T-Wall Design Procedure FLAC to Procedure

by Neil Schwanz, P.E. and Kent Hokens, P.E.

April 8, 2008

Purpose

Provide Overview of

How T-wall Design Procedure Was Developed so Designers Understand its Basis and Limitations

- FLAC Overview
- GeoMatrix numercial analyses and report
- Product Delivery Team (PDT) analyses
- FLAC to Design Procedure

Soil Structure Interaction and Load Transfer Mechanism of Pile Supported T-Walls in New Orleans, LA

Michael Navin, Ph.D., P.E. St. Louis District

2007 Infrastructure Conference June 28th 2007

FLAC US Army Corps **Engineers**. (Fast Lagrangian Analysis of Continua)

Two-dimensional continuum code for modeling soil, rock and structural behavior.

- General Program model together soil, structure, pressures, etc. to evaluate deformation, loads stresses
- Linear or Non-linear soil models
 - Mohr-Coulomb (bilinear: linear elastic perfectly plastic LEPP)
 - Fully non-linear
- Soil Structure Interaction
- Factor of Safety (c-phi reduction technique) •

T-Wall Product Delivery Team (PDT)

US Army Corps of Engineers.

Headquarters

- Anjana Chudgar, P.E.
- Don Dressler, P.E.

ERDC

- Reed Mosher, Ph.D.
- Noah Vroman, P.E.
- Ronald Wahl
- Don Yule, P.E.

GeoMatrix

- C. Y. Chang
- Faiz Makdisi, Ph.D, P.E.
- Z. L. Wang

New Orleans District

- Charles Brandstetter, P.E.
- Thomas Hassenboehler, P.E.
- Richard Pinner, P.E.
- Mark Woodward, P.E.
- OTHERS

Mississippi Valley Division

- Allen Perry, P.E.
- Kent Hokens, P.E.
- Michael Navin, Ph.D., P.E.
- Neil Schwanz, P.E.

Soil-Structure Interaction and Load Transfer Mechanism of Pile-Supported T-Wall for New Orleans Levees

Prepared for:

U.S. Army Engineer Research & Development Center

Waterways Experiment Station

3909 Halls Ferry Road Vicksburg, MS 39180-6199

Prepared by:

Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612

January 2007

Project No. 12048.001

Example used in GMX FLAC analysis

US Army Corps of Engineers.

08 April 2008

One Team: Relevant, Ready, Responsive and Reliable

Soil Stratigraphy of GMX FLAC analysis

GMX mesh around the T-Wall

ĬH

One Team: Relevant, Ready, Responsive and Reliable

FLAC and numerical stress-strain analyses

US Army Corps of Engineers.

> Increasingly used to evaluate embankment stability – same FS as limit equilibrium methods like Spencer's Procedure. Valuable for complex or unusual site conditions.

Piles included as structural elements with p-y and t-z springs.

Piles connected to mesh with springs.

GeoMatrix used the FLAC model to perform sensitivity analyses.

Mohr-Coulomb vs. fully non-linear soil models Soil modulus values

- Shear modulus ratio based on pressuremeter tests
- Shear modulus ratio based on triaxial tests

Pile – soil spring stiffness Water load on T-Wall vs. load on ground surface With and without sheet pile Soil strength reduction

The two stage loading in GMX report revealed most deflections due to water load on the ground surface.

One Team: Relevant, Ready, Responsive and Reliable

One Team: Relevant, Ready, Responsive and Reliable

08 April 2008

Displacements

Axial Loads

#9 (Pile #10 (Pile) -2.805E+03 #11 (Pile⁵ -1.036E+03 #12 (Pile 9.533E+04 #13 (Pile 9.515E+04 #14 (Pile 9.488E+04 #15 (Pile 9.511E+04 #16 (Pile 9.488E+04 #17 (Pile 9.150E+04 #18 (Pile 7.089E+04 #19 (Pile 6.322E+04 #20 (Pile 4.758E+04 #21 (Pile 2 291E+04 #22 (Pile 9.245E+03 1.141E+04 #23 (Pile #24 (Pile 1.223E+04 #25 (Pile 1.369E+04 #26 (Pile 1.526E+04 2.065E+04 #27 (Pile #28 (Pile 2.094E+04 #29 (Pile 2.152E+04 #30 (Pile 2.120E+04

#31 (Pile)

#1 (Beam)

#2(Pile #3(Pile

#4 (Pile

#5 (Pile

#6 (Pile

#7 (Pile

#8 (Pile

Shear	Forc (lbs)	
Structure	Max. Value	2
#1(Beam)	-9.985E+0	2
# 2 (Pile) # 3 (Pile) # 4 (Pile) # 5 (Pile) # 6 (Pile) # 7 (Pile) # 8 (Pile) # 9 (Pile) # 10 (Pile) # 11 (Pile)	-6.461E+03 2.530E+03 1.570E+03 2.625E+03 2.829E+03 -1.341E+03 2.521E+02 -5.925E+02 2.382E+01 -2.325E+02	
#12 (Pile) #13 (Pile) #14 (Pile) #15 (Pile) #16 (Pile) #17 (Pile) #18 (Pile) #19 (Pile) #20 (Pile) #21 (Pile)	-3.807E+03 1.354E+03 9.263E+02 1.995E+03 2.231E+03 -8.898E+02 3.186E+02 -8.021E+02 -2.949E+02 5.473E+02	
#22 (Pile) #23 (Pile) #24 (Pile) #25 (Pile) #26 (Pile) #27 (Pile) #28 (Pile) #29 (Pile) #30 (Pile) #31 (Pile)	-2.039E+03 -9.497E+02 5.790E+02 1.848E+03 2.132E+03 -9.751E+02 2.804E+02 -3.577E+02 -4.347E+02 -4.539E+02	

Shear in Pile

	(lb-ft)
Structure	Max. Value
#1(Beam)	8.055E+03

#2(Pile) 3.901E+04 #3 (Pile 4.014E+04 #4 (Pile 2.743E+04 #5 (Pile 2.246E+04 #6(Pile -1.389E+04 #7 (Pile -1.389E+04 #8 (Pile -5.986E+03 #9 (Pile -5.986E+03 #10 (Pile) -1.226E+03 #11 (Pile -1.226E+03

Middle Pile

#12 (Pile) #13 (Pile) #14 (Pile) #15 (Pile) #16 (Pile) #17 (Pile) #18 (Pile) #19 (Pile)	2.560E+04 2.709E+04 2.101E+04 1.808E+04 -1.003E+04 -1.003E+04 -5.547E+03 -5.547E+03	
#20 (Pile) #21 (Pile)	2.885E+03 2.885E+03	
<u>Right Pile</u>		
#22 (Pile.)	1 765E±04	
#23 (Pile)	2.048E+04	
#24 (Pile)	1.775E+04	
#25 /Dile (
#20151101	1.591E+04	
#26 (Pile)	1.591E+04 -1.017E+04	
#25 (Pile) #26 (Pile) #27 (Pile)	1.591E+04 -1.017E+04 -1.017E+04	
#25 (Pile) #26 (Pile) #27 (Pile) #28 (Pile)	1.591E+04 -1.017E+04 -1.017E+04 -5.754E+03	
#25 (Pile) #26 (Pile) #27 (Pile) #28 (Pile) #29 (Pile)	1.591E+04 -1.017E+04 -1.017E+04 -5.754E+03 -5.754E+03	
#25 (Pile) #26 (Pile) #27 (Pile) #28 (Pile) #29 (Pile) #30 (Pile)	1.591E+04 -1.017E+04 -1.017E+04 -5.754E+03 -5.754E+03 -5.142E+03	

Moment in Pile

evation (ft) (* 10 2

Without Sheet Pile

One Team: Relevant, Ready, Responsive and Reliable

US Army Corps of Engineers. Investigations by Product Delivery Team

> FLAC 2D – using the GMX model Plaxis 2D and 3D UTexas4 Group 7 CPGA LPile and T-Z pile

Investigations with FLAC GMX model

20' water load on wall Short piles Vertical piles Applied unbalanced load Strength reduction factor (SRF)

Vertical piles

US Army Corps of Engineers.

How does batter affect pile response?

Applied unbalanced load

- Load distributed along left H-Pile above critical failure surface.
- Load distributed along all piles above critical failure surface.
- Load distributed along full length of all piles.
- Load applied at structure.

Strength reduction factor (SRF)

FLAC for slope stability

- Performs an automated strength reduction routine
- Matches FS from limit equilibrium analysis (UTexas4, Slide, SlopeW)

Questions about T-wall example

- Is the wall still stable with lower soil strengths?
- How does SRF compare to design method?
- How does presence of piles change failure mechanism?

US Army Corps of Engineers. Strength reduction factors (SRF = 2.75)

08 April 2008

One Team: Relevant, Ready, Responsive and Reliable

FLAC Analysis Conclusions

Presence of sheet pile did not affect pile loads or deflections

Battered H-pile much more effective than vertical

H-Piles and T-Wall are Effective in Stabilizing the Soil Mass

Investigations with Plaxis 3D

- Flow of soil between piles
- Allowable pile spacing
- Load distribution between pile rows

3-D Plaxis Model Displacements

US Army Corps of Engineers.

Summary

- T-Walls are a complex SSI problem
- Numerical analyses illustrate SSI behavior
- Outside sources willing to supply FLAC model add great value to the report
- Goal is to determine practical methodology

Method Development

Provide Overview of

How T-wall Design Procedure Was Developed so Designers Understand its Basis and Limitations

US Army Corps Design Method Development

PDT as shown in early slide

Use existing tools and methods if possible

Replicate FLAC Results

Reasonable Design

Methods

Various Methods Tried – Reinforced Slope Concept

FLAC Models with Applied Lateral Load

Tried Applying Lateral Loads in Ensoft Group 7

- At Rest Pressure
- Unbalanced Load

	(lb-ft)
Structure	Max. Value
#1(Beam)	8.055E+03

#2(Pile) 3.901E+04 #3 (Pile 4.014E+04 #4 (Pile 2.743E+04 #5 (Pile 2.246E+04 #6(Pile -1.389E+04 #7 (Pile -1.389E+04 #8 (Pile -5.986E+03 #9 (Pile -5.986E+03 #10 (Pile) -1.226E+03 #11 (Pile -1.226E+03

Middle Pile

#12 (Pile) #13 (Pile) #14 (Pile) #15 (Pile) #16 (Pile) #17 (Pile) #18 (Pile) #19 (Pile)	2.560E+04 2.709E+04 2.101E+04 1.808E+04 -1.003E+04 -1.003E+04 -5.547E+03 -5.547E+03	
#20 (Pile) #21 (Pile)	2.885E+03 2.885E+03	
<u>Right Pile</u>		
#22 (Pile.)	1 765E±04	
#23 (Pile)	2.048E+04	
#24 (Pile)	1.775E+04	
#25 /Dile (
#20151101	1.591E+04	
#26 (Pile)	1.591E+04 -1.017E+04	
#25 (Pile) #26 (Pile) #27 (Pile)	1.591E+04 -1.017E+04 -1.017E+04	
#25 (Pile) #26 (Pile) #27 (Pile) #28 (Pile)	1.591E+04 -1.017E+04 -1.017E+04 -5.754E+03	
#25 (Pile) #26 (Pile) #27 (Pile) #28 (Pile) #29 (Pile)	1.591E+04 -1.017E+04 -1.017E+04 -5.754E+03 -5.754E+03	
#25 (Pile) #26 (Pile) #27 (Pile) #28 (Pile) #29 (Pile) #30 (Pile)	1.591E+04 -1.017E+04 -1.017E+04 -5.754E+03 -5.754E+03 -5.142E+03	

Moment in Pile

	Forc	(lbs)	
Structure	M	ax. Valu	e
#1(Beam)	و-	1.985E+1	02
# 2 (Pile) # 3 (Pile) # 4 (Pile) # 5 (Pile) # 6 (Pile) # 7 (Pile) # 8 (Pile) # 9 (Pile) # 10 (Pile) # 11 (Pile)	-6.4 2.5 1.5 2.6 2.8 -1.2 2.5 -5.9 2.1 -2.1	61E+03 30E+03 70E+03 25E+03 29E+03 21E+03 21E+02 25E+02 382E+01 325E+01	
#12 (Pile) #13 (Pile) #14 (Pile) #15 (Pile) #16 (Pile) #17 (Pile) #18 (Pile) #19 (Pile) #20 (Pile) #21 (Pile)	-3. 1. 9. 1. 2. -8. 3. -8. -8. -2. 5.	807E+03 354E+03 263E+03 295E+03 898E+03 898E+03 186E+03 021E+03 949E+03 473E+03	3828822222
#22 (Pile) #23 (Pile) #24 (Pile) #25 (Pile) #26 (Pile) #27 (Pile) #28 (Pile) #29 (Pile) #30 (Pile) #31 (Pile)	-2. -9. 5. 1. 2. -9. 2. 2. -3. -4. -4.	039E+03 497E+03 790E+03 848E+03 132E+03 751E+03 804E+03 577E+03 347E+03 539E+03	32233222222

Shear in Pile

Design Method

Group 7 Method

- Compute "Unbalanced" Load to Provide Factor of Safety
- Apply Unbalanced Force Directly to Piles
- No lateral soil resistance to critical failure surface
- "Normal" Loads on Wall itself
- Matched FLAC results.
- Pile Forces Computed Directly

Method Development

Directly Second FLAC model (18' Water Elevation) also had good correlation with Group 7 Method

Pile Distribution (50% on Lead Pile) selected from FLAC results – axial loads not sensitive to this

CPGA approximation developed to help deal with the many load cases

CPGA Approximation

Comparison, Axial Loads

	Deflection	Axial Loading in Piles (kips)		es (kips)
	(in)	Left	Middle	Right
Group 7, Pervious	0.52	-39.7	91.8	3.6
Group 7, Impervious	0.49	-35.4	89.6	10.7
CPGA, Pervious	0.46	-45.0	100.4	0.6
CPGA, Impervious	0.43	-41.0	97.9	7.8
FLAC	2.21	-32.5	95.7	6.7
Ex 1, Group 7, Pervious	0.53	-39.9	93.5	2.3
Ex 1, Group 7, Impervious	0.49	-35.8	91.5	9.2
Ex 1, CPGA, Pervious	0.66	-46.8	97.2	5.2
Ex 1, CPGA, Impervious	0.61	-42.3	94.4	12.5

Comparison, Moments

		Max + Moment (kip-ft			Max - Moment (kip-ft		
	%	Left	Middle	Right	Left	Middle	Right
Group 7, Pervious	50	23.9	8.75	7.47	-20.6	-17.5	-19.7
Group 7, Impervious	50	24.3	9.17	7.98	-19.8	-16.5	-18.5
FLAC		41.5	28.5	21.6	-15.2	-10.8	-10.8
Ex 1, Group 7, Pervious	50	26.2	9.5	8.2	-21.5	-17.3	-18.9
Ex 1, Group 7, Impervious	50	26.5	9.9	8.6	-20.8	-16.5	-18.1
Ex 1, Group 7, Pervious	100	69.8	-	-	-36.8	-17.2	-19.1
Ex 1, Group 7, Impervious	100	70.3	-	-	-36.3	-16.1	-18.0

Direct Transfer of Soil Movement to Piles

Ensure Piles Really Take All Load

Limited 3D model studies

Research – studies of lateral soil loading on piles and pile Groups has been studied numerous times

Method developed from these studies.

Flow Through

Check Flow Through, Type 1

Pile Lateral Capacity

Basic Capacity P_{ult} = 9Cu

Question?

Thank You

One Team: Relevant, Ready, Responsive and Reliable

Comparison Between Spencer's Method And Method of Planes

by Rich Varuso, P.E.

April 8, 2008

Method of Planes Analysis (MOP)

Useful in Lower Mississippi River Alluvial Valley for:

- Highly stratified soft soils
- Moderately weak soils on a hard surface
- Or in a foundation with one or more weak zones

Method of Planes

Divides soil mass into three segments

- Active wedge
- Central block
- Passive wedge

Wedges are treated as rigid bodies (according to Coulomb)

Method of Planes

One Team: Relevant, Ready, Responsive and Reliable

Method of Planes

$$FS = R_a + R_b + R_p$$

 $D_a - D_p$

- Da = Active Driving Force
- Ra = Active Resistance
- Rb = Central Block Resistance
- Dp = Passive Driving Resistance
- Rp = Passive Resistance
- FW= Lateral Free Water Pressure

$UL = (D_a - FW) - (R_a + R_b + R_p + D_p)$

HSDRRSDG Table 3.1: "Spencer method shall be used for circular and non-circular failure surfaces since it satisfies all conditions of static equilibrium and because its numerical stability is well suited for computer application."

Finding the shear-normal ratio that makes the two factors of safety equal, means that both moment and force equilibrium are satisfied.

Spencer (1967) developed two factor of safety equations; one with respect to moment equilibrium and another with respect to horizontal force equilibrium. He adopted a constant relationship between the interslice shear and normal forces, and through an iterative procedure altered the interslice shear to normal ratio until the two factors of safety were the same.

Finding the shear-normal ratio that makes the two factors of safety equal, means that both moment and force equilibrium are satisfied.

Spencer's Method

The GLE factor of safety equation with respect to moment equilibrium is:

$$F_m = \frac{\sum (c'\beta R + (N - u\beta)R \tan \phi')}{\sum Wx - \sum Nf \pm \sum Dd}$$

The factor of safety equation with respect to horizontal force equilibrium is:

$$F_f = \frac{\sum (c'\beta\cos\alpha + (N - u\beta)\tan\phi'\cos\alpha)}{\sum N\sin\alpha - \sum D\cos\omega}$$

The terms in the equations are:

c'	=	effective cohesion
φ'	=	effective angle of friction
u	=	pore-water pressure
N	=	slice base normal force
W	=	slice weight
D	=	line load
$\beta, R, x, f, d, \omega$	=	geometric parameters
α	=	inclination of slice base

One of the key variables in both equations is *N*, the normal at the base of each slice. This equation is obtained by the summation of vertical forces, thus vertical force equilibrium is consequently satisfied. In equation form, the base normal is defined as:

$$N = \frac{W + (X_R - X_L) - \frac{c'\beta\sin\alpha + u\beta\sin\alpha\,\tan\phi'}{F}}{\cos\alpha + \frac{\sin\alpha\,\tan\phi'}{F}}$$

Determine the non-circular failure surface:

Sufficient analysis has been done to varying soil profiles to assure that the non-circular surfaces shall govern the stability assessment.

Numerical modeling has indicated that soil displacement is nearly horizontal under the base of a pile-supported T-Wall.

Unrealistic Slip Surface

of Engineers.

Spencer's Method

EM 1110-2-1902 requires verification of the results of computer analysis:

"All reports, except reconnaissance phase reports, that deal with critical embankments or slopes should include verification of the results of computer analyses. The verification should be commensurate with the level of risk associated with the structure and should include one or more of the following methods of analysis using:
(1) Graphical (force polygon) method.
(2) Spreadsheet calculations.

(3) Another slope stability computer program.

(4) Slope stability charts."

US Army Corps of Engineers.

Slope Stability Design Factors of Safety for T-Walls

Analysis Condition	Required Minimum Factor of Safety			
	Spencer's Method	MOP		
Protected Side (SWL)	1.5	1.3		
Protected Side (top of wall - TOW)	1.4	1.3		
Floodside (low water)	1.4	1.3		

Stability Analysis using Method of Planes (MOP)

HSDRRSDG: "LMVD Method of Planes shall be used as a design check for verification that the HPS design satisfies historic district requirements. Analysis shall include a full search for the critical failure surface since it may vary from that found following the Spencer's Method."

US Army Corps of Engineers.

Spencer's Method compared to MOP

Question?

Thank You

08 April 2008

One Team: Relevant, Ready, Responsive and Reliable

T-Wall Design Procedure for Unbalanced Load

by Mark Gonski, P.E., Kent Hokens, P.E., Neil Schwanz, P.E., Rob Werner and Brian Powell

April 8, 2008

NEW METHODOLOGY STEP 1

NEW METHODOLOGY STEP 1a

NEW METHODOLOGY STEPS 2 & 3

NEW METHODOLOGY STEPS 4 & 5

NEW METHODOLOGY STEPS 6 & 7

NEW METHODOLOGY NOTES

NOTES:

- 1. MVN HURRICANE AND STORM DAMAGE RISK REDUCTION SYSTEM (HSDRRS) DESIGN GUIDELINES.
- 2. SPENCER'S ANALYSIS WILL BE USED FOR ALL SLOPE STABILITY DESIGN ANALYSIS.
- 3. MOP WILL ONLY BE USED FOR A DESIGN CHECK.
- 4. SHEET PILE DESIGN FOR SEEPAGE, MINIMUM TIP BASED ON SOIL STRATUM.

Purpose

Step by Step Design Method

Example No. 1 with SWL = El. +10 ft (target FS = 1.5)

Steps Overview

1. Check Factor of Safety

- UTexas4 Spencer Search Methodology
- UT4 Results for Example 1
- Slope/W Methodology and Results for Example 1
- 2. Find Unbalanced Load
- 3. Compute Pile Capacities
- 4. Preliminary Design with CPGA check flow through
- 5. Group 7 Analysis of critical cases
- 6. Find Reinforcement Forces
- 7. Check Global FOS with Reinforcement

UTexas4 Search Methodology

- **1. Problem Definition Program Input**
- 2. Trial Failure Surfaces
- 3. Solution Convergence
- 4. Automatic Searches

UTexas4 – Program Input

1. UTexas4 vs. Earlier Versions

- 1. Property Interpolation
- 2. Weight of Free Water

2. T-Wall Design Input

- 1. Soil Layers and Properties
- 2. Piezometric Surface & Water Load (Unit Weight H2O)
- 3. Weight of Wall & Forces on Wall

3. Analysis/Computation

- 1. Procedure (Spencer = Default)
- 2. Trial Surface & Automatic Search Criteria

UTexas4 – Trial Surfaces

1. Circular Surface

- 1. Initial Trial Center & Radius
- 2. Tangent, Radius & Point Modes
- 3. "Stop" Command

2. Non-Circular Surface

- 1. Initial 4-Point "Wedge" Surface (MOP = Guide)
- 2. 0.7H Base Length Constraint (the 5th-Point)

UTexas4 - Solution Convergence

1. A Unique Solution ?

2. Convergence Criteria

- 1. Force Imbalance
- 2. Moment Imbalance

3. What to Look For

- 1. Cautions and Warnings
- 2. Sense of Inclination
- 3. Number of Iterations and Convergence Trends

4. Troubleshooting Suggestions

- 1. Work Near Origin (Moments are taken about 0,0)
- 2. Trial FS > Expected FS (Default is 3.0)
- 3. Reduce Trial Inclination (Default is 15 degrees)

UTexas4 - Automatic Searches

- 1. Local vs. Global Min. FS
- 2. Local vs. Global Max. Unbalanced Load
- 3. Circular Search
 - 1. Floating and Fixed Grid

4. Non-Circular Search

- 1. Degree of Freedom (No. of Points and Shift Direction)
- 2. Shift Distance
- 3. Coarse to Fine Recycling and Refining Output as Input

5. Results

- 1. Non-Circular Typically More Critical than Circular
- 2. FS Usually Decreases as No. Points Increases and Shift Distance Decreases
- 3. Several Successive Runs are Required (Single-Stage)

Steps 1 and 2 - UT4 Results

- 1. Spencer Procedure Model (UTexas4 or Slope/W)
- 2. Starting wall configuration
- 3. Establish stratigraphy and soil properties
- 4. Find failure surfaces that correspond to Lowest FS and Highest Unbalanced Load by evaluating several tangent elevations

One Team: Relevant, Ready, Responsive and Reliable

Step 1 (tangent elev. at -8 ft)

Step 2.1

Search for highest unbalanced load

Surface Defined as non-circular Min of 0.7 H or Base Width

Force located half way from ground surface at heel to elevation of critical failure surface

Two cases SWL and TOW (only SWL shown)

One Team: Relevant, Ready, Responsive and Reliable

One Team: Relevant, Ready, Responsive and Reliable

One Team: Relevant, Ready, Responsive and Reliable

US Army Corps Step 1 (tangent elev. at -18 ft)

One Team: Relevant, Ready, Responsive and Reliable

One Team: Relevant, Ready, Responsive and Reliable

US Army Corps Step 1 (tangent elev. at -22.9 ft)

One Team: Relevant, Ready, Responsive and Reliable

One Team: Relevant, Ready, Responsive and Reliable

US Army Corps Step 1 (tangent elev. at -23.1 ft)

Check Global FOS using Spencer's Method

One Team: Relevant, Ready, Responsive and Reliable

88

One Team: Relevant, Ready, Responsive and Reliable

US Army Corps Step 1 (tangent elev. at -26 ft)

One Team: Relevant, Ready, Responsive and Reliable

One Team: Relevant, Ready, Responsive and Reliable

One Team: Relevant, Ready, Responsive and Reliable

One Team: Relevant, Ready, Responsive and Reliable

US Army Corps Step 1 (tangent elev. at -39 ft)

Check Global FOS using Spencer's Method

One Team: Relevant, Ready, Responsive and Reliable

94

One Team: Relevant, Ready, Responsive and Reliable

Check Global FOS using Spencer's Method

08 April 2008

08

US Army Corps of Engineers.

Step 2.2 Summary of Results

Neutral Block Tangent EL (ft)	Factor of Safety	Unbalanced Load (lbs/ft)
-8	1.32	600
-14	1.10	2500
-18	1.03	3800
-22.9	0.98	5350
-23.1	1.44	650
-26	1.40	1250
-30	1.40	1450
-39	1.67	-
-43.5	2.08	-
-50 April 2008	2.31	_

Check Failure Surfaces with MOP

08 April 2008

Check Failure Surfaces with MOP

FAI	ASSU		RESISTIN	RESISTING FORCES		DRIVING FORCES		SUMMATION OF FORCES		FACTOR		FREE	
N	0.	ELEY.	RA	RB	Rp	DA	- Dp	RESISTING	DRIVING	SAFETY	DA - ZR	WATER	LOAD
0	0	-5.0	858	0	2860	7057	1767	3718	5270	0.71	1552	4205	-2653
(0	-5.0	858	1288	648	7057	677	2794	6380	0.44	3586	4180	-594
ø	O	-14.0	2210	2116	2208	19222	7196	6534	12025	0.54	5492	4469	1023
Ô	0	-23.0	3866	2300	3864	38662	20097	10030	18565	0.54	8535	4469	4066
0	0	-26.0	5239	3542	6137	47001	26640	14918	20361	0.73	5443	4469	974
C	01	-31.0	6804	3542	7557	63075	39350	17903	23725	0.75	5822	4469	1353
Đ	OI	-39.0	9876	5642	10608	93962	64275	26126	29687	0.88	3561	4469	-908
C	01	-65.0	29167	19976	29900	238548	190798	79043	47750	1.66	-31293	4469	-35762
Θ	0	-70.0	33857	23280	34590	274227	223039	91727	51188	1.79	-40539	4469	-45008

DA - 2R - DA- (RA+ R8+ RP+ DP)

Spencer's Procedure for T-Walls using Slope/W

Stability Modeling

with

SLOPE/W 2007

Beta 7.10, Build 4049

08 April 2008

08 April 20

SLOPE/W Spencer's Analysis

Slope/W Problem Setup

🖪 Keyin Analyses				? 🛛
Analyses: Analyses: Delete	Name:	SLOPE/W Analysis	Description:	
🖃 🌃 (untitled)	Parent:	(none)		
SLOPE/W Analysis	Analysis Type:	Morgenstern-Price	*	
	Settings Sin Surface	Morgenstern-Price		
	Side Function: Half	GLE Corps of Engineers #1 Corps of Engineers #2		
	PWP Conditions from	Janbu Generalized Sarma (vertical slices only) Bishop, Ordinary and Janbu		
		SIGMA/W Stress QUAKE/W Stress QUAKE/W Newmark Deformation		
	Staged Rapid Dra	wdown analysis (using 2 Piezometric Li	ines)	
Undo 💌 Redo 💌				Close

08 April 20

US Army Corps of Engineers.

SLOPE/W Spencer's Analysis

Slope/W Problem Setup

🔁 Keyin Analyses		<u> </u>
Analyses: Add V Delete	Name: SLOPE/W Analysis Description:	
🖃 🌃 (untitled)	Parent: (none)	
SLOPE/W Analysis	Analysis Type: Spencer	
	Settings Slip Surface FOS Distribution Advanced	
	PWP Conditions from: (none) Parent Analysis Other GeoStudio Analysis Other GeoStudio Analysis Ru B-bar Piezometric Line Piezometric Line with Ru Piezometric Line with B-bar Pressure Head Spatial Function Pressure Head Spatial Function	
Undo 💌 Redo 💌	Close	

Relevant, Ready, Responsive and Reliable

One Team:

102

08 April 200

SLOPE/W Spencer's Analysis

Slope/W Problem Setup

🖪 Keyin Analyses		?×
Analyses: Add T	Name: SLOPE/W Analysis Description:	
🖃 🌃 (untitled)	Parent: (none)	~
SLOPE/W Analysis	Analysis Type: Spencer	
	Settings Slip Surface FOS Distribution Advanced	
	Direction of movement	_
	⊙ Left to right O Right to left ☑ Allow passive mode	
	Slip Surface Option No. of critical slip surfaces to store: Entry and Exit 1 Specify radius tangent lines 1 Grid and Radius 0 Block Specified 0 Do not cross block slip surface lines 0 Fully Specified 0 Auto Locate 1	
	Tension Crack Option	_
	No tension crack Watch in tension crack We filled with water (0 to 1): 0	
	Tension crack angle: 01 Init weight of water: 62.4 pcf	
		se

103

SLOPE/W Spencer's Analysis

Do not cross block slip surface lines

One Team: Relevant, Ready, Responsive and Reliable

SLOPE/W Spencer's Analysis

Create Profile – Paste MOP StabCheck.xls

08 April 2008

SLOPE/W Spencer's Analysis

Material Property Models

🔁 Keyln Materials		? 🔀
Materials		
Name	Color	<u>A</u> dd ▼
Compacted Fill		
T-wall		Delete
Layer 4 (CH)		
Layer 5 (ML)		
Layer 6 (CH)		
Layer 7 (Cr)	×	Assigned
Name:	Color:	
Layer 5 (ML)	Set	
Material Model: Mohr-Coulomb		
Basic Suction Dr. Mohr-Coulomb		
Undrained (Phi=0)		
Unit weight: Bedrock (Impenetrable)		
S=f(depth)		
Phi: S=f(datum)		
Shear/Normal Fn.		
Anisotropic Fn.		
Combined, S=f(depth)		
S=f(overburden)		
Spatial Mohr-Coulomb		
		Close

SLOPE/W Spencer's Analysis

Spatial Mohr-Coulomb - Cohesion

File Edit Set View KeyIn Draw Sketch Modify Tools Window Help
🗅 🖆 🖶 🎒 🏝 🛅 💁 🔄 🔄 😧 🍳 🍳 🤤 🗛 120% 🔽 🗮 × 1 📚 Y: 1 📚 🚋
R 🐼 🖻 🖻 🗳 🖉 🐇 K K 🛫 🖞 🜋 🚣 🛛 🛛 🗡 🤻 🤻 ७ ९ ९ — 🚽 🖺 📭 A K AI
🖬 🔝 🜠 🕼 🕼 Analysis: 💽 HPS Design Example 💌 Time:
Cohesion 💌
🖆 Keyln Cohesion Spatial Functions
Name
Material 6
Material 8 Delete
Material 12
Name: Material 8
Limit Range by: Data Values
Min: 150 Max: 300 200 250
X (ft) Y (ft) Cohesion (psf) Draw New Points 0
185 -10 300 Add
185 -22 300 225 -10 150 Delete
400 -22 270 DO 220 240 260 280 300 320 340 30
Undo 🖃 Redo 🖃 Help Close hb Unit Weight: 0.1 pcf Cohesion: 10000 psf Phi: 0 ° Piezome
nit Weight: 108 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line:

SLOPE/W Spencer's Analysis

Example #1

SLOPE/W Spencer's Analysis

Example #1 – Cohesion Contours

Step 1 Block Specified

Critical Factor of Safety @ EL. -23

One Team: Relevant, Ready, Responsive and Reliable

Factor of Safety Contours (Safety Map, Increment =0.1)

08 April 2008

C = 590

Step 1 (tangent elev. at -8 ft)

US Army Corps of Engineers.

Check Global FOS using Spencer's Method

08 April 2008

08 April 2008

ΪH

Check Global FOS using Spencer's Method

Step 1 (tangent elev. at -18 ft)

US Army Corps of Engineers.

Check Global FOS using Spencer's Method

W we Y

1101

Check Global FOS using Spencer's Method

1101

Check Global FOS using Spencer's Method

step 1 (tangent elev. at -26.1 ft)

US Army Corps of Engineers.

1101

Check Global FOS using Spencer's Method

Step 1 (tangent elev. at -31 ft)

US Army Corps of Engineers.

Check Global FOS using Spencer's Method

Step 1 (tangent elev. at -39 ft)

US Army Corps of Engineers.

Check Global FOS using Spencer's Method

Step 1 (tangent elev. at -43.5 ft)

US Army Corps of Engineers.

Check Global FOS using Spencer's Method

Step 1 (tangent elev. at -50 ft)

US Army Corps of Engineers.

Check Global FOS using Spencer's Method

08

US Army Corps of Engineers.

Step 2.2 Summary of Results

Neutral Block Tangent EL (ft)	Factor of Safety	Unbalanced Load (lbs/ft)
-8	1.26	900
-14	1.09	2550
-18	1.03	3950
-23	0.98	5500
-23.1	1.42	800
-26.1	1.42	1150
-31	1.42	1200
-39	1.64	-
-43.5	2.03	-
-50 April 2008	2.38	_

3.1 – Axial Capacity

Compute axial capacity according to 3.3 of the HSDRS – based on EM 1110-2-2906 – None Above Failure Surface

Compression

Trial Pile Tip El -92.5

Capacity FS =2

74 ton * 2 t/k /2 = 74 kips

08 April 2008

08 April 2008

3.1 – Axial Capacity

Tension

Trial Pile Tip El -92.5

Ultimate = 81 tons Capacity to -23 = 7 tons Net Ultimate = 81 - 7 = 74 ton

FS = 3.0 - theoretical

Cap = 74 / 2t/k * 3.0 = 49 kip

One Team: Re

ELEVATIONS IN FEET N.G.V.D.

3.2 Lateral Capacity

Compute a lateral capacity at the elevation of the lowest failure surface with L-pile or COM624G

- Analyze with the top of the pile as a free head
- Add surcharge as thin layer with high unit weight
- Curve not Bilinear carry to pile yield
- Factors of Safety for Calculated Loads (3.0)

Compute Moment Capacity of HP 14x73

Fy S_x = 50 ksi x 107 in³ = 5,350 lb-in = 456 kip-ft

Depths 0.1 - 3 = Silt (Cemented c-phi)	
Depths 3 - 8 = Soft Clay	
Depths 8 - 16 = Soft Clay	
Depths 16 - 42 = Soft Clay	
Depths 42 - 47 = Soft Clay	
Depths 47 - 57 = Soft Clay	
Depths 57 - 63 = Soft Clay	
Depths 63 - 67 = Reese Sand	
Depths 67 - 94 = Reese Sand	

08 April 2008

Maximum Moment vs. Top Shear

08 April 2008

US Army Corps of Enginee Shear Force vs. Top Deflection 44,000 42.000 40.000 38,000 36,000 34,000 32,000 30,000 28,000 Shear Force, 26,000 26 kips 24,000 22,000 20,000 Allowable Shear =26 kips / (FS=3.0) = 8.7 kips 18,000 16.000 14,000 12,000 10.000 8.000 8.7 kips 6,000

08 April 2008

4,000 2,000

0

LPILE Plus 5.0, (c) 2007 by Ensoft, Inc.

Top Deflection,

0.5

1

- Preliminary Layout
- CPGA and compute Equivalent Force in Cap
- Normal Structural Loads above Base, Unbalanced Load Below Base
- CPGA Approximates Group Not an Alternative to
- Load Cases as defined in HSDRS Design Criteria
- Check Flow through

08 April 2008

4.1 Calculate Fcap

$$R = \sqrt[4]{\frac{EI}{Es}}$$

EI are Pile Properties Es is below failure surface 08 April 2008

4.1 Example

08 April 2008

One Team: Relevant, Ready, Responsive and Reliable

Piles HP 14x73. I = 729 in⁴ E = 29,000 ksi

Es for R (-22.9) Average silt and upper clay Es = 100 psi

4.1 R and F_{cap}

4.1 – R and F_{cap}

$$R = \sqrt[4]{\frac{29,000,000\,psi \times 729in^4}{100\,psi}} = 120.6in = 10\,ft$$

$$F_{cap} = F_{ub} \times \left(\frac{\frac{L_p}{2} + R}{L_p + R}\right) \frac{L_p}{L_u} = 5,350 lb / ft \times \left(\frac{\frac{17.9 ft}{2} + 10 ft}{17.9 ft + 10 ft}\right) \frac{17.9}{22.4} = 2,904 lb / ft$$

08 April 2008

4.1 – Calculate Resultants

Army Corps of Engineers					COMPLITED	BY: DATE:	SHEET	
					04/05/09	ONEET.		
I -vvali De		i Design Example		NDH	04/05/06			
لتقل	SUBJECT TITLE:				CHECKED B	BY: DATE:		
Saint Paul Distict	Water at	El. 10	', Pervio	us				
Input for CPGA p	ile analysis		Pervious	Foundatio	n Assum	ption		
Upstream Water E	levation	10	ft	Back Fill S	oil Elevat	ion	1	ft
Downstream Wate	er Elevation	-1	ft	Front Fill S	Soil Elevat	tion	1	ft
Wall Top Elevatior	ו	12.5	ft	Gamma W	/ater		0.0625	kcf
Structure Bottom E	Elevation	-5	ft	Gamma C	oncrete		0.15	kcf
Base Width		13	ft	Gamma S	at. Backfi	11	0.110	kcf
Toe Width		1.5	ft	Distance to	o Backfill	Break	5.0	ft
Wall Thickness		1.5	ft	Slope of B	ack Fill		0.30	
Base Thickness		2.5	ft	Soil Elevat	tion at He	el	-0.50	ft
Vertical Forces								1
Component	Height	x1	x2	Gamma	Force	e Arm	Moment	
Stem Concrete	15	10	11.5	0.15	3.38	10 75	36.3	1
Heel Concrete	2.5	0	11.5	0.15	4.31	5 75	24.8	
Toe Concrete	2.5	11 5	13	0.15	0.56	12 25	6.9	
Heel Water	9	0	10	0.0625	5.63	5	28.1	
Toe Water	15	115	13	0.0625	0.00	12 25	1 7	
Heel Soil	3.5	0	10	0.0020	3.85	5	10.3	
Triangle	1.50	ñ	5.0	-0.048	_0.00	1 67	-0.3	
Too Soil	3.5	115	13	0.040	0.10	12.25	7 1	
Poet Liplift	3.5	0	13	0.110	2.00	12.25	21.1	
	-4	0	13	0.0025	-3.23	0.5	-21.1	
Fire Vertical Form	-11	0	13	0.0625	-4.47	4.3	-19.4	4 Г.
Sum venical Force	25				10.5		03.4	III-K
Horizontal Forces]
Component	H1	H2	Gamma	Lat. Coeff.	Force	e Arm	Moment	
Driving Water	10	-5	0.0625	1	7.03	5.00	35.16	
Resisting Water	-1	-5	0.0625	1	-0.50	1.33	-0.67	
Lateraral soil force	s assumed e	qual and	negligible					
Sum Horizontal Fo	orces				6.53	5.28	34.49	ft-k
Total Structural Fo	orces			Ne	et Vert. Fo	rce Arm	Moment	1
About Heel					10.55	11.17	117.84	ft-k
¹⁵]						Not Vortical	Arm	1
						From Too	1 02	f4
10						FIOIDIDE	1.03	11
								J
5 -				-		Momont Ab		1
	┥┝				ncrete	INIOITIENT ADD		1
0				Wa	ter	- 19.3) IL-K	J
-5				Upl	lift	Model Widt	h	1
	i			— — — Soi	ı	5	i ft	
-10 -								
-15								
-20 -								
-25	10 15							
U 5	iu 15	20						

US Army Corps of Engineers	PROJECT TITLE:	COMPUTED BY:	DATE:	SHEET:	
ТщТ	T-Wall Design Example	KDH	04/05/08		
	SUBJECT TITLE:	CHECKED BY:	DATE:		
Saint Paul Distict	Water at El. 10', Pervious				

Calculation of Unbalanced Force

5,350	lb/ft	From UTexas Analysis
-22.9	ft	From UTexas Analysis
22.4	ft	(assume failure surface is normal to pile)
18	ft	
729	in ⁴	HP14x73
29,000,000	lb/in ²	
100	lb/in ²	
121	in	(EI / Es) ^{1/4}
2,906	lb/ft	$F_{ub} * (L_p/2 + R) / (L_p + R) (L_p/L_u)$
	5,350 -22.9 22.4 18 729 9,000,000 100 121 2,906	5,350 lb/ft -22.9 ft 22.4 ft 18 ft 729 in ⁴ 29,000,000 lb/in ² 100 lb/in ² 121 in 2,906 lb/ft

Step 4 CPGA Input

PX	-47.19 kips
PY	
PZ	52.73 kips
MX	0
MY	-96.29 kip-ft
MZ	0

Group Input - Steps 5 and 6

3 Pile Rows Parallel to Wall Face

Unbalanced Loading on Piles for Group Analysis

Total	100 lb/in	F _{ub} * Model Width	ı /L _u
50%	50 lb/in	For Pile on Protect	ted Sied
25%	25 lb/in		
d to lenat	h of pile from botton	n of cap to top of critical surface.	18

Note: Applied to length of pile from bottom of cap to top of critical surface.

Step 5 Cap Loads for Group Analysis

PX	52,731 lb	
PY	32,656 lb	
PZ	0 lb	
MX	0	
MY	0	
MZ	1,155,441 lb-in	

Step 6 Cap Loads for Group Analysis of Unbalanced Load Distance From Base to Ground Surface, Ds 4.50 ft

PX	0 lb	
PY	5,374 lb	
PZ	0 lb	
MX	0	
MY	0	
MZ	-145,095 lb-	in

Fub * Model Width / Lu * Ds

-PZ * Ds/2

Es = 0 (0.000001) for FS<1 (Ground Surface) Es ratio from 0 to full theoretical Es for FS between 1 and Target FS

Example FS = 0.98 , Es Set to 0.000001

If the FS = 1.2, Target FS = 1.5, Es = 100 psi,

$$E_s = \frac{(1.5 - 1.2)}{(1.5 - 1.0)}(100\,psi) = 40\%(100) = 40\,psi$$

No distinction between leading and trailing rows No cyclic reduction factors (won't matter much) 08 April 2008

4.2 – Shallow Failure Surfaces

US Army Corps of Engineers.

Es= 0 Not so Good Approximation – not enough lateral support Won't Match Group Results Can Model Wall Suspended above failure surface

4.3 – Group Reduction

Group Reduction Factors - When Es is not 0 Not required for Opposite Batters CPGA method is approximation Reduced Es reduces precision

Equations from Group Manual used

- More up-to-date than EM
- Similar to factors used in latest AASHTO

4.3 – Group Reduction

For loading perpendicular to the loading direction:

 $Rga = 0.64(s_a/b)^{0.34}$; or = 1.0 for $s_a/b > 3.75$

Where:

- s_a = spacing between piles perpendicular to the direction of loading (parallel to the wall face). Normally piles should be spaced no closer than 5 feet on center.
- **b** = pile diameter or width

4.3 – Group Reduction

For loading parallel to the loading direction:

For leading (flood side) piles:

 $Rgbl = 0.7(s_b/b)^{0.26}$; or = 1.0 for $s_b/b > 4.0$

For trailing piles, the reduction factor, *Rgbt* is:

 $Rgbt = 0.48(s_b/b)^{0.3}$; or = 1.0 for $s_b/b > 7.0$

Trailing Piles only follow piles with same batter

4.3 CPGA Analysis

LOAD CA	SE -	1 Per	vious Upl:	ift Assumpt	ion		
PILE	<u>F1</u>	F2	F3	Ml	M2	M3 ALF	CBF
	K	K	K	IN-K	IN-K	IN-K	
1	.0	. 0	5.2	.0	-3.3	.0.07	.02
2	. 0	. 0	97.2	.0	-3.0	.0 1.31	.31
3	. 0	. 0	-46.8	• 0	3.1	.0.96	.15
LOAD CA	SE -	2 Impe	ervious U	plift Assum	ption		
PILE	<u>F1</u>	F2	F3	Ml	M2	M3 ALF	CBF
	K	K	K	IN-K	IN-K	IN-K	
1	.0	. 0	12.5	.0	-3.0	.0 .17	.04
2	.0	. 0	94.4	.0	-2.8	.0 1.28	.30
3	.0	.0	-42.3	. 0	2.9	.0 .86	.14

PILE CAP	DISPLACEMENTS
----------	---------------

		LOAD	
CASE	DX	DZ	R
	IN	IN	RAD
1	6619E+00	2626E+00	2868E-02
2	6125E+00	2266E+00	2549E-02

4.4 Sheet pile

Sheet pile as required for seepage

Or Minimum 5' Below Critical Failure Surface

Minimum Size - PZ -22 – No Analysis

Example Tip Elevation = -23 - 5 = -28

4.5 Flow Through Check 1

Pile Lateral Capacity

Basic Capacity P_{ult} = 9Cu

4.5 Flow Through

Compute Capacity of Floodside Row

$$\sum P_{all} = \frac{n \sum P_{ult}}{1.5}$$

n = number of piles in row per monolith ΣP_{ult} = summation of P_{ult} over the height Lp

 $P_{ult} = \beta(9S_ub)$ $S_u = \text{soil shear strength}$ b = pile width $\beta = \text{group reduction factor pile spacing parallel to}$ the load (Defined in criteria)

Soils under slab, $S_u = 120 \text{ psf to}$ failure surface Pile width, b = 14"

Group reduction factor, not applicable (single row on flood side), Rf = 1

$$P_{ult} = 1.0(9)(120\,psf) \left(\frac{14in}{12\frac{in}{ft}}\right) = 1,260lb \,/\,ft$$

Capacity of Floodside Rows

 ΣP_{ult} = summation of P_{ult} over the height L_p ,

∑Pult = 1,260 lb/ft(17.9 ft) = 22,554 lb

$$\sum P_{all} = \frac{n \sum P_{ult}}{1.5}$$

ΣPall = 1(22,554lb) /1.5 = 15,036 lb

Compute Unbalanced Load on Piles to check against ΣP_{all}

$$F_p = w f_{ub} L_p$$

w = Monolith width or Pile Spacing

$$f_{ub} = \frac{F_{ub}}{L_u}$$

F_{ub} = Total unbalanced force per foot from Step 2 L_u and L_p as defined in paragraph 4.1

F_{ub} = Total unbalanced force per foot from Step 2 = 5,350 lb/ft

 $L_u = 22.4 \text{ ft}$ $L_p = 17.9 \text{ ft}$

f_{ub} = 5,350 lb/ft / 22.4 ft = 239 lb/ft/ft

$$f_{ub} = \frac{F_{ub}}{L_u}$$

$$F_{up} = w f_{ub} L_p$$

F

If 50% of $F_p < \Sigma P_{all}$ then OK

If 50% of $F_p > \Sigma P_{all}$ then: compute ΣP_{all} for all of the piles If ΣP_{all} for all piles > F_p then OK If ΣP_{all} for all piles < F_p then Redesign

 $F_{p} = 21,391 \text{ lb}$

50% of $F_p = 21,391$ lb(0.50) = 10,695 lb

ΣPall = 15,036 lb > 10,695 lb

OK

4.6 Second Flow Through Check

US Army Corps of Engineers.

Shear Along Planes Bounded by Piles

4.6

$$f_{ub}L_p \leq \frac{A_p S_u}{FS} \left[\frac{2}{(s_t - b)}\right]$$

 A_pS_u = The area bounded by the bottom of the T-wall base, the critical failure surface, the upstream pile row and the downstream pile row multiplied by the shear strength of the soil within that area.

For layered soils, the product of the area and Su for each layer is computed and added for a total ApSu. See Figure 3.

FS = Target factor of safety used in Steps 1 and 2. = 1.5

$$f_{ub}L_p \leq \frac{A_p S_u}{FS} \left[\frac{2}{(s_t - b)}\right]$$

 s_t = the spacing of the piles transverse (perpendicular) to the unbalanced force = 5 ft

b = pile width = 14 in

$$A_p S_u = 17.9 ft \left(\frac{10 ft + 21.9 ft}{2}\right) (120 psf) = 34,260 lb$$

$$\frac{A_p S_u}{FS} \left[\frac{2}{(s_t - b)} \right] = \frac{34,260}{1.5} \left[\frac{2}{5 - \left(\frac{14}{12}\right)} \right] = 11,917$$

$$f_{ub}L_p \leq \frac{A_p S_u}{FS} \left[\frac{2}{(s_t - b)}\right]$$

 $f_{ub}L_p = (239 \text{ lb/ft})(17.9 \text{ ft}) = 4,278 \text{ lb/ft}$

OK

Step 5 Group 7 Analysis 5.1

Only Critical Load Cases.

Apply "Structural" loads at base and above to wall. (Water, Soil, Dead Loads).

Unbalanced Load Applied Directly to Piles

Look at flood side row with 50% Unbalance Force

- If nΣP_{ult} > 50% F_p then 50% Unbalanced Force on Floodside row 0.5f_{ub}s_t and the rest equally on remaining rows
- If $n\Sigma P_{ult} < 50\% F_p$ then load = P_{ult} on Flood side row and the rest equally on remaining rows
- P_{ult} Not P_{all}

- Check if $(n\Sigma P_{ult})$ of the flood side pile row is greater than 50% F_p , (from 4.5)
- $(n\Sigma P_{ult}) = 1$ (22,554 lb) = 22,554 lb
- 50% $F_p = (0.50)(21,391) = 10,696$ lb
- Since nΣP_{ult} > 50% F_p, then 50% F_p will be applied to the flood side piles
 - uniform load =0.5f_{ub}s_t
 - remaining 50% F_{p} will be applied equally to the remaining piles.

Distribute 50% of F_p onto the flood side (left) row of piles:

- 0.5f_{ub}s_t = 0.5 (239 lb/ft/ft)(5 ft)
- = 597.5 lb/ft = 50 lb/in

The remainder is divided among the remaining piles.

- Middle pile = 25 lb/in
- Right pile =25 lb/in

Check of Pile Stresses 100 % F_p applied to the flood side piles, < n ΣP_{ult}

Verify that 100% F_p does not exceed n ΣP_{ult} : 100% F_p = 21, 391 lb n ΣP_{ult} = 1 (22,554 lb) = 22,554 lb

Since, 100% $F_p < n\Sigma P_{ult}$, 100% F_p distributed on the flood side piles

f_{ub}s_t = (239 lb/ft/ft)(5 ft) = 1,195 lb/ft = 100 lb/in

08 April 2008

One Team: Relevant, Ready, Responsive and Reliable

Can use Group developed PY curves

Curves on piles from bottom of cap to lowest elevation of failure surface are adjusted to account for moving soil mass Clay stiffness depends on C and e50 Sand stiffness depends on k and Phi

If FS < 1.0 then remove lateral resistance by making cohesion in soil layers very small (or k for sands)

IF FS >1.0 then ratio lateral resistance by ratio of factor of safety between 1.0 and target factor of safety – Multipy Cohesion (or k) by this percentage

Our example

FS = 0.98

C = **0.0001**

e50 does not need to be adjusted K not used for Soft Clays

Step 5

- Compare output with allowables
- HSDRS Design Guides
- EM1110-2-2906
- Axial and Shear in Piles
 - Are compared with results from Step 3
 - Shear found at lowest critical surface elevation compared to capacity in Step 3

5.6, 5.7

Pervious Case – 50% on Floodside Pile

Pile	Axial (k)	Shear (k)	Max Moment (k-in)
1 Right	2.3 (C)	3.2	-227
2 Center	93.5 (C)	2.9	-207
3 Left	-39.9 (T)	5.2	314

Pervious Case – 100 % on Floodside Pile

Pile	Axial (k)	Shear (k)	Max Moment (k-in)
1 Right	1.3 (C)	1.8	-229
2 Center	98.6 (C)	1.6	-206
3 Left	-39.2 (T)	8.7	838

5.6, 5.7

Impervious Case – 50% on Floodside Pile

Pile	Axial (k)	Shear (k)	Max Moment (k-in)
1 Right	9.2 (C)	3.1	-217
2 Center	91.5 (C)	2.9	-198
3 Left	-35.8 (T)	5.2	318

Impervious Case – 100 % on Floodside Pile

Pile	Axial (k)	Shear (k)	Max Moment (k-in)
1 Right	8.4 (C)	1.7	-216
2 Center	96.2 (C)	1.6	-193
3 Left	-34.9 (T)	8.7	843

5.6, 5.7

Table Displacement of grouped pile foundation

Load Case	Load %	Horz (in)	Vert (in)
Pervious	50%	0.53	-0.21
Impervious	50%	0.49	-0.18
Pervious	100%	0.56	-0.22
Impervious	100%	0.52	-0.20

Step 6 (Optional)

NOT SHOWN

US Army Corps Step 7 (Optional) NOT COMPLETED

Global Stability Analysis with pile forces as reinforcement.

Question?

Thank You

One Team: Relevant, Ready, Responsive and Reliable

Guidance on Long Structures And Trailing Structures

by Rich Varuso, P.E.

April 8, 2008

Long Structures

US Army Corps of Engineers.

08 April 2008

Adjacent Structures

08 April 2008

US Army Corps of Engineers.

Question?

Thank You

One Team: Relevant, Ready, Responsive and Reliable

Results of Ongoing Sensitivity Analysis

Bob Yokum, P.E.

April 8, 2008

of Engineers.

On-going Sensitivity Analysis

- Develop a systematic approach for selecting trial surfaces and managing search routines for UT4 and Slope W
- For 5 T-wall examples we compared MOP vs Spencers for both UT4 and Slope W (FOS and Unbalanced Load)
- For 5 T-wall examples we compared MOP vs Spencers using both UT4 and Slope W.
- We utilized the results from the new T-wall procedure to compare pile loads, pile stress and pile cap deflection for
 Steel H-piles
 Concrete piles
 Combination of steel and concrete piles 185

of Engineers.

On-going Sensitivity Analysis

- We compared the effects of different pile spacing reduction factors.
 - EM 1110-2-2906
 - G-pile default values

Analyzed the foundations with only the unbalanced load applied along the length of the pile.

- Analyzed the foundations with both the unbalanced load applied along the length of the pile and the super-structure loading.
- Plugged in the appropriate loads from G-pile into the stability analysis to determine the FOS for both cases listed above. 08 April 2008

US Army Corps of Engineers.

Preliminary Findings/Results

Variation in Pile Types
 Steel vs. Concrete
 Mixed Foundations

- Pile Spacing Reduction

 Lateral Deflections
 Maximum Moments
- Group Input Simplification

 Strata Unit Weights
 Strata Shear Strengths
 Soil Stiffness

Preliminary Findings/Results

US Army Corps of Engineers.

- Output Interpretation
 - Local Forces
 - Moments and Stresses Steel vs. Concrete
 - Input / Output Choices
- General Recommendations
 - Preliminary Foundation Design
 - Geotechnical Data Preparation and GROUP Input
 - Common Mistakes / Error Messages
 - You're Already Late

Preliminary Findings/Results

US Army Corps of Engineers.

- Output Interpretation
 - Local Forces
 - Moments and Stresses Steel vs. Concrete
 - Input / Output Choices
- General Recommendations
 - Preliminary Foundation Design
 - Geotechnical Data Preparation and GROUP Input
 - Common Mistakes / Error Messages
 - You're Already Late

Q&A Panel

Kent Hokens, P.E. Neil Schwanz, P.E. Mark Gonski, P.E. Richard Pinner, P.E. Rob Werner Bob Yokum, P.E.

April 8, 2008