9.2	= 0.38√(E/F	y)		24.10				
		d/t _w =	31.7	<	90.6	= 3.76√(E/F	y)	AISC TADIe	54.Ta				
			Co	ompact Sect	tion								
		$F_b = \alpha \phi F y$	<u>38.25</u>	<u>ksi</u>				ETL Sect. F.4	4.3.1.				
	Mmax (R _B) =	1/8*R _B *Span ²	63.2	? ft-k		» 758.0	in-k						
		$f_b = Mmax/S$	<u>3.72</u>	<u>ksi</u>	<	F _b	ок						
			$\frac{76 b_f}{\sqrt{F_y}}$	= 120			$\frac{20000}{\left(d/A_{f}\right)F_{y}} =$	225	5				
		L _c =	10.03	\$ ft	Use Lb < L	C		see sketch (l girders)	_b = 9.67	7 ft, unbi	aced ler	ngth for	

Girders will also be checked for load case 2 as well.

AEC

COM	Imagine i	t.	JOB T	ITLE																		
	Delivered	J.	PROJ	ECT/J	IOB N	0		0	IX A /					C/	ALCUI	ATIO	N NO					
			COMF	PUTE	DBY_			SJ									DATE		DE	:C-2	2020	<u>)</u>
			VERIF	FIEDE	BY			JIV	<u>1H</u>								DATE		DE	:C-2	2020	<u>)</u>
			SCAL	E		_										SHEE	TNO			_ 0	-	
GIRD	ER	CHI	-01	V	Fr	DR		6	2		(0	NS	5TK	200	A	ON	H	-V	VIN	JD	00	
										1												
F	$z_{-} =$	0.1	9_(K	Ft	-	<	R	+=	=0	41	0	4F	+	Fr	R	TO	21	12.	C	AC	F
¥	1					2			1			Þ	RE	ELA	0	10	V	C	1E	-	-	24
													1-7				-1			-1	+-1	1
F		A 7	2	K	Ft	-	1	R.		1	20	4	10		Fal	2	T	21	Λ	0	·A	-5
	Ŗ	UL	1	1	10	1	-	1-5	B-	-1-		M	FT		OF		1-1			- 4		>1
																						-
			00	C	AE	Æ	P	OF	8	N	T	0	NT	R	Ø							
									-		-	~				-						
																-						
			_								1											
						2																
_																						
																					-	

1														

PROJECT	Project #	60632162	Sheet	of
Maurepas Swamp	Computed By	SJW	Date	Dec-20
KCS Railroad Crossing Swing Gate Design	Checked By	JMH	Date	Dec-20

QUANTITY TAKEOFF

Determine Gate Weight and Center of Gravity (for gate from EL +9.89 to EL +16.13)

Unit Weight o	0.28	lb/in ³									
		Thick (in)	Size (in)	No.	Wt/ft	Length (ft)	Wt	y (in)	Wt*y	x (ft)	Wt*x
Skin Pl		0.2500	74.88	1	63.7	18.75	1195	4.13	4929	9.38	11202
Vertical Stiff		0.250	4.00	5	3.4	4.89	83	2.00	166	9.38	780
Web Diaphragms		0.500	17.79	2	30.3	4.89	296	0.13	37	9.38	2776
Flange Diaphragm		0.500	4.00	2	6.8	4.89	67	-8.90	-592	9.38	624
Top Chord			W18x106	1	106.0	19.67	2085	0.00	0	9.83	20499
Bottom Chord			W18x106	1	146.0	19.67	2871	0.00	0	9.83	28235
Ties			2" dia	8	10.7	9.00	770	-8.90	-6846	9.38	7215
End PI1		0.750	17.79	1	45.4	4.89	222	0.00	0	18.38	4081
End PI2		0.750	17.79	1	45.4	4.89	222	0.00	0	1.50	333
Bearing Bar		1.500	1.50	2	7.7	4.89	75	4.88	365	18.75	1405
Seal Angle			8x6x1/2	1	23.8	18.75	447	2.13	949	9.38	4189
Side Seal Bars		0.313	2.00	2	2.1	4.89	21	2.13	44	9.38	195
Bottom Seal Bar		0.313	2.00	1	2.1	18.75	40	2.13	85	9.38	375
							8393		-862		81910

Dead Load	12.09 kips
yavg	-0.01 ft
xavg	9.76 ft

For Design Weight ADD Load Factor 1.2 and 20% for Welds Misc. Steel, etc.

 $y_{\text{avg}} \, \text{and} \, x_{\text{avg}} \, \text{stay}$ the same assume uniform increase in the weight

Note: Input highlighted values. Positive y is measured from center line hinge towards protected side (skin plate)

Positive x is measured from the outside of the hinge end plate positive towards opposite end of gate (in plane of gate)

Free Body of Swing Gate

SWING GATE HINGE REACTIONS

JOB TITLE				
PROJECT/JOB NO.		CALCULATION NO		
COMPUTED BY	SJW	DATE	DEC-2020	
VERIFIED BY	JMH	DATE	DEC-2020	
SCALE		SHEET NO.	OF	

	 				 				 	-				
								1			 		-	

R.

M	lma De	agine livere	it. ed.		JOB 1 PROJ	ITLE	JOB N	10.								CA	LCUL	ATIO	N NO				
					COM	PUTE	DBY			S	SJV	V							DATE		D	EC-2	2020
					VERI	FIED E	BY_			L	JMF	-							DATE		D	EC-2	2020
					SCAL	.E												SHEE	TNO			0	-
-	1	AI	(p. 1	1		7		15	1		1												
T.C		N	00	Ŧ	Epr	M	F	xc	EL	0	D	BE	(5)	NA	NN	(2)	R	T	= () [L	2	K	Ft
						-											D	1	,	20	-		
									10	82	/			5			K	B	F [·	20	K	-/+	t
		K	T	TO	w	0.	42	×	19.	03	2	=	4.	17	K	-							
		Þ							10	001		-	0										
		F	B	101	N	-	28	X	9.	es/	2	=	2.	69	K								
F	1				6														_				
F	AV	T	VV	IN	V	10	A	20															
									16	1-	5												
					5	OP	E		F	-	0.	-19	k	/Ft			_						
							FT.	>															
											0	22	r	4									
									9	20		Le	- 17										
	+								-	-	-												
	K	T, W	IN	2	=	0.	9	׾	1.0	5/2	=	=1	. 9	в	K								
	b	-						10	0.	51		0	18	2 1									
	K	B,V	Nin	D	= (0	22	XI	1-0-	12		12		OK	<								
	-	-		_					-														
	-	-														÷							
										T							-						
										0	-												_
		1				-				0	-												

4x4 = 1 in

TOP HINGE REACTIONS			1	8' W x 6	.24'H S	wing Ga	ite	
		C)L	L	L.	To	tal	R
	Load Case Name	Х	Y	Х	Y	X	Y	
	Dead Load, Open @ 90°	26.6	-0.02	0	0	26.6	-0.02	26.6
	Dead Load, Closed, plus Wind on Protected Side	0.02	26.6	1.88	0	1.9	26.6	26.7
	Water to Top of Wall (impervious & pervious)	0	0	-4.17	0	-4.17	0	4.2

BOTTOM HINGE REACTIONS				18	' W x 6.2	4'H Sv	ving Ga	te		
			DL			LL			Total	
	Load Case Name	X	Y	Z	Х	Y	Z	X	Y	Z
	Dead Load, Open @ 90°	-26.6	0.02	10.07	0	0	0	-26.6	0.02	10.07
	Dead Load, Closed, plus Wind on Protected Side	-0.02	-26.6	10.07	-2.18	0	0	-2.2	-26.6	10.07
	Water to Top of Wall (impervious & pervious)	0	0	0	-12.69	0	0	-12.69	0	0