

wetlands and other components of aquatic habitats (*Rangia* clams, SAV, and oysters) are provided in sections 3.2.3 and 3.2.4.

Table 11.
Life-Stages of Federally Managed Species that Commonly Occur within the Project Vicinity and the Associated Types of Designated EFH

Species	Life Stage	System *	EFH Zone and Habitat Type
Brown shrimp (<i>Farfantepenaeus aztecus</i>)	Eggs (no data available)	M	sand/shell/soft bottom
	Larvae	M	planktonic, sand/shell/soft bottom, SAV, emergent marsh, oyster reef
	Juvenile (common)	E	SAV, sand/shell/soft bottom, emergent marsh, oyster reef
	Adult (rare)	M	SAV, sand/shell/soft bottom, emergent marsh, oyster reef
White shrimp (<i>Litopenaeus setiferus</i>)	Eggs (no data available)	M	Sand/shell/soft bottom
	Larvae	M	planktonic
	Juvenile (abundant)	E	SAV, soft bottom, emergent marsh
	Adult (rare)	M	Near shore and offshore sand/shell and soft bottom
Pink Shrimp (<i>Farfantepenaeus duorarum</i>)	Eggs (no data available)	M	sand/shell bottom
	Larvae (no data available)	M	planktonic, sand/shell bottom, SAV
	Juvenile (common)	E	sand/shell substrate
	Adults (rare)	M	Coarse sand/shell near SAV
Red drum (<i>Sciaenops ocellatus</i>)	Eggs (no data available)	M	Near shore pelagic
	Larvae/postlarvae (no data available)	E	all estuaries planktonic, SAV, sand/shell/soft bottom, emergent marsh
	Juvenile (common)	E/M	SAV, sand/shell/soft/hard bottom, emergent marsh, oyster reefs
	Adult (common)	M/E	SAV, pelagic, sand/shell/soft/hard bottom, emergent marsh, oyster reefs
Gulf stone crab (<i>Menippe adina</i>)	Eggs	E/M	Sand/shell/soft bottom
	Larvae/postlarvae	E/M	Planktonic/oyster reefs, soft bottom
	Juvenile	E	Sand/shell/soft bottom, oyster reefs
	Adult	E/M	Oyster reefs, sand or mud bottoms, seagrass, rocks

Source: GMFMC 2004 and NMFS 2008.

* E = estuarine, M = marine.

Federally Managed Species

Brown shrimp

According to Pattillo et al. (1997) adult, juvenile, and larval brown shrimp are expected to occur in the project vicinity; however GMFMC (2004) records show that only juvenile life stages occur in this area. Juvenile brown shrimp are considered highly abundant to abundant within the project vicinity from April to October. Juveniles occur at higher abundances in high temperatures, low DO, moderately turbid, and mesohaline (5 ppt to 16 ppt) water (Jones et al.

2002; Baltz and Jones 2003). The density of post-larvae and juveniles is highest in emergent marsh edge habitat and SAV with soft substrates, and decreasing densities occur in intertidal creeks, inner marsh, shallow open water, and oyster reefs (Baltz et al. 1993; Clark et al. 2004; GMFMC 2004; Peterson and Turner 1994; Rakocinski et al. 1992).

There is a high probability that juvenile brown shrimp could occur within the estuarine open water in the project area and in SAV habitats located within the project vicinity. Both post-larval and juvenile life stages of brown shrimp are likely to use open water in the IHNC as a conduit to estuarine open water, emergent marsh, and SAV in Lake Pontchartrain. It is thought that this species occupies and migrates through the project from the Gulf of Mexico via; the GIWW and Lake Borgne, the Golden Triangle marsh, and Bayou Bienvenue. Prior to the construction of the closure at Bayou La Loutre, the MRGO most likely provided access for the largest number of organisms compared to the GIWW and Lake Borgne because of its direct route and strong tidal pulse.

Adult brown shrimp typically inhabit offshore waters (Pattillo et al. 1997) such as those off the coast of Louisiana. Although individual adults may occur within the project vicinity in open water habitat with turbid waters and soft sediments (Pattillo et al. 1997; Lassuy 1983c), adult brown shrimp are considered rare throughout the year in the project vicinity (GMFMC 2004). GMFMC (2004) maps show adult brown shrimp to be rare in Lake Pontchartrain and in the vicinity of the proposed action.

Brown shrimp postlarvae feed on phytoplankton, zooplankton, epiphytes, and detritus. Juveniles and adults prey primarily on amphipods, polychaetes, and chironomid larvae and would also feed on algae and detritus (Pattillo et al. 1997; Lassuy 1983c). Prey items of all life stages of brown shrimp are considered to be primary components of the trophic spectrum in Lake Pontchartrain (Darnell 1961).

Brown shrimp post-larvae have been found at salinities ranging from 0.1 ppt to 69 ppt and larger juveniles prefer 10 ppt to 20 ppt (Pattillo et al. 1997). The optimum salinity range for adults is between 24 ppt to 39 ppt.

White shrimp

Adult white shrimp are expected to occur in the project vicinity (Pattillo et al. 1997) on a seasonal basis (GMFMC 2004) and juvenile white shrimp are common to abundant within the project vicinity from July through October (GMFMC 2004). Post-larval white shrimp seek shallow, estuarine water with muddy sand bottoms high in organic detritus or vegetative cover; while juvenile white shrimp inhabit turbid estuaries, marsh edges, and SAV (Pattillo et al. 1997). Post-larval white shrimp use soft muddy or peat-like bottoms for burrowing (Muncy 1984). White shrimp can be replaced by brown shrimp in muddy areas due to competition for habitat (Muncy 1984). GMFMC (2004) maps show adult white shrimp habitat to include Irish Bayou, Lake Catherine, Lake Borgne, and the eastern shore of Lake Pontchartrain; however, juveniles are common to highly abundant throughout Lake Pontchartrain. Both post-larval and juvenile life stages of white shrimp are likely to use open water in the IHNC as a conduit to estuarine open water, emergent marsh, and SAV in Lake Pontchartrain all year.

Like brown shrimp, post-larval white shrimp feed on phytoplankton, zooplankton, epiphytes, and detritus. Juveniles and adults prey on amphipods, polychaetes, and chironomid larvae and also consume algae and detritus (Pattillo et al. 1997) which are considered primary components of the trophic spectrum in Lake Pontchartrain (Darnell 1961).

White shrimp prefer a mesohaline salinity regime with post-larvae and juveniles preferring lower salinity habitats (6 ppt to 8 ppt) and larger late juvenile stage individuals preferring brackish

habitats (10 ppt to 18 ppt) (figures 34 and 35). Based on these habitat preferences, juvenile white shrimp are expected to use bayous, canals and inlets such as the GIWW, the IHNC, Bayou Bienvenue, Rigolets, and Chef Menteur Pass to reach nursery areas in Lake Pontchartrain.

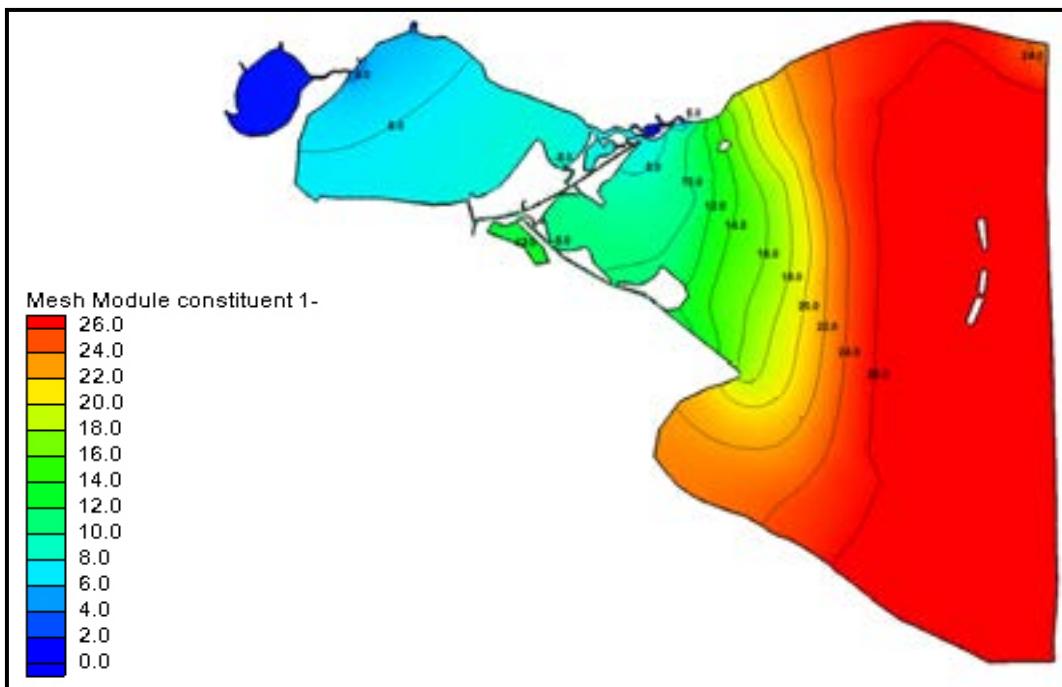


Figure 34. Base Isohalines Predicted for March 2006 (Martin et al. 2009b)

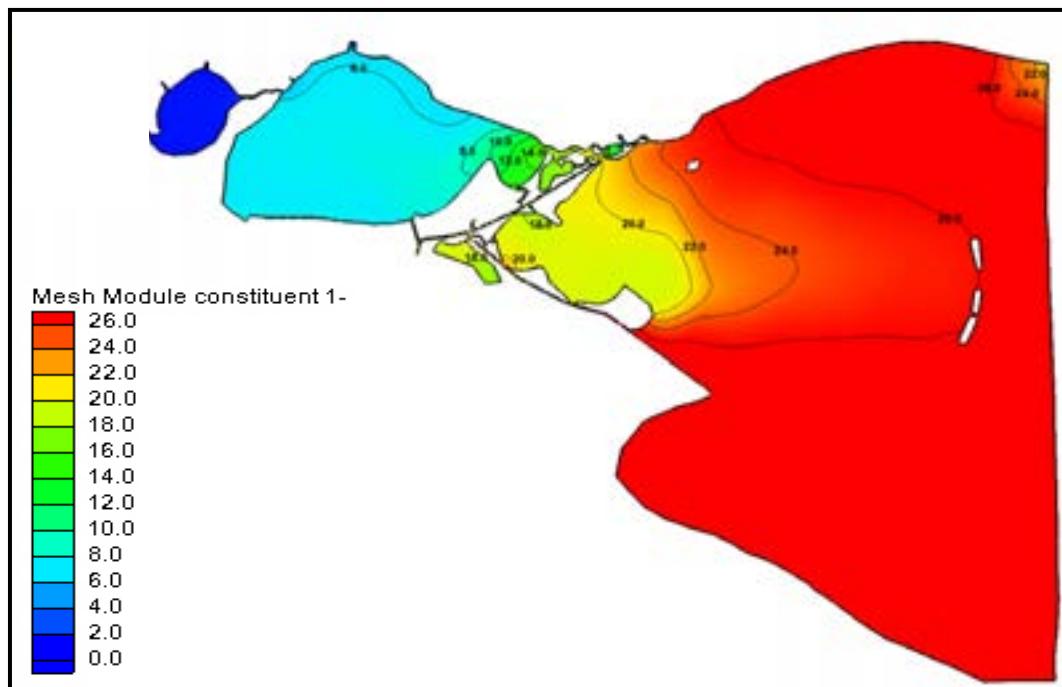


Figure 35. Base Isohalines Predicted for September 2006 (Martin et al. 2009b)

Pink Shrimp

According to GMFMC (2004), juvenile pink shrimp are expected to occur in the project vicinity; however, Pattillo et al. (1997) indicate occurrences are rare. Juveniles may prefer SAV meadows where they burrow into coarse substrate; postlarvae prefer a mixture of coarse sand/shell/mud and immature stages are found on substrates with vegetative detritus. Although densities of pink shrimp are considered highest in SAV habitat by Pattillo et al. (1997), the GMFMC (2004) clarifies that juveniles prefer high salinity SAV over the low salinity SAV which is found in Lake Pontchartrain. Therefore, even though two SAV beds occur within the project vicinity, one along the south shore of the New Orleans East Area HSDRRS in Lake Pontchartrain and the other on the eastern side of South Point heading toward Lake St. Catherine (figure 28), juvenile pink shrimp may not utilize these SAV beds, and therefore, may not rely on Seabrook as a conduit to Lake Pontchartrain. However, GMFMC (2004) still records juvenile pink shrimp as common throughout the year in Lake Pontchartrain, while adult occurrences are rare.

Postlarvae feed on phytoplankton, zooplankton, epiphytes, and detritus. Juveniles and adults consume algae and detritus, which are considered primary components of the trophic spectrum in Lake Pontchartrain (Darnell 1961), and prey on amphipods, polychaetes, and chironomid larvae (Pattillo et al. 1997).

Red drum

Adult and juvenile red drum utilize a variety of habitats in the project vicinity. Adults are common April through October (GMFMC 2004) and juvenile red drum are common to abundant in the project vicinity's shallow open water and brackish emergent marsh habitats year-round (GMFMC 2004; Nelson et al. 1992). Adult red drum, while not expected to occur in the project vicinity (Nelson et al. 1992), may occur in the scour holes north and south of the Seabrook bridge, in emergent marsh in Lake Pontchartrain and in open waters and emergent marsh within and adjacent to the GIWW, the IHNC, the MRGO, and in the Golden Triangle marsh.

Spawning typically occurs outside the project vicinity (GMFMC 2004) in deeper water near the mouths of bays and inlets (Pearson 1929) near the Gulf of Mexico. Planktonic red drum larvae are carried by currents into bays and estuaries (Peters and McMichael 1987), such as Lake Pontchartrain, where they settle into the tidally-influenced emergent wetlands (Stunz et al. 2002a). Juvenile red drum are expected to use bayous, canals and inlets such as the GIWW, the IHNC, Bayou Bienvenue, Rigolets, and Chef Menteur Pass to reach nursery areas in Lake Pontchartrain. Juvenile red drum prefer specific habitat types, occurring at higher densities in SAV (Stunz et al. 2002a), growing faster there and in brackish emergent marsh and oyster reefs (Stunz et al. 2002b). Additionally, juvenile red drum prefer a mesohaline (5 ppt to 16 ppt) to euryhaline salinity regime (16 ppt to 36 ppt) and growth rates are highest between 18.3°C and 31.0 °C (GMFMC 2004).

Red drum are considered predators in estuaries and Lake Pontchartrain is considered an area of high abundance of the red drum (Reagan 1985). They are considered intermediate feeders due to their use of the bottom for foraging (eat oysters, clams and blue crabs) as well as the pelagic habitat to hunt for prey fish species. Locally in Louisiana, red drum are also known for their love of crabs (LaDWF 2009b). Juvenile red drum showed preferences for fish, crabs and shrimp, particularly mysid shrimp (Reagan 1985). Adult red drum feed primarily on fish, shrimp, and crabs. Fish prey, primarily menhaden and anchovies, are most important in the winter and spring, while crabs and shrimp are important in the summer and fall (Reagan 1985).

Gulf Stone Crab

Although GMFMC (2004) indicates Gulf stone crab (*Menippe adina*) are not expected to occur in the project vicinity, NMFS (2008) indicates this species should be expected in the area. The NMFS EFH website for the Gulf of Mexico, including the Lake Pontchartrain/Lake Borgne estuary, shows that juveniles have not been reported from this area and that adults may be present although relatively rare during the late summer and fall when salinities tend to be higher (NMFS 2010). According to Pattillo et al (1997), juvenile crabs can be found around pilings and among shells and rocks, while adults can be found on oyster reefs, under rock ledges, or in burrows. Pattillo et al. (1997) also indicates that Gulf stone crabs, both adults and juveniles, seem to prefer salinities above 11 ppt. Stone crabs are considered predators at all life stages and although juveniles may be subject to predation by some fish, adults are generally not susceptible to predation. Juveniles tend to feed on small mollusks, polychaetes, and other crustacean. Adults feed on all types of mollusks and may particularly prey on oysters.

Various Other Species of Importance

In addition to the species discussed previously, coastal wetlands within the project vicinity provide nursery and foraging habitat for other economically important marine species like blue crab, bay anchovy, Gulf menhaden, striped mullet, Atlantic croaker, spotted seatrout, sand seatrout, black drum, and southern flounder. Various developmental stages of most of these species serve as prey for other fish and crustacean species managed under the MSA by the GMFMC (e.g. mackerels, snappers, groupers) and highly migratory species managed by NMFS (e.g. billfishes and sharks, dolphin). Fishes that serve as prey for these managed species were discussed in more detail in the Aquatic Resources and Fisheries section (3.2.4).

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to EFH

Direct impacts to EFH would occur due to changes in salinity, DO, passage during and following construction, and estuarine substrate (including sand/shell and mud bottom) from filling the south scour hole and due to changing approximately 7 acres of estuarine open water areas to floodwall and gate structures and associated ROW. Even though the IHNC is a man-made shipping channel with bulkheads along the shoreline and has been previously dredged, it currently serves as a major conduit between the Gulf of Mexico and Lake Pontchartrain for many species managed by the MSA, and is considered EFH. Significant alterations to this conduit could cause positive and negative impacts to EFH including breeding, transport/migration, and growth to maturity. The proposed action would not be expected to have any direct impacts to SAV.

During construction, specifically activities related to filling in the scour hole and installing the cofferdam, there would be potential for burial and/or suffocation of benthic organisms such as polychaetes, oysters, and *Rangia* clams that occur in the footprint. Mobile organisms such as shrimps, fishes, and crabs would be expected to move from the area, but still have the potential of being buried. Impacts from suffocation and burial would only occur during filling activities. Once filled, that deepwater habitat would be permanently lost. Presently, large spotted seatrout are found in the Seabrook bridge area most likely due to the presence of the scour holes. Since deep water habitat is sparse in the project vicinity, loss of this habitat may cause changes in seasonal behavior, feeding behavior and growth rates of larger fishes that utilize this habitat.

Conversely, the cofferdam could also concentrate prey items, thus attracting larger fish/predators to the area; however, the poor water quality in the vicinity of the cofferdam may negate fish from taking advantage of this opportunity.

During construction, a braced cofferdam would be temporarily installed across the channel around the approximate perimeter of the sector gate and vertical lift gates for a period of approximately 6 months to 12 months. During this phase of construction the IHNC would be closed to flow.

While the cofferdam is in place, the IHNC would be dammed and no water would flow between the IHNC and Lake Pontchartrain, thereby impeding the movement and transport of organisms and access and relative use of habitats designated as EFH within Lake Pontchartrain. The duration of this construction phase would impact at least one life cycle of EFH species because larvae and juveniles moving along the GIWW, Bayou Bienvenue/MRGO north of the Bayou Bienvenue closure would be unable to enter Lake Pontchartrain through the IHNC. The life cycle of these organisms depends on reaching the lower salinity waters of Lake Pontchartrain and various habitat types in the lake. Although two conduits (Chef Menteur Pass and the Rigolets) would remain open and organisms could use these as access points to reach nursery areas in the lake, individuals transported to the INHC during this time would most likely be unable to travel against the directional flow through the GIWW toward Chef Menteur Pass or Rigolets. Therefore, larvae would most likely not recruit to Lake Pontchartrain nursery areas.

Mobile organisms (e.g. shrimp, crabs, and fish) may have a longer travel time to reach appropriate salinities which support EFH where suitable prey items may be found. Migrating species may use salinity gradients as well as tidal flow to sense direction to the Gulf of Mexico. These species may make a smoother transition into and out of the lake provided there is an abundance of suitable prey and SAV to sustain the additional numbers of individuals using Chef Menteur Pass and the Rigolets. Once the proposed action is complete, the Seabrook gate structures would allow EFH species into and out of Lake Pontchartrain except during storm events, high flow events, and monthly OMRR&R. These infrequent closures would be temporary and should have a minimal effect on migration and transport of EFH species. If closure periods coincide with monthly peak tides and species migration, adverse impacts may occur.

Closure of the IHNC while the cofferdam is in place may cause larvae, juveniles, and prey items to become unable to exit the IHNC and find an alternate route to a suitable supply of food, potentially resulting in starvation and/or heightened predation. These dietary and behavioral impacts could cause decreases in populations of lower trophic level species, and in turn, the species that rely on them entering Lake Pontchartrain. For example, blue crab migration into Lake Pontchartrain specifically occurs from May to June through the IHNC. This influx of larvae would be disrupted by the construction phase of the project and specifically while the cofferdam is in place (approximately 6 months to 12 months) which could overlap with more than one breeding cycle of this species. This would affect juvenile and adult populations of EFH species (mainly red drum) that rely on blue crabs for feeding. This would require predators to travel longer distances during the construction period, extending an already lengthy trip and potentially resulting in decreased growth rates and inability to reproduce of some individual EFH species, particularly red drum. Conversely, some species that use internal and external cues to sense changes in flow, salinity, or tidal movement would still be able to use these cues to migrate to alternate nursery area such as the southeastern portion of Lake Pontchartrain (via Chef Menteur Pass or the Rigolets) or into Lake Borgne. Further discussion on internal and external cues used by organisms to migrate to nursery areas is located in section 3.2.4 (Aquatic Resources and Fisheries).

Disturbance would occur to some sessile and mobile organisms as the area inside the cofferdam is dewatered. This construction activity may cause mortality to populations of organisms trapped in the cofferdam. Construction operations would be designed and BMPs employed to help fish and invertebrate species to avoid and escape the cofferdam at the time of placement to the maximum extent possible. Placement of riprap outside the retaining walls may cause burial of additional individuals; however this construction activity would be short-term.

Noise and vibration from construction activities within areas designated as EFH would most likely deter many organisms including predatory fish from the project area during construction. Sessile benthic organisms that reside in the project area, and cannot remove themselves from noise and vibration would be impacted. These negative impacts could range from stress that prevents them from feeding to death from cracked shells due to vibration. Noise occurring from construction activities could cause behavioral changes and sub-lethal impairments to the hearing of mobile organisms (including some EFH species [Hastings and Popper 2005]). Although there may be mortality to individuals of EFH species during construction activities for the proposed alignment, the number affected would not be expected to impact populations of EFH species since most individuals would be expected to move away from the impacted area. Immature stages of EFH species such as eggs, larva and juveniles of red drum and all life stages of shrimps may be impacted more than adult red drum because of the greater travel time required by most small organisms. Although these impacts would be temporary, the duration of impacts may extend for approximately 36 months.

After the proposed action is in place, the replacement of existing open water by floodwall and gate structures would culminate in narrowing the opening of the IHNC from 250 ft to three openings that total 195 ft in width. Although the width of the channel is reduced, design of the gate structures allows for a 3,000 sq ft to 3,500 sq ft flow area to be maintained, which hydraulic modeling has indicated results in velocities similar to those experienced historically within the IHNC.

To assess access of managed species to EFH, ERDC has completed PTM to help predict the range of impacts of the proposed action for eight species of prey and predatory fish and invertebrates that utilize Lake Pontchartrain and surrounding waters during their life cycle (USACE 2009c). These species include four EFH species of this area (brown shrimp, white shrimp and red drum). In the model, managed species for which EFH has been designated EFH were given a behavior type based on actual behaviors used to recruit to nursery areas. Red drum, white shrimp, and brown shrimp were all designated as tidal lateral movers. Other conditions and limits of this model are described in section 3.2.4 (Aquatic Resources and Fisheries).

PTM for impacts on larval migration within the GIWW/INHC system indicates that after flow is restored at Seabrook, larvae will predominantly migrate from Lake Borgne into Lake Pontchartrain via the Rigolets and Chef Menteur Pass, and the GIWW due to placement of the MRGO closure at La Loutre and the Borgne structures; however the dominant pass utilized is highly dependent on the initiation point of the particles (Lake Borgne versus the GIWW) and the model designated direction of incoming tidal flow (east versus west) (USACE 2009c).

In the model runs, particles were initiated in several locations (MRGO, the GIWW, and Lake Borgne), but this discussion will focus on the Lake Borgne and the GIWW initiation cases. Incoming tidal flow was also set as east or west because of the dynamics of the system. The initiation points of the larval organism-like particles (GIWW or Lake Borgne) and the direction on the incoming tide both have an impact on the predicted percentage of recruitment into Lake Pontchartrain after the Seabrook project is complete.

According to USACE (2009c), there is no predicted impact on the recruitment of larval organisms when particles are initiated in Lake Borgne (change in of < 1 percent). However,

when particles are initiated in GIWW and incoming tide in the GIWW is west, recruitment declines 7.81 percent in September (49.86 percent to 42.05 percent) and 6 percent in March (57.58 percent to 51.58 percent; USACE 2009c). The majority of the particles recruit into Lake Pontchartrain via the IHNC with most of the impact occurring to tidal lateral behavior types (e.g. brown shrimp, white shrimp, Gulf menhaden, bay anchovy and red drum). When particles are initiated in GIWW and incoming tide in the GIWW is east, recruitment also declines 9.77 percent in September (33.72 percent to 23.95 percent) and 7.56 percent in March (32.79 percent to 25.23 percent; USACE 2009c). The majority of the particles recruit into Lake Pontchartrain via Chef Menteur Pass with most of the impact occurring to both bottom movers (e.g. Atlantic croaker) and tidal lateral behavior types (e.g. brown shrimp, white shrimp, Gulf menhaden, bay anchovy and red drum). The somewhat larger decline in recruitment with the east incoming tide could be due to the time and distance associated recruiting through Chef Menteur Pass. This predicted 6 percent to 10 percent decline in recruitment could have some direct impact to the overall population of these organisms because fewer organisms would occur in the system by altering access to designated EFH (USACE 2009c).

Given the predicted decline in recruitment, the proposed action would reduce productivity of EFH species (eggs, larvae, juveniles, and adults) which utilize the three passes (IHNC, Chef Menteur Pass, and the Rigolets) as conduits to recruit to nursery areas. Any reduction in tidal flows or changes in flow direction result in longer travel times and lower migration opportunities for EFH species. Larvae subjected to longer travel times may be in poor condition and exhibit higher respiration rates, slower growth rates, have less ability to find adequate prey, hide from predators and grow to maturity. If tidal flow is reduced through the IHNC, even though modeling results show that fewer organisms would be recruited in through the three passes, the greatest impacts could occur from juvenile and sub-adult EFH species migrating from the lake to the Gulf of Mexico.

Indirect Impacts to EFH

The proposed action would have both temporary and long-term (permanent) indirect impacts to EFH and species with designated EFH in the project area. These impacts would be expected to occur during construction activities (approximately 36 months) due to substantial changes in water quality (turbidity, salinity, and DO levels) and velocities, specifically for the 6 months to 12 months that the cofferdam is blocking flow in the IHNC. After construction is complete, continued changes in velocities and salinities are predicted, but changes in velocity would be relatively minor the majority of the time (see discussion of velocity below). However, during closure periods, passage of fish and crustaceans would be blocked. The relative degree of these impacts could be heightened if closures happen to coincide with monthly high tides and peak migration.

Siltation from filling the scour hole, constructing the cofferdam, and other construction activities could choke benthic organisms and create difficulty for predators and other organisms that depend on vision in order to capture prey. Siltation plumes of long duration could stress and kill benthic fauna. Diminished sunlight penetration may affect phytoplankton populations in the project area. Both these disturbances would impact EFH designated species in the project area by decreasing the abundance and variety of prey available, as well as their ability to catch prey. These impacts would be expected to be considerable while the scour hole is being filled and during construction of the cofferdam, even though BMPs would be used to the maximum extent possible. These indirect impacts would only occur for a short time. Although some increased turbidity levels are expected for the duration of construction, these increases would be less than turbidity levels expected during filling the scour hole and constructing the cofferdam, and therefore would not be considerable.

Dissolved Oxygen

DO modeling for the construction scenario and operation scenario was conducted to predict changes in DO from the implementation of various projects in the project vicinity. Modeling conditions, limitations and results are discussed in detail in section 3.2.2 (Water Quality).

Indirect impacts to EFH and EFH species may occur during construction due to changes in water characteristics. Impacts would most likely be temporary and caused by the displacement of organisms from localized areas due to elevated turbidity levels, decreased DO, and increased BOD associated with construction dredging and filling activities. The current DO concentrations in the IHNC are low especially near the bottom of the water column and in the scour hole under existing conditions. If conditions worsen during construction (specifically while the cofferdam is in place), most organisms would be expected to relocate until construction activities are complete; however, long-term depressed DO levels (during construction) in the project area may lead to behavioral changes, decreased growth rates, and decreased survivability in some EFH and EFH species. Sessile organisms would be expected to be negatively influenced greatly during construction. Organisms that are not buried during excavation and fill activities could be suffocated and could have to overcome 6 months to 12 months of low DO concentrations. It is possible that the IHNC could become a “dead zone” for sessile organisms until the proposed action is complete. Discussions and conclusions in this document are based on results of recent modeling. Additional modeling and monitoring is currently being investigated for the CED.

The temporary blockage of the IHNC has the potential to cause fish kills north and south of the cofferdam as a result of lower DO conditions. Although fish kills have been documented along the south shore of Lake Pontchartrain during August and September, the impacts from the cofferdam are expected to be greater than impacts that have been documented in the past. Low DO levels have been documented at the closure of the MRGO at Bayou La Loutre. If kills do occur they would be caused by the persistent low DO levels that can result from blocked flow. These would only occur while the cofferdam is in place. If fish kills occur, they would cause similar results to EFH (e.g., *Rangia* clams), EFH species (e.g. shrimps) and their prey items (e.g. crabs). It is improbable that the number of individuals killed would have an impact on the overall populations of these species. However, if large numbers of individuals are killed, populations would reach equilibrium within several years as the system comes to a new equilibrium from all the other ongoing projects in the area.

Filling the scour hole south of the Seabrook Bridge may cause permanent beneficial changes to DO levels in the IHNC after construction is complete and has the potential to ultimately improve water quality conditions in the project area. The beneficial impact of improving DO concentrations in the IHNC may result in organisms using less energy for respiration, which would allow them to allocate more energy to find food, hide from predators, or travel to nursery areas or spawning grounds. While DO may improve in the IHNC, other factors such as velocity may still inhibit the ability of organisms to traverse the IHNC successfully; likewise, DO could be degraded in some portions of the study area.

Salinity

TABS-MDS hydrodynamic numerical model (Tate et al. 2002) used for salinity modeling was conducted by ERDC to predict changes in salinity in the project vicinity (Martin et al. 2009). Modeling conditions, limitations and results are discussed in detail in section 3.2.2 (Water Quality).

Temporary and permanent impacts from localized alterations in salinity could occur in open-water areas as a result of new flood control alignment at Seabrook. These impacts could result from the constriction of freshwater influx and tidal flow through the IHNC from both sides of the

gate structures. With the MRGO closure at La Loutre in place, salt water intrusion from this source is already blocked. Modeling showed that salinity within the GIWW and the IHNC would be slightly diminished long-term. Maximum direct changes to salinity in the project area are expected to be less than a 1 ppt decrease. This predicted change in salinity should not impact EFH or EFH species as long as individuals are healthy. Some circumstances in which organisms may be impacted by 1.0 ppt change in salinity are: (1) the organism is already more vulnerable, i.e., weakened, stressed or diseased, (2) the organism is a sessile type (such as oysters, *Rangia* clams or barnacles), is located in an area with existing conditions near its optimal or lethal threshold, or may already inhabit a stressed environment, or (3) the resulting salinity causes important changes in types or quantity of prey available or predator-prey interactions. Impacts should not occur to populations of species with designated EFH in the project area. It is more likely that individual aquatic organisms may be impacted under the conditions described previously. Additionally, 1.0 ppt changes in salinity occur under natural estuarine conditions throughout tidal cycles and seasons; therefore, it is likely that organisms in the IHNC are already adapted to this type of salinity flux.

Lack of flow between the IHNC and Lake Pontchartrain while the cofferdam is in place could change salinities to the north of the project area, and therefore, alter water quality parameters and benthic habitat. Alterations could include potential benefits to benthic habitats and communities (prey items such as blue crabs, *Rangia* clams) in the southeastern portion of the lake. Due to the MRGO closure, much of this salinity alteration may already have occurred (Porrier 2009). Changes to salinity could also cause stress and behavioral changes to EFH species and their prey which may lead to increased predation in the vicinity of the project area.

Partially filling the scour hole in the IHNC may result in positive changes to salinity in this area of the IHNC by removing a sink for heavier saline water to be trapped. However, loss of this habitat may be more important as refuge for fish and crustacean populations.

Organisms which utilize tidal flow and salinity gradients for passage may follow the altered gradients to the Rigolets and Chef Menteur Pass instead to access nursery and breeding grounds closer to the Gulf of Mexico. Marsh areas such as those near Bayou Bienvenue, which may already contain altered salinity due to the MRGO closure at La Loutre, may be less accessible for organisms due to changes in tidal velocity and passage constraints. Alternatively, changes to tidal flow within the GIWW due to the MRGO closure at La Loutre may make traversing this reach of the waterway more direct since the sloshing effect from several waterway influences would have been alleviated (see Hydrodynamics Modeling Report, USACE 2009e). SAV beds (EFH) occurring on the eastern shore of Lake Pontchartrain (approximately 4 miles from the project area), may be positively affected by salinity changes and negatively affected by potential for increased use by organisms. If carrying capacity has been reached in the foraging and nursery areas of northeastern portions of Lake Pontchartrain, then additional population loads may be disadvantageous. Additional organisms or entire populations could increase resource pressure during the construction period and cause permanent effects to population numbers.

Velocity

ADH modeling was conducted by ERDC to predict velocities in the proposed action area. Modeling scenarios are reported in positive and negative numbers to demonstrate flood and ebb tidal movement (USACE 2009c). Modeling conditions with the MRGO closed and the Borgne Barrier in place are discussed in detail in section 3.2.1 (Hydrology).

During construction, velocity and circulation would be cut off between Lake Pontchartrain and the IHNC by the placement of a cofferdam that would span the width of the channel for approximately 6 months to 12 months of the construction sequence. Lack of passage between the IHNC and Lake Pontchartrain while the cofferdam is in place would have adverse effects on

transport and migratory patterns of EFH species and their prey. This would affect populations of EFH species and their prey which migrate to nursery habitats via the IHNC.

During the additional 24 months to 30 months of construction (IHNC at least partially open), velocities are expected to remain below historical conditions the majority of the time; however, velocities through the GIWW barge gate could increase up to 5.03 fps in September, and up to - 6.30 fps in March (USACE 2009c). EFH species and their prey are expected to be negatively impacted during these times of high velocity. Impacts could range from stress and behavioral changes that could lead to increased predation rates and decreased growth rates to burial of some individuals.

With the proposed action in place, modeled results show that velocities exceed 2.6 fps in the IHNC 40 percent of the time under September conditions, and 55 percent of the time under March conditions (figures 29 and 30). Velocities greater than 2.6 fps can inhibit fish passage and could cause adverse impacts to fish and other swimming organisms. Given these results, the proposed action could be manageable for larger fishes (>300mm) but could be difficult for smaller fishes (<100 mm) and macroinvertebrates (such as blue crabs) to traverse the gate at IHNC, and zooplankton (10 cm/sec) (Smith 2008). Therefore, fish movement through the gate could fluctuate with tides and weather events. During some weather or tidal events, conditions could occur that would hinder fish and macroinvertebrate movement; however, due to the existing human alterations to the project area, fish and invertebrates were most likely exposed to unfavorable conditions for passage under historical conditions (before the MRGO closure at La Loutre and the Borgne Barrier were constructed).

The proposed sector gate and two vertical lift gates would remain open except during extreme storm events, high flow events, and routine maintenance. Once the Seabrook gates are in place, a reasonable, conservative estimate of 10 non-storm related closures per year could occur in order to control/reduce velocities of the gates on the GIWW for safe navigation. While the gates are open, these structures would not significantly reduce flows, water surface elevations, or the tidal prism in the IHNC. Modeling conducted by USACE (2009c) indicates no detectable changes between the historical conditions and the proposed action conditions with all three gates open. The sector gate would be designed to allow flows to pass smoothly with minimal turbulence. The addition of the vertical lift gates on either side of the sector gate should also mitigate any turbulence caused by the gate itself.

After project completion, larval forms are expected to emerge into Lake Pontchartrain predominantly through the northeastern passes as the result of tidal flow, thereby affecting species using designated EFH. Although the Rigolets and Chef Menteur Pass are also viable options for passage into Lake Borgne, mobile organisms (shrimp and fish) may have a longer travel time to reach areas of appropriate salinity that support suitable prey items. The blind end in the IHNC temporarily created by construction activities may trap migrating life forms and prevent successful recruitment into Lake Pontchartrain. Even though tidal influences would still affect this area, survival of organisms until access is available or an alternate pathway is reached may not be feasible. This could be especially important for the blue crab fishery which is also an important prey item for species with designated EFH such as the red drum.

Cumulative Impacts to EFH

Cumulative impacts from the proposed action would involve the combined effects from the multiple IER projects and CWPPRA projects throughout the area; the Violet freshwater diversion project; MRGO closure at La Loutre, and several other wetland restoration projects (that would reduce potential adverse cumulative impacts by positively affecting the EFH within the project area). While these restoration projects would help to offset habitat loss from the proposed action, restoration projects are largely aimed at creating wetlands and not deep water

habitat that would be lost with the proposed action. However, the combined restoration projects would enhance marsh edge and shallow water habitat which have been shown to be more productive than habitats currently found in the project area, therefore the overall long-term net effect could be positive. In addition, the Violet freshwater diversion project would further lower the salinities of the marsh behind the structure. The combined effects of other projects including the Borgne Barrier, the closure of the MRGO at Bayou La Loutre, and the Violet Diversion would result in varying degrees of altered hydrology, salinity, DO (decreased DO concentrations in some portions of the project area and either no change or increased concentrations in other portions), and velocities throughout the project area. Direct and indirect changes from the proposed action are discussed previously but the changes from the combination of IER and CWPPRA projects would lead to substantial long-term cumulative impacts to EFH and EFH species throughout the project area and vicinity.

Potential cumulative impacts to EFH and EFH species with designated EFH in the project vicinity could occur from construction-related activities (e.g., turbidity from excavating and placing fill material, noise) and from the various other on-going, completed, and authorized projects (e.g., changes in salinity, velocity, and circulation/flow). Despite previous disturbances in the vicinity of the proposed action including the construction and maintenance of navigable waterways and existing HSDRRS, the proposed action would result in both beneficial (improving salinity, DO concentrations in some areas) and adverse impacts (temporary and permanent decrease in dispersion of organisms) to EFH and EFH species and their prey.

The proposed action, in combination with other projects, would have both positive and negative cumulative impacts to EFH and EFH species. Changes in salinity would occur from closure of the MRGO at Bayou La Loutre, the Borgne Barrier and from the proposed action. Modeling conducted by ERDC illustrated that the closure of the MRGO at Bayou La Loutre would have a significant effect on monthly average bottom salinity values not only in MRGO/GIWW/IHNC, but also in the Lake Borgne area and in some areas of Lake Pontchartrain. Most areas showed decreases of 3 ppt to 4 ppt, with MRGO showing the highest decrease in the region just north of the La Loutre closure at approximately 10 ppt (Martin et al. 2009b). The cumulative impact of the MRGO closure at Bayou La Loutre, the Borgne Barrier, and the proposed action is an overall decrease in salinity in the project area of approximately 0.25 ppt to 0.45 ppt.

The overall change to salinity could be both positive and negative to EFH and EFH species. It is expected that environmental conditions would become restored to those closer to historical conditions (e.g., pre-MRGO) including a more freshwater/brackish system. The predominately saline Golden Triangle marsh is expected to be altered to a lower salinity/brackish environment. Although salinity could resemble conditions prior to the dredging of the MRGO, species inhabiting the project vicinity are accustomed to salinity conditions prior to the implementation of these projects and these conditions would impact the existing habitats and resources as organisms adapt to the new environmental conditions. Reductions in salinity would impact the existing system in the short-term by creating localized community and habitat shifts, a disconnection between predators and prey species, changes in behavior, decreased growth rates, and shifts in populations of some species. Although the initial impact may be adverse and pronounced, it is expected to be beneficial in the long-term since the overall value of wetlands for EFH may be more productive after the ecosystem is restored to less saline conditions.

Dispersion of all life stages of organisms (such as red drum, white shrimp, and brown shrimp) and their prey species would experience an additive negative effect from the MRGO closure at La Loutre, the Borgne Barrier, and the proposed action. Organisms would be unable to use the MGRO and Golden Triangle marsh except for a small opening at Bayou Bienvenue for transport or migration into Lake Pontchartrain; however, the IHNC via the GIWW (except for approximately 6 months to 12 months during construction of the proposed action) and two passes in the eastern portion of the lake would be available. Even though larval transport and migration

of other life stages may be reduced into Lake Pontchartrain through the IHNC, organisms could see a benefit from the overall change in flow direction from the implementation of MRGO closure at La Loutre, the Borgne barrier, and the proposed action. If organisms used alternate routes such as the Rigolets and Chef Menteur Pass to enter Lake Pontchartrain, they could enter and settle out in the east portion of Lake Pontchartrain, which contains more abundant high quality habitat, including natural shorelines bordered with complex habitat mosaics (SAV, *Rangia* and oyster shells, and emergent marsh). Recruiting into a higher quality habitat could result in higher growth rates, less predation, and a greater chance of individuals successfully growing to maturity and spawning. However, if carrying capacity has already been reached, then the required transitory migration of additional organisms into this area could create pressure on resources due to competition and overuse. This could be disadvantageous to all species (including EFH species) that utilize this ecosystem.

For 6 months to 12 months during construction of the proposed action a cofferdam would block flow between the IHNC and Lake Pontchartrain. Additionally, the timing of the construction sequence of Seabrook and various features of the Borgne project including the GIWW sector gate and Bayou Bienvenue gate may overlap for up to 11 months. The GIWW will still allow flow and navigation through the gate during this phase of construction, but the channel opening will be constricted from 300 ft to 150 ft. A cofferdam will be placed at Bayou Bienvenue constricting the flow to four 48-inch culverts. The cofferdam at Seabrook, along with the constriction on the GIWW and cofferdam at Bayou Bienvenue (closed except four 48-inch culverts to allow some flow) would severely restrict access of species with designated EFH and their prey items to quality habitat. This restriction could cause an increase in predation of some lower trophic level species and change available prey items to predators, and cause predators to travel longer distances during construction and would extend an already lengthy trip, thereby decreasing growth rates, overall health, and possibly the ability of some individuals to reproduce.

These temporary constrictions previously discussed may result in fish kills. Fish kills in multiple areas within the project vicinity would impact a larger number of individuals that have been impacted at the Bayou La Loutre closure alone. Fish kills in these areas could cause slower growth rates in individuals subjected to this environment, and would decrease the survival rate of some species, thereby causing changes in overall community structure near the closures, and contributing to poor year classes for some populations. Greater impacts are expected from the MRGO closure due to the higher salinities and deeper water depth in the area as compared to the proposed action.

One possible positive benefit of the closures along the MRGO, the Borgne Barrier, and the proposed action would be that the Golden Triangle marsh and associated canals would become less saline which would return to salinity levels closer to historic, pre-MRGO levels. This overall freshening of water conditions is predicted to increase habitat value in the project vicinity which could assist in increasing the productivity of some EFH species. However, this potential increase in productivity could be minimized or changed due to interactions between the freshening predicted to occur and the subsidence of wetlands, and predicted relative sea level rise that is expected to occur. How these interactions would impact EFH, species with designated EFH, and their prey is currently a data gap and is discussed in the section 1.6 (Data gaps and Uncertainty).

Multiple gate structures and barriers across the Golden Triangle would alter tidal flow in the system thus increasing travel times for tidally dependent organisms. This would have negative impacts to the recruitment of some EFH species into Lake Pontchartrain. Hare et al. (2005) concluded that wind forcing, residual bottom inflow, and selective tidal stream transport are responsible for the ingress of larval fishes into the Chesapeake Bay, an estuary with similar species composition and abiotic conditions. The relative importance of the three mechanisms

differs among changes with larval development with tidal mechanisms becoming more important as individuals grow in size. USACE (2009c) PTM predicted that the cumulative impact would be a 6 percent to 10 percent decline in larval recruitment during March, and a 3 percent to 7 percent decline during September for all behavior types when simulation particles are released from Lake Borgne. Tidal lateral movers (red drum, white shrimp, and brown shrimp) experienced the largest decline in recruitment as compared to tidal vertical, bottom, and passive movers. This decline would be experienced equally through both Chef Menteur Pass and the IHNC. These results suggest that species with designated EFH may be more impacted by the reduction in tidal flow as compared to other species such as blue crab, spotted seatrout, and Atlantic croaker. If this reduction in recruitment does occur, Lake Pontchartrain could experience an overall decrease in population numbers and impact to overall life cycle stages of several species that play key roles in the community structure and provide a commercial industry for fishing.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct Impacts to EFH

Overall, direct impacts to EFH would be similar to those discussed under the proposed action; alternative #2 would impact the same total area of open water as the proposed action, approximately 9 acres (permanent and temporary impacts). Similar to the proposed action, the south scour hole would require partial filling, however less additional riprap and scour protection would be required under alternative #2, which would result in fewer construction-related impacts. Because the alternative #2 alignment would not directly cross the scour hole, it therefore would not require as much fill for the hole as would be necessary under the proposed action. Thus, under alternative #2, the scour hole would still provide some deep water habitat in the IHNC, but would not have the same beneficial impacts of improved DO and salinity conditions.

The alternative #2 alignment may trap water between its structures and the railroad bridge. The obstruction created by the gate placement near the Seabrook Bridge could provide “protected” areas in the vicinity of the structure for some organisms, but could also create a trap or gyre for many organisms which do not have sufficient control to manage any resulting eddies. Sloping the sill and directing the water flow through the center of the channel is intended to decrease this impact as well as reduce bank erosion. Depletion of food stores and increased predation stress could result. Resulting impacts could range from changes in behavior to slower growth rates to starvation and death and increased predation mortality. These impacts would be minimized and possibly negated if a training wall was designed and installed to prevent eddies and gyres. These design features would be utilized to the maximum extent possible.

Temporary impacts to EFH species due to construction activities and from placement of the cofferdam across the channel would be similar to the proposed action. Noise occurring from construction activities would occur for a similar period of time, therefore similar impacts from noise would occur with alternative #2.

Indirect Impacts to EFH

Indirect impacts to EFH and species with designated EFH in the project area would be similar to those experienced with implementation of the proposed action. Partial filling of the scour hole would result in less construction impacts and would still leave some deep water habitat in the IHNC, but would not have the same level of positive impacts of improved DO and salinity conditions.

Cumulative Impacts to EFH

Cumulative impacts to EFH under alternative #2 would be similar to those described under the proposed action.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Direct Impacts to EFH

Some direct impacts to EFH would be similar to those discussed under the proposed action; however, alternative #3 would impact a total of approximately 12 acres of open water (approximately 10 acres for permanent easements and 2 acres for temporary easements) as compared with 9 acres for the proposed action. Unlike the proposed action, no scour holes are known to be present near the alternative #3 alignment; therefore filling the scour hole and those associated positive and negative impacts would not be included for this alternative.

During construction, a temporary braced cofferdam would be installed in the channel around the approximate perimeter of the sector gate and vertical lift gates for a period of approximately 6 months to 12 months. Due to the location of alternative #3, this cofferdam would not block all flow between Lake Pontchartrain and the IHNC. Temporary impacts to EFH species due to construction of the cofferdam in a wider section of the channel (as compared to the proposed action) would result in fewer temporary impacts because some volume of water would be allowed to flow into Lake Pontchartrain between the shoreline and cofferdam, through the Turning Basin.

Water would not be trapped between the alternative #3 alignment and the railroad bridge, as it would be with the proposed action, because alternative #3 is 1,500 ft south of the Seabrook Bridge. However, gyres and eddies could possibly occur in the Turning Basin north and south of the floodwall and in the barge slip.

Noise occurring from construction activities would occur for a similar period of time therefore similar impacts from noise would occur with the proposed action and alternative #3.

Although alternative #3 spans twice the amount of water as the proposed action, the expanded footprint would not result in a larger area of open water and bottom habitat disturbance than the proposed action since the proposed action requires a large amount of ROW to be required to fill in the existing south scour hole.

Indirect Impacts to EFH

Indirect impacts to EFH and species with designated EFH would be similar to those described under the proposed action. Increases in disturbances would result from alternative #3 since it would require a longer construction period to build the gate structures and floodwalls across the Turning Basin. This would result in a longer disturbance to the water clarity, salinity, and DO. Additionally, under alternative #3, the scour hole would not require filling, thereby preserving deep water habitat for EFH species and decreasing mortality to EFH species that use this area as a refuge. However, according to model results, DO concentrations in the IHNC may remain low if this highly stratified deep habitat is not filled, possibly causing more stress of some species traversing the IHNC.

Cumulative Impacts to EFH

Cumulative impacts to EFH under alternative #3 would be similar to those described under the proposed action. Alternative #3 is located farther south from the Seabrook Bridge than the proposed action or alternative #3.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

Direct Impacts to EFH

Overall, direct impacts to EFH would be similar to those discussed under the proposed action; however, alternative #4 would permanently impact approximately 10 acres of open water as compared to 9 acres for the proposed action. Unlike the proposed action and alternative #2, no scour holes are known to be present near the alternative #4 alignment; therefore filling the scour hole and associated positive and negative impacts would not occur.

Indirect Impacts to EFH

Indirect impacts to EFH and species with designated EFH in the project area would be similar to those described under alternative #3.

Cumulative Impacts to EFH

Cumulative impacts to EFH under alternative #4 would be similar to those described under the proposed action.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

Direct Impacts to EFH

Overall, direct impacts to EFH would be similar to those discussed under the other alternatives; however, alternative #5 would impact a total of approximately 18 acres of open water (approximately 10 acres for permanent easements and 8 acres for temporary easements) as compared to 9 acres for the proposed action. Instead of filling the south scour hole, the scour hole north of the Seabrook Bridge in Lake Pontchartrain (figure 7) would need to be partially filled.

Temporary impacts to EFH species due to construction activities and from placement of the cofferdam would be less as compared to the proposed action and alternatives #2 through #4. Noise occurring from construction activities would occur for a longer period of time; however, the noise would be less contained because construction would occur in the lake. Additionally, construction in the lake would most likely impact a larger number of *Rangia* clams due to their higher density in the lake and the increased overall siltation expected with the larger structure of this alternative. Alternative #5 may also impact a greater number of large fishes since the northern scour hole is deeper and larger than the scour hole to the south.

Indirect Impacts to EFH

Under alternative #5, indirect impacts to EFH and species with designated EFH would be greater with regard to siltation, but less with regard to velocity, DO, and salinity than the proposed action. During construction, partial filling of the northern scour hole would result in fewer construction impacts from burial and or suffocation of organisms than the proposed action, and

would still leave some deep water habitat in the IHNC because only partial filling of the scour hole is required. The lake alignment would continue to allow flow between the IHNC and Lake Pontchartrain to be maintained throughout construction. Maintaining flow between the IHNC and Lake Pontchartrain would lessen the possibility of persistent anoxic conditions leading to fish kills, and would allow organisms to continue to be transported or migrate through the IHNC. Alleviating these impacts would have fewer negative effects on the behavior, growth rate, feeding, recruitment, and growth to maturity compared to the other alternatives. The increase in overall construction duration could impact EFH such as *Rangia* clams located near the project area, but once construction was complete populations would be able to recover. SAV is not expected to be negatively impacted by the location of this project during construction. Turbidity would be controlled to the maximum extent possible and the nearest SAV bed is 4 miles east of the project. The longer duration of construction noise may cause some behavioral changes to EFH species and their prey occupying the project area as compared to the other alternatives, but the types of impacts would be similar to the proposed action.

After alternative #5 is complete, DO and salinity concentrations would not be improved as much as the proposed action because only partial filling of the northern scour hole would occur.

Cumulative Impacts to EFH

Cumulative impacts to EFH under alternative #5 would be similar to those described under the proposed action with some slight differences due to the placement of the alignment in the lake, the partial filling of the north scour hole, and the phased construction which would not require blocking flow between the lake and the IHNC. Overall similar impacts would occur because the majority of changes such as salinity reductions, reduced tidal pulse, and increases in DO are due to the implementation of the Borgne Barrier, and the closure of MRGO at Bayou La Loutre. The Violet Diversion, if implemented, could also add to these impacts.

Slight differences to cumulative impacts would include an increase in direct impacts to EFH from the physical placement of alternative #5 in the lake which would result in a larger footprint as compared to the proposed action. This slight increase in the footprint would partially deplete the deep water habitat where large red drum and spotted seatrout are known to occur. A few other deep water holes occur in Lake Pontchartrain with the closest occurring in the IHNC; however this habitat is sparse. Partially depleting this habitat could create increased competition for space, slight decreases in growth rates, and increased predation by large fish capable of spawning. The number of fish and crustaceans impacted by the partial filling of the scour hole is not expected to cause changes in population for these species in Lake Pontchartrain.

Phased construction would reduce the cumulative impacts to species with designated EFH and their prey species by reducing the likelihood of fish kills that would occur with the proposed action (from the IHNC cofferdam). Fish kills would not be expected with alternative #5 because flow between the lake and the IHNC would remain continuous during construction. This would reduce the additive impact on the overall number of organisms killed by anoxic conditions even though construction would occur for a longer period of time. A reduction in the number of fish kills in the project vicinity would result in an increase in successful recruitment of larvae and juveniles into the lake thus more organisms would have a chance to grow to maturity.

3.2.6 Wildlife

Existing Conditions

Wildlife diversity and abundance within the project area are dependent on the quality and extent of suitable habitat available. Potential habitat areas that could be impacted by the proposed action include the open waters of Lake Pontchartrain and the man-made IHNC, small patches of

scrub-shrub community, and open grassy uplands maintained along the existing HSDRRS. Wetlands, Aquatic Resources and Fisheries, and Upland Resources are described in sections 3.2.3, 3.2.4, and 3.2.8 of this IER. The majority of terrestrial habitat within the project area occurs between the banks of the IHNC and the existing HSDRRS that parallels the channel.

Terrestrial wildlife habitat in the Seabrook area consists principally of disturbed or early successional herbaceous communities with limited areas of shrubs and small trees. The IHNC shoreline is often flooded during major storm events, making it difficult for trees to take root and grow large enough to establish themselves into the landscape. Land use in and around Seabrook consists predominantly of active and abandoned industrial properties owned by the Port of New Orleans. Vegetative communities associated with the existing HSDRRS are composed of mainly turf grasses with herbs and scattered shrubs and small trees. Grassy areas along the existing levees and floodwalls are subject to routine mowing, which prevents the grasses from growing tall enough to provide cover, limits vegetative diversity, and reduces habitat value. In addition, a large portion of the project area is paved and provides no wildlife habitat. Lake Pontchartrain Properties recreational vehicle (RV) park is located at the southern end of the project corridor, on the west bank of the IHNC near Slip No. 5 (figure 13). This RV park includes paved parking surfaces, landscaped grassy areas, and a few palm trees. Thus, there is very little quality habitat for terrestrial wildlife within the project area.

As described in section 3.2.8, the upland habitat within the project area is of relatively low quality. However, there are several acres of open water and shoreline which provide habitat for aquatic and semi-aquatic wildlife, particularly wading birds, waterbirds, and waterfowl. The IHNC is a man-made navigational channel consisting of a main channel with several small slips branching out from both the east and west banks. The aquatic habitat of the IHNC has been previously disturbed by dredging and construction activities related to navigation of large vessels. Due to the industrial noise, traffic, and repeated disturbance of the area, it is unlikely that many aquatic wildlife species permanently inhabit the Seabrook area of the IHNC; however, it is expected that they occasionally use the channel as a route to pass between the GIWW and Lake Pontchartrain.

Wildlife that typically inhabit terrestrial or brackish aquatic habitats such as those in the project area include a limited assemblage of amphibians, reptiles, birds, and mammals. Species from each of these classes that may occur in the habitats of the project area can be identified based on the geographical ranges and habitat preferences of each species. An amphibian that may occur in the terrestrial habitats is the Gulf Coast toad (*Bufo valliceps*). Reptiles that may utilize habitats such as those of the project area include the common snapping turtle (*Chelydra serpentina*) and green anole (*Anolis carolinensis*) (Conant and Collins 1998; Felley 1992; Wigley and Lancia 1998).

Mammals that may occur in the habitats of the project area include the muskrat (*Ondatra zibethicus*), cotton mouse (*Peromyscus gossypinus*), and raccoon (*Procyon lotor*) (Whitaker 1998; Wigley and Lancia 1998). Marine mammals that potentially may enter the IHNC and swim through the project area include the bottlenose dolphin (*Tursiops truncatus*), the only cetacean likely to occur in the project area (NOAA 2008), and the West Indian manatee (*Trichechus manatus*) (Abadie et al. 2000), which is endangered and discussed in section 3.2.8.

The bottlenose dolphin has not been observed to utilize the IHNC as an important habitat or migration route, and it is not known to regularly inhabit Lake Pontchartrain (Barry et al. 2008). A large number of dolphins typically occur in the Mississippi Sound and Lake Borgne to the east of Lake Pontchartrain. These dolphins can enter Lake Pontchartrain through the two natural tidal passes at the east end of the lake, The Rigolets and Chef Menteur Pass, and groups of dolphins were observed in these passes and the eastern end of Lake Pontchartrain in 2008 (Barry et al. 2008). Dolphins also could potentially enter Lake Pontchartrain through the IHNC via the

GIWW. A NOAA study (Barry et al. 2008) of a group of dolphins that remained in the eastern end of the lake in 2008 did not record observations of dolphins in the area of the IHNC in larger-scale surveys. NOAA reported that personnel of the Louisiana Department of Wildlife and Fisheries considered occurrences of bottlenose dolphins far from the eastern boundary of the lake to be uncommon (Barry et al. 2008). Thus, the bottlenose dolphin could occur in the project area, but such occurrences are expected to be rare.

Birds that may utilize the habitats of the project area include both non-migratory residents of the region and migratory species that are present only part of the year. Non-migratory species that may forage along the shoreline and in the open water of the area include the brown pelican (*Pelecanus occidentalis*), anhinga (*Anhinga anhinga*), Caspian tern (*Hydroprogne caspia*), royal tern (*Thalasseus maxima*), Forster's tern (*Sterna forsteri*), great blue heron (*Ardea herodias*), great egret (*Ardea alba*), black-crowned night heron (*Nycticorax nycticorax*), black skimmer (*Rynchops niger*), American coot (*Fulica americana*), and fish crow (*Corvus ossifragus*).

Migrant birds that may occur in the area during winter include the double-crested cormorant (*Phalacrocorax auritus*), common loon (*Gavia immer*), mallard (*Anas platyrhynchos*), lesser scaup (*Aythya affinis*), laughing gull (*Larus atricilla*), ring-billed gull (*Larus delawarensis*), and herring gull (*Larus argentatus*) (Dunn and Alderfer 2006, Wigley and Lancia 1998, America's Wetland 2009). There also is a potential for the non-migratory bald eagle (*Haliaeetus leucocephalus*) to forage for fish in the project vicinity, though the level of human activity in the area makes this unlikely. The bald eagle was recently delisted as a federally threatened species (August 2007), but it continues to be protected under the Bald and Golden Eagle Protection Act as well as the Migratory Bird Treaty Act. Habitats suitable for use by the bald eagle are present in Orleans Parish, and occurrences of the bald eagle have been recorded in the parish. However, habitats in the area of the IER #11 Tier 2 Pontchartrain project do not satisfy nesting requirements for the bald eagle, such as large bald cypress or other tall trees, and the bald eagle would not be expected to nest in the project area or to forage there frequently.

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to Wildlife

Under the proposed action, construction of the new structures across the IHNC would not result in the loss of high quality habitat for terrestrial wildlife because the footprint of the new gate structure on the banks of the IHNC would remain within areas along the floodwall/levee that are covered mainly by grass and are periodically mowed or are partially paved industrial areas (figure 5). A permanent loss of approximately 14 acres of potential wildlife habitat (both open water and uplands) and a temporary construction easement of approximately 12 acres would occur under the proposed action. Although there could be effects on terrestrial birds, mammals, reptiles, and amphibians from construction and clearing, the project footprint in these areas would affect marginal, mainly grassy habitat that has become established on the ROW along the roads, floodwalls and levees which does not provide important habitat for wildlife. A portion of the temporary construction easement required by the proposed action would be a staging area on the west bank of the IHNC. The staging area is currently leased from the Port of New Orleans for equipment storage by Shavers-Whittle Inc. It is largely covered by gravel or concrete, with small areas of weedy growth near the water's edge (figure 6, table 8). This area does not represent a high quality habitat for wildlife due to its lack of vegetation, proximity to industrial activities, and periodic disturbance by heavy equipment. Wildlife living in the relatively small area of terrestrial habitat impacted by the staging area could find similar habitat on adjacent shorelines farther south or north in the IHNC or along the shores of Lake Pontchartrain.

The relatively small areas of wildlife habitat potentially affected by the project are adjacent to areas of similar habitat. The presence of construction-related activity, machinery, and noise would be expected to cause most wildlife, terrestrial and aquatic, to avoid the construction area and adjacent habitats during the construction period. The greatest potential for effects on wildlife associated with the proposed action would occur during construction, which is anticipated to last approximately 36 months.

Aquatic wildlife using open-water habitats in the project area are mobile and could move to similar habitats in the area at the start of construction activities. Underwater noise from pile driving can be harmful to aquatic animals in many ways, producing effects that range from avoidance and other behavioral changes to injury and death. In particular, cetaceans such as the bottlenose dolphin are especially sensitive. Pile-driving activities in the IHNC could expose aquatic wildlife to high-intensity sound impulses in the immediate project area. However, the wildlife potentially present would be mainly birds, which could avoid the area during construction activities. Pile-driving activities in the IHNC would have the greatest potential to cause adverse effects on individual aquatic organisms present in the vicinity. Underwater noise from pile driving can be harmful in many ways to marine mammals, turtles, and fish. All of these animals are highly mobile and could move away from the sound. Therefore, the likelihood that they would be present when pile driving is occurring and would remain close enough to the sound source to be injured is very small. During construction, the cofferdam would span the entire canal, essentially damming the IHNC at Seabrook for approximately 6 months to 12 months and preventing bottlenose dolphins and other aquatic wildlife from passing between Lake Pontchartrain and the IHNC. If a dolphin were present within the IHNC and became blocked from reaching the lake by the cofferdam, it could exit the area and reach the lake via the GIWW and natural passages to the east. Due to the noise and traffic at the construction site, it is likely that this very mobile species would avoid the vicinity. In addition, the potential for effects on dolphins would be further reduced by the use of standard measures for the protection of manatees and sea turtles, which would be implemented to protect these threatened and endangered species during construction as described below for the proposed action (section 3.2.7). The simultaneous application of these measures to bottlenose dolphins would be similarly protective of this species.

The temporary cofferdam that would be installed during construction of the proposed action would not allow the movement of aquatic wildlife (in particular, marine mammals such as bottlenose dolphins and manatees) between the north and south sides of the alignment. However, these mammals have not been observed to utilize the IHNC as an important habitat or migration route, and alternative passages between Lake Borgne and Lake Pontchartrain would remain available to the east (the Rigolets and Chef Menteur Pass). After construction and removal of the cofferdam, the completed control structure is expected to provide adequate passage for aquatic wildlife to cross the barrier through the three gates. The infrequent operation of the gates on the IHNC would be relatively slow and would have little or no potential to injure wildlife during their closure. Consequently, direct impacts to marine mammals or other wildlife from the construction of the proposed action, temporary closure of the IHNC by a cofferdam, or subsequent operation of the structure would be minimal.

Indirect Impacts to Wildlife

Potential indirect impacts on wildlife from the proposed action mainly would involve the displacement of wildlife populations from the area within the project footprint. Movement of the limited numbers of wildlife that currently utilize this area into surrounding, unimpacted habitats would not be expected to result in exceedances of the carrying capacity of the extensive, adjacent, similar habitats.

Dolphins and birds could be affected if changes in hydrology and water quality affect their prey (e.g., fish, shrimp, and mollusks). However, temporary and permanent changes to prey species, associated with changes in velocity, salinity, and water quality are anticipated based on the results of hydrological modeling, as previously discussed in sections on Aquatic Resources and Fisheries (section 3.2.4), and EFH (section 3.2.5). During construction, there could be effects from the closure of the IHNC and associated changes in water circulation and recruitment patterns on the populations of fish and invertebrates utilized as prey by wildlife in the immediate area. Also, wildlife may avoid the area during construction because of the associated noise. However, such impacts would be temporary and minimal because most wildlife potentially affected, such as waterbirds, are highly mobile and able to forage elsewhere,

Cumulative Impacts to Wildlife

Potential cumulative impacts on wildlife from the proposed action mainly would involve the combined effects on wildlife from habitat loss and displacement of wildlife populations from the multiple LPV projects in the New Orleans area. The habitats that would be affected in the vicinity of the IHNC are similar to extensive areas of waterway and developed uplands in the New Orleans region. The potentially impacted habitat areas are very small in the context of similar habitats in the region. Movement of the limited numbers of wildlife that currently inhabit these areas into surrounding, unimpacted habitats would not be expected to result in exceedances of the carrying capacity of the extensive, adjacent habitats. In addition, wildlife habitat impacts from this and other LPV flood control projects would be mitigated through wetland creation and enhancement activities designed to minimize cumulative habitat losses in the project area and the region. As a result, the proposed action would contribute negligibly to the minimal cumulative impacts on wildlife occurring in the region.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct, Indirect and Cumulative Impacts to Wildlife

Under alternative #2, the direct impacts to wildlife habitat would be similar to the proposed action. Compared to the proposed action, alternative #2 would result in a smaller permanent loss of potential wildlife habitat (approximately 12 acres of open water and uplands), but a slightly larger area would be required for temporary construction easements (approximately 15 acres). The same staging area would be used, and the gate control building would be in the same place as under the proposed action. The indirect and cumulative impacts to wildlife would be essentially the same as were described for the proposed action.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Direct Impacts to Wildlife

The principle difference between alternative #3 and the proposed action is that it would result in a larger loss of open-water and terrestrial habitat because this alignment would cross both the Turning Basin and the western shore of the IHNC. Approximately 18 acres of potential wildlife habitat would be permanently lost under alternative #3. In addition, a temporary easement of roughly 12 acres would be required. Approximately 7 acres of permanent ROW would be necessary for raising the I-walls to T-walls north of the control structure. Although this represents a permanent loss of habitat, it is currently occupied by France Road and the existing floodwall ROW, which do not provide quality wildlife habitat. Due to the industrial uses of the shores and canal, the effect of the larger amounts of lost habitat on wildlife would be minimal.

Therefore, although they would be larger, the direct impacts to wildlife from alternative #3 would be similar as those described for the proposed action.

Indirect and Cumulative Impacts to Wildlife

Indirect and cumulative impacts to wildlife under alternative #3 would be essentially the same as those described for the proposed action.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

Direct Impacts to Wildlife

The direct impacts to wildlife due to alternative #4 would be essentially the same as those described for alternative #3 and the proposed action. The principle difference amongst these alternatives is the amount of aquatic and terrestrial habitat permanently lost. A permanent loss of approximately 15 acres of potential wildlife habitat (open water and uplands) and a temporary loss of approximately 12 acres for construction easements would be required under alternative #4. An additional 9 acres of permanent ROW would be necessary for the raising of the I-walls to T-walls north of the control structure. Although this represents a permanent loss of habitat, it is currently occupied by France Road and the existing floodwall ROW, which do not provide quality wildlife habitat. Under this alternative, the terrestrial impacts would be similar to alternative #3, while the aquatic impacts would be similar to the proposed action.

Indirect and Cumulative Impacts to Wildlife

Indirect and cumulative impacts to wildlife under alternative #4 would be essentially the same as those described for the proposed action.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

Direct Impacts to Wildlife

The direct impacts to wildlife due to alternative #5 would be similar to those described for alternative #3. A larger amount of aquatic habitat would be lost than under the proposed action, due to the placement of the sector gates to the north of the Seabrook Bridge. Due to the increased amount of construction in the lake itself, there could be an increased potential for impacts to aquatic wildlife, such as the bottlenose dolphin and manatee that may be more likely to occur in the lake than the canal. Smaller amounts of terrestrial habitat would be lost than under alternative #3, however, as the tie-ins would be placed in areas that are already paved which represent poor wildlife habitat. Potential wildlife habitat impacts under alternative #5 include approximately 12 acres lost to permanent structures and associated ROW, and a temporary loss of approximately 21 acres during construction. For a description of the impacts to Aquatic Resources and Fisheries and EFH under this alternative, see sections 3.2.4 and 3.2.5.

Indirect and Cumulative Impacts to Wildlife

Indirect and cumulative impacts to wildlife under alternative #5 would be essentially the same as those described for the proposed action.

3.2.7 Threatened and Endangered Species

Existing Conditions

In accordance with the provisions of the Endangered Species Act of 1973 (87 Stat. 884, as amended; 16 USC 1531 et seq.), the CEMVN requested information on protected, proposed, and candidate species and critical habitat that may occur in the vicinity of IER #11 and the proposed Tier 2 Pontchartrain project from the USFWS office in Lafayette, Louisiana. In response and in accordance with the provisions of the ESA and the Migratory Bird Treaty Act of 1918 (40 Stat. 755, as amended; 16 USC 703 et seq.), USFWS responded in a letter dated 2 February 2009 (appendix E). The USFWS determined that, of the federally listed species that occur in the region and for which the USFWS has responsibility, most were unlikely to be adversely affected by the proposed action. The USFWS identified only one species that potentially could be impacted by the IER #11 Tier 2 Pontchartrain project: the endangered West Indian manatee (*Trichechus manatus*) (USFWS 2009).

In addition, four federally listed species that are the responsibility of the NMFS have a potential to occur in the project area: the threatened Gulf sturgeon (*Acipenser oxyrinchus desotoi*), the endangered Kemp's ridley sea turtle (*Lepidochelys kempii*), the threatened loggerhead sea turtle (*Caretta caretta*), and the threatened green sea turtle (*Chelonia mydas*). As part of its consultation regarding these species, NMFS provided to CEMVN a letter (NMFS 2009) in which it concurred with CEMVN's determination that this project individually, as well as in conjunction with other IER projects on the south shore of Lake Pontchartrain, is not likely to adversely affect listed sea turtle species, Gulf sturgeon, or designated Gulf sturgeon critical habitat. The potentially affected threatened and endangered species are discussed below.

West Indian Manatee

The West Indian manatee is federally and state-listed as endangered and also is protected under the Marine Mammal Protection Act of 1972, under which it is considered depleted (USFWS 2001). It occurs in both freshwater and saltwater habitats within tropical and subtropical regions and includes two subspecies, the Florida manatee (*T. manatus latirostris*) and the Antillean manatee (*T. manatus manatus*). The primary human-related threats to the manatee include watercraft-related strikes (impacts and/or propeller strikes), crushing and/or entrapment in water control structures (flood gates, navigation locks), and entanglement in fishing gear (discarded fishing line, crab traps) (USFWS 2007a).

The Florida manatee can occur throughout the coastal regions of the southeastern U. S. and may disperse greater distances during warmer months; it has been sighted as far north as Massachusetts and as far west as Texas. However, the manatee is a subtropical species with little tolerance for cold, and it returns to and remains in the vicinity of warm-water sites in peninsular Florida during the winter (USFWS 2007a; USFWS 2007b). Thus, the manatee is not a year-round resident in Louisiana, but it may migrate there during warmer months. Manatees prefer access to natural springs or man-made warm water and waters with dense beds of submerged aquatic or floating vegetation. Manatees prefer to forage in shallow grass beds that are adjacent to deeper channels. They seek out quiet areas in canals, creeks, lagoons, or rivers, using deeper channels as migratory routes (USFWS 1999).

There were 110 reported sightings of manatees in Louisiana between 1975 and 2005 (LaDWF 2005a). Occurrences and distribution appear to be increasing and are regularly reported in the tributaries along the north shore of Lake Pontchartrain and within canals within adjacent coastal marshes. Although manatees can occur in the IHNC, preferred food sources (submerged or floating aquatic vegetation) are absent from the project area. Given the extensive areas of

relatively undisturbed wetlands in the region and the frequent passage of boats and large vessels through the IHNC, it is unlikely that manatees would utilize this area as habitat or frequently occur in the project area.

Gulf Sturgeon

The Gulf sturgeon is federally listed as threatened throughout its range and is state-listed as threatened in Louisiana. It supported an important commercial fishing industry during the late 19th and early 20th centuries. A minor commercial fishery was reported to exist for Gulf sturgeon in Lake Pontchartrain and its tributaries during the late 1960s (USFWS and NOAA 2003). Throughout most of the 20th century, Gulf sturgeon suffered population declines due to over fishing, habitat loss, water quality deterioration, and barriers to historic migration routes and spawning areas (dams). In 1991, the Gulf sturgeon was listed as a threatened species under the Endangered Species Act (16 USC 1531 et seq.). The present range of the species extends from Lake Pontchartrain and the Pearl River system in Louisiana and Mississippi east to the Suwannee River in Florida (USFWS and NOAA 2003).

The Gulf sturgeon is an anadromous fish that migrates from saltwater into large coastal rivers to spawn and spend the warm months. Subadults and adults typically spend the 3 to 4 coolest months in estuaries or Gulf of Mexico waters before migrating into rivers as temperatures increase. This migration typically occurs from mid-March through June. Most adults spend 8 to 9 months each year in rivers before returning to the estuary or the Gulf of Mexico by mid-November to early December. Thus, the Gulf sturgeon spends the majority of its life in freshwater (USFWS and GSMFC 1995), yet subadult and adult Gulf sturgeon do not feed significantly in freshwater. Instead, they rely almost entirely on estuarine and marine habitats for feeding. Young-of-the-year and juveniles feed mostly in the riverine environment (USFWS and NOAA 2003). The diet of the Gulf sturgeon consists predominantly of invertebrates captured by foraging in sediment. The types and sizes of invertebrates consumed vary according to life history stage and annual migration. Adults in estuaries and coastal waters consume mainly amphipods, isopods, gastropods, brachiopods, polychaete worms, lancelets, and shrimp. Fish are seldom eaten, and detritus is consumed incidentally while foraging (USACE 2006c).

Critical habitat identifies specific areas that are essential to the conservation of a listed species. Various activities in or adjacent to each of the critical habitat units may affect certain physical and biological features necessary to the preservation of the species and, therefore, may require special management considerations or protection. Fourteen geographic areas (units) among the Gulf of Mexico rivers and tributaries have been designated as critical habitat for the Gulf sturgeon. Offshore critical habitat extends from Lake Borgne and the Rigolets along the Gulf Coast to the Suwannee Sound, Florida. Of the 14 units designated by USFWS and the NMFS among Gulf of Mexico rivers and tributaries, Units 1 to 7 are river systems and Units 8 to 14 are estuarine and marine systems (USFWS and NOAA 2003). The project area includes a portion of Unit 8, which encompasses Lake Pontchartrain east of the Lake Pontchartrain Causeway, all of Little Lake, the Rigolets, Lake Catherine, Lake Borgne, and the Mississippi Sound. Critical habitat follows the shorelines of each water body. Estuaries and bays located adjacent to riverine units were designated as critical habitat to protect unobstructed passages for sturgeon between feeding and spawning areas (USACE 2006c). Sturgeon migrations to rivers that enter Lake Pontchartrain follow routes through Lake Borgne and the Rigolets. Studies conducted by the LaDWF have shown the presence of Gulf sturgeon in Lake Pontchartrain, the Rigolets, and Lake Borgne during the winter and during periods of migration to and from marine environments. Thus, critical habitat was designated for the Gulf sturgeon in each of these areas (USACE 2006c).

The proposed action and alternatives #2, #3, and #4 alignments in the IER #11 Tier 2 Pontchartrain project area would be within the IHNC south of the designated critical habitat for

the Gulf sturgeon in Lake Pontchartrain. The alternative #5 alignment would be immediately north of the IHNC within the critical habitat area of the lake. Gulf sturgeon potentially could pass through or near the IHNC principally during the 3 to 4 coolest, winter months and periods of migration between Lake Pontchartrain and Lake Borgne. The Gulf sturgeon would not be expected to occur in the project area during the 8 to 9 warmer months of the year. The area along the south shore of Lake Pontchartrain is relatively unlikely to be used as a migratory route by Gulf sturgeon because the rivers to which they migrate are on the north shore of the lake. Although, the IHNC could provide a migratory route between Lakes Borgne and Pontchartrain for individual sturgeon, sightings or captures of Gulf sturgeon have not been reported from the IHNC. Sturgeon migrations to rivers that drain to Lake Pontchartrain have been shown by tracking studies to predominantly follow a route through the Rigolets (USACE 2006c).

Although Gulf sturgeon would not be expected to utilize the IHNC as an important migratory route to the rivers on the north shore, they potentially could forage in the shallow, inshore lake habitat near the mouth of the IHNC in winter. Gulf sturgeon would not be expected to utilize the project area in or near the IHNC as a significant habitat component because the sediments in this area do not have the characteristics that Gulf sturgeon prefer for foraging. Sediments within the IHNC near the proposed action alignment consist of silt, clay, and sand (USACE 2008b). Observations of Gulf sturgeon in marine and estuarine habitats have found them to be associated with mainly sand as well as sand/mud bottoms (USFWS and GSMFC 1995; Harris 2003). The IHNC is an artificial waterway with heavy boat traffic, a highly developed shoreline, and very limited habitat value for the Gulf sturgeon. The area of Lake Pontchartrain near the mouth of the IHNC similarly is a heavily trafficked and developed area. Thus, any presence of Gulf sturgeon in the project area likely would be transitory and occasional.

Kemp's Ridley, Loggerhead, and Green Sea Turtles

Sea turtles are air-breathing reptiles with large flippers and streamlined bodies. They inhabit tropical and subtropical marine and estuarine waters around the world. Of the seven species in the world, six occur in waters of the U.S., and all are listed as threatened and endangered. The three species identified by NMFS as potentially occurring in the vicinity of the project area are similar in appearance, though they differ in maximum size and coloration.

The Kemp's ridley is the smallest of these sea turtles; adults average about 100 pounds (lbs) with a carapace length of 24 inches to 28 inches and a shell color that varies from gray in young individuals to olive green in adults. It has a carnivorous diet that consists mainly of crabs and may also include fish, jellyfish, and mollusks. The loggerhead is the next largest of these three species; adults average about 250 lbs with a carapace length of 36 inches and a reddish brown shell color. It has an omnivorous diet that includes fish, jellyfish, mollusks, crustaceans, and aquatic plants. The green sea turtle is the largest of the three; adults average 300 lbs to 350 lbs with a length of more than 3 ft and brown coloration (its name comes from its greenish colored fat). It has a herbivorous diet of aquatic plants, mainly seagrasses and algae, which is unique among sea turtles.

All three species are known to forage as juveniles and adults in nearshore waters, including estuaries, in Louisiana and may be more likely to occur there in months when the waters are warmer. The Kemp's ridley and loggerhead turtles potentially could find suitable foraging habitat for invertebrates and fish in the open waters of Lake Pontchartrain. The green turtle is less likely to occur there due to the scarcity of the seagrasses on which they feed. All three species nest on sandy beaches, which are not present in the project area, and the Kemp's ridley does not nest in Louisiana. The life stages that may occur in the Lake Pontchartrain area are likely to be older juveniles to adults (NMFS 2008). The IHNC is an artificial waterway with heavy boat traffic, a highly developed shoreline, and negligible habitat value to these sea turtle species. Thus, any presence of sea turtles in the project area would be transitory and occasional.

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

As discussed previously, the manatee was the only federally listed endangered or threatened species identified by USFWS as being under their jurisdiction and having a potential to be impacted by the IER #11 Tier 2 Pontchartrain project. The USFWS concurred with the CEMVN, in a letter dated 2 February 2009 (appendix F), that the proposed action would not have adverse impacts on the manatee. In addition, there is the possibility of transitory, occasional occurrences in the project vicinity of four species under NMFS jurisdiction: the Gulf sturgeon and Kemp's ridley, loggerhead, and green sea turtles. As part of its informal consultation with NMFS regarding potential effects of the IER #11 Tier 2 Pontchartrain project on these four species, the CEMVN submitted to NMFS a request for concurrence with its conclusions that these species are not likely to be adversely affected by the proposed action and NMFS concurred in a letter dated 31 August 2009 (appendix E).

Direct Impacts to Threatened and Endangered Species

Construction of the proposed action would result in the loss of a limited area of marginal aquatic habitat for the five threatened and endangered species potentially affected. The aquatic footprint of the entire alignment, including the gates and the floodwalls, would cover an area of approximately 7 acres of open water habitat in the channel, and approximately 2.5 additional acres in Slip No. 6 (figure 6) may be temporarily disturbed by use as a staging area during construction (table 8). The manatee and Gulf sturgeon have the potential to occur in the area during only part of the year, and such occurrences, particularly for the manatee, are expected to be infrequent. Sea turtle occurrences in the area also appear to be infrequent and are less predictable but least likely during the colder months.

The greatest potential for direct effects on these five listed species from the proposed action would occur during the construction period (estimated to be approximately 36 months). The presence of construction-related activity, machinery, and noise likely would cause the manatee, sturgeon, and sea turtles to avoid the project area during construction. Pile-driving activities in the IHNC would have the greatest potential to cause adverse effects on individual aquatic organisms present in the vicinity. Underwater noise from pile driving can be harmful in many ways to marine mammals, turtles, and fish. All of these species are highly mobile and could move away from the sound. Therefore, the likelihood that they would be present when pile driving is occurring and would remain close enough to the sound source to be injured is very small.

During construction, the cofferdam would span the entire canal, essentially damming the IHNC at Seabrook for approximately 6 months to 12 months and preventing these species from passing between Lake Pontchartrain and the IHNC. If a manatee, Gulf sturgeon, or sea turtle were present within the IHNC and became blocked from reaching the lake by the cofferdam, it could exit the area and reach the lake via the GIWW and the natural passages to the east. Due to the noise and traffic at the construction site, it is likely that these mobile species would avoid the vicinity. The potential for adverse impacts on threatened and endangered species due to adverse effects on water quality of inshore areas of Lake Pontchartrain or the IHNC during the construction period would be minimized through adherence to regulations governing stormwater runoff at construction sites and the use of BMPs and SWPPPs, as discussed in section 3.2.2. Consequently, impacts on water quality in Lake Pontchartrain are expected to be temporary and minimal, and Gulf sturgeon critical habitat within the lake would not be adversely affected by construction of the proposed action.

In order to minimize the potential for construction activities under the proposed action to cause impacts to the manatee, standard manatee protection measures would be followed. These procedures have been recommended by USFWS (USFWS 2009) and adopted by USACE (2005) for use in situations where in-water construction activities potentially could occur where manatees may be present. These procedures include the following:

All contract personnel associated with the project would be informed of the potential for manatees to be present and of the need to avoid collisions with manatees, which are protected under the Endangered Species Act and the Marine Mammal Protection Act of 1972. All construction personnel would be responsible for observing water-related activities for the presence of manatees. Temporary signs would be posted before and during all construction activities to remind personnel to be alert for the possible presence of manatees during active construction operations and within vessel movement zones in the work area; at least one sign would be placed where it would be visible to the vessel operator. Siltation barriers would be made of material in which manatees could not become entangled and would be properly secured and monitored if used. If a manatee were to be sighted within 100 yards of the active work zone, special operating conditions would be implemented, including: no operation of moving equipment within 50 ft of a manatee; all vessels would operate at no wake/idle speeds within 100 yards of the work area; and siltation barriers, if used, would be re-secured and monitored. Activities would not resume until the manatee has left the 100-yard buffer zone around the work area on its own accord. Then, special operating conditions would no longer be necessary, and careful observation would resume. Any sighting of a manatee would be immediately reported to the USFWS Lafayette, Louisiana field office and the Natural Heritage Program of the LaDWF.

In addition to the Standard Manatee Protection Measures for in-water work, signs will be posted within work areas associated with operation of the flood control structures to ensure that operators are aware of the potential presence of manatee during the periodic closure of the structures. To ensure the endangered West Indian manatee would not be impacted during operation of the surge barrier structures the Corps will reinitiate ESA coordination with the Service during the development of the Water Control Plan.

In order to minimize the potential for construction activities under the proposed action to cause impacts to sea turtles, construction conditions recommended by NMFS would be followed. These conditions include the following:

All personnel associated with the project would be instructed of the potential presence of sea turtles and the need to avoid collisions with sea turtles. All construction personnel would be responsible for observing water-related activities for the presence of these species. All construction personnel would be advised that there are civil and criminal penalties for harming, harassing, or killing sea turtles, which are protected under the Endangered Species Act of 1973. Siltation barriers would be made of materials in which sea turtles cannot become entangled, be properly secured, and be regularly monitored to avoid protected species entrapment. Barriers would not block sea turtle entry to or exit from designated critical habitat without prior agreement from the NMFS' Protected Resources Division, St. Petersburg, Florida. All vessels associated with the construction project would operate at "no wake/idle" speeds at all times while in the construction area and while in water depths where the draft of the vessel provides less than a four-foot clearance from the bottom. All vessels would preferentially follow deep-water routes (e.g., marked channels) whenever possible. If a sea turtle is seen within 100 yards of the active daily construction/dredging operation or vessel movement, all appropriate precautions would be implemented to ensure its protection. These precautions would

include the cessation of operation of any moving equipment closer than 50 ft of a sea turtle. Operation of any mechanical construction equipment would cease immediately if a sea turtle is seen within a 50 ft radius of the equipment. Activities would not resume until the protected species has departed the project area of its own volition. Any collision with and/or injury to a sea turtle would be reported immediately to the NMFS' Protected Resources Division (727-824-5312) and the local authorized sea turtle stranding/rescue organization.

The eastern portion of Lake Pontchartrain is designated as critical habitat for the Gulf sturgeon. The project area is approximately 600 ft south of Lake Pontchartrain and the critical habitat, which follows the shoreline. The potential for this critical habitat to be impacted by adverse effects on water quality during the construction period would be minimized through the use of BMPs and adherence to regulations governing stormwater runoff at construction sites. To avoid the movement of sediments north into Lake Pontchartrain and Gulf sturgeon critical habitat, the contractor would fill in the south scour hole and construct the cofferdam only during slack tide in the IHNC, when water is moving from Lake Pontchartrain into the IHNC. In addition, if possible with the flows experienced in the project area, the contractor would install and maintain a Type III silt barrier/curtain at a distance not to exceed 500 ft upstream and downstream from the point of discharge of the fill. The contractor would be required to take three readings per work day with a turbidity meter at locations not to exceed 500 ft upstream and downstream from the point of discharge to ensure that at no time is a difference in turbidity of 50 NTU exceeded. With the use of such procedures, sedimentation impacts from the proposed action on Gulf sturgeon critical habitat would be unlikely. Thus, the construction of the proposed action would not be expected to adversely impact endangered or threatened species or Gulf sturgeon critical habitat.

Following removal of the cofferdam, the manatee, Gulf sturgeon, and sea turtles would be able to swim through the IHNC sector gate with little hindrance when the gates are open. The gates would remain in the open position except during storm periods or maintenance activities. The rest of the time, flow would be maintained through the gates, allowing passage for these species. Particularly for the manatee, however, these gates could pose a limited risk of injury during the long-term period of operation. Entrapment in water-control structures and navigational locks is the second largest human-related cause of manatee deaths (USFWS 2001). The gate would be closed only infrequently as needed to prevent flooding associated with major storms, high flow events, and for maintenance. The low likelihood of a manatee being present in the project area because it does not provide suitable/preferred manatee habitat, combined with the low likelihood of a gate being actively closed when a manatee is present, would minimize the potential for a manatee to be trapped or injured by operation of the gate. In addition, the relatively slow movement of the gate would likely give a manatee time to move out of the gate opening. The faster-swimming sturgeon and sea turtles would unlikely be at risk from injury due to the closing of the gates.

Collisions with boats and barges are a primary human-related threat to manatees and sea turtles and pose a risk to these species in the IHNC under existing conditions. Under the proposed action, the presence of gates on the IHNC at this location would constrict the channel through which both vessels and wildlife pass, increasing the potential for injuries to manatees and sea turtles should they swim through the sector gate at the same time a vessel is passing through. Given the rarity of manatees and sea turtles in the project area, the likelihood of this occurrence is very low. In addition, the slow speeds of vessels required as they pass through the gate would increase the response time available to these animals to avoid a collision and, if an impact occurs, the degree of injury generally would be lower if the boat or barge is operating at slower speeds (USFWS 2007a). The vertical lift gates on either side of the sector gate would provide two passages for these species that are not open to navigational traffic, and although it is not

known if the animals would actively choose this option, the presence of the lift gates would further reduce the odds of boat-animal collisions.

In summary, there is the possibility of occasional, transitory occurrences of five federally listed species (the manatee, Gulf sturgeon, and Kemp's ridley, loggerhead, and green sea turtles) in the project area. The manatee could transit the area sporadically during the summer, Gulf sturgeon may be present in Lake Pontchartrain during several months mainly in winter, and sea turtles may enter the area rarely during warmer months. The potential for individuals of any of these species to be impacted by the proposed action appears to be minimal. Procedures for preventing disturbance or injury of these species would be employed during construction, further minimizing the potential for individuals to be affected by the proposed action. Therefore, the manatee, Gulf sturgeon, and Kemp's ridley, loggerhead, and green sea turtles, as well as Gulf sturgeon critical habitat, would be unlikely to be adversely affected by direct impacts from the proposed action.

Indirect Impacts to Threatened and Endangered Species

Indirect impacts on endangered or threatened species are effects that could occur later in time than direct impacts but still are reasonably certain to occur (NMFS 2006). Given that future operation of the new structure at the proposed alignment would be the same as described previously, indirect impacts on endangered or threatened species from the proposed action would be essentially the same as direct impacts. As discussed in section 3.2.4, changes in hydrology may affect aquatic communities in the project area, including effects on the passive transport of eggs and larvae of fish and invertebrates between Lake Pontchartrain and the IHNC. However, any such changes would not adversely affect these threatened and endangered species because they are not known or expected to forage in the site vicinity and are not dependent for food on the organisms that may be affected in the project area. Thus, indirect impacts would be unlikely to adversely affect the manatee, Gulf sturgeon, or Kemp's ridley, loggerhead, or green sea turtles.

Cumulative Impacts to Threatened and Endangered Species

Cumulative impacts on endangered and threatened species from the proposed action could occur mainly as a result of the combined effects of this project and the other LPV flood control projects in the New Orleans area on habitat available to the manatee, Gulf sturgeon, and Kemp's ridley, loggerhead, and green sea turtles. The habitats that would be directly affected in the vicinity of the project area on the IHNC are not high-quality, unique, or critical habitats for these species. The potentially impacted habitat areas within the IHNC are extremely small in the context of similar habitats in the region. If the area impacted by the construction of the proposed action were added to the areas of similar habitats potentially impacted by other LPV projects, the loss of this type of aquatic habitat would be negligible compared to the available habitat remaining. In addition, closure of the MRGO at Bayou La Loutre would cut off a direct connection with the Gulf of Mexico that likely has facilitated the movement of species, particularly sea turtles, northward toward the IHNC and the project area. Consequently, this closure may further reduce the numbers of individuals of threatened or endangered species that migrate through the project area, in turn reducing the potential for direct impacts. Migration by Gulf sturgeon between marine environments and the rivers that drain into Lake Pontchartrain from the north potentially may be impeded by the combination of structures, especially the MRGO closure at La Loutre. However, due to the post-construction operation plans for the various gates (open unless threatened by a storm or for periodic maintenance), it is expected that the proposed action would have a minimal additional cumulative impact on Gulf sturgeon migration. In addition, other passages, principally Chef Menteur Pass and the Rigolets, would not be altered, allowing continued migration between the Gulf of Mexico and Lake Pontchartrain via these natural routes. Thus, cumulative impacts on endangered or threatened species from other actions in conjunction

with the proposed action would be unlikely to adversely affect the manatee, Gulf sturgeon, or sea turtles.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct Impacts to Threatened and Endangered Species

The principle difference between alternative #2 and the proposed action is that it would result in a smaller, permanent loss of open-water habitat (approximately 4 acres versus 7 acres) (figure 11, table 8). Assuming the procedures discussed for the proposed action would be employed to prevent injury to manatees and sea turtles and sedimentation impacts on Gulf sturgeon critical habitat during in-water construction activities, direct impacts to threatened and endangered species from alternative #2 would be essentially the same as those described for the proposed action. Alternative #2 would not be likely to adversely affect the manatee, Gulf sturgeon, or Kemp's ridley, loggerhead, or green sea turtles.

Indirect and Cumulative Impacts to Threatened and Endangered Species

Indirect impacts on endangered or threatened species from alternative #2 would be essentially the same as described previously for the proposed action. Thus, indirect and cumulative impacts from alternative #2 would not be likely to adversely affect the manatee, Gulf sturgeon, or Kemp's ridley, loggerhead, or green sea turtles.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Direct Impacts to Threatened and Endangered Species

Principle differences between alternative #3 and the proposed action are that alternative #3 would have a longer construction period and would result in a slightly larger permanent loss of open-water habitat (approximately 10 acres versus 7 acres) because this alignment would extend across the Turning Basin in the IHNC (figure 12, table 8). The longer duration of construction and larger footprint of this alternative potentially could increase the risk of a threatened or endangered species being directly impacted by alternative #3, but any such increase in risk likely would be minimal. Assuming the procedures discussed for the proposed action would be employed to prevent injury to manatees and sea turtles and sedimentation impacts on Gulf sturgeon critical habitat during in-water construction activities, alternative #3 would not be likely to adversely affect the manatee, Gulf sturgeon, or Kemp's ridley, loggerhead, or green sea turtles. In addition, the alternative #3 alignment would not require that the IHNC close during construction, therefore, aquatic species would be able to pass from the IHNC into Lake Pontchartrain for the entire construction duration (approximately 36 months). This would be less disruptive to potential migration and feeding patterns than the proposed action. It is expected, however, that construction noise would deter threatened and endangered species from frequenting the general vicinity, minimizing the benefit of this alternative.

Indirect and Cumulative Impacts to Threatened and Endangered Species

Indirect impacts on endangered or threatened species from alternative #3 would be essentially the same as described previously for the proposed action. Thus, indirect and cumulative impacts from this alternative would not be likely to adversely affect the manatee, Gulf sturgeon, or Kemp's ridley, loggerhead, or green sea turtles.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

Direct Impacts to Threatened and Endangered Species

The principle difference between alternative #4 and the proposed action is its placement in the IHNC. This alignment would result in a permanent loss of approximately 7 acres of open water habitat, similar to the proposed action (figure 13, table 8). The direct impacts to threatened and endangered species from alternative #4 would be essentially the same as those described for the proposed action. Assuming the procedures discussed for the proposed action would be employed to prevent injury to manatees and sea turtles and sedimentation impacts on Gulf sturgeon critical habitat during in-water construction activities, alternative #4 would not be likely to adversely affect the manatee, Gulf sturgeon, or Kemp's ridley, loggerhead, or green sea turtles.

Indirect and Cumulative Impacts to Threatened and Endangered Species

Indirect impacts on endangered or threatened species from alternative #4 would be essentially the same as described previously for the proposed action. Thus, indirect and cumulative impacts from alternative #4 would not be likely to adversely affect the manatee, Gulf sturgeon, or Kemp's ridley, loggerhead, or green sea turtles.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

Direct Impacts to Threatened and Endangered Species

Under alternative #5, there would be a permanent loss of approximately 10 acres of aquatic habitat and a temporary loss of 8 acres during construction (figure 14, table 8). For the manatee and sea turtles, the direct impacts associated with alternative #5 would be essentially the same as for the proposed action. However, for the Gulf sturgeon, alternative #5 would directly impact critical habitat. Lake Pontchartrain east of the Causeway, including the embayment at the mouth of the IHNC, is designated as critical habitat for the Gulf sturgeon. Alternative #5 would permanently replace approximately 10 acres of aquatic habitat within the designated critical habitat for the Gulf sturgeon in Lake Pontchartrain. It also could temporarily impact approximately 2 acres of critical habitat within the construction easement.

As discussed for existing conditions, the area along the south shore of Lake Pontchartrain is relatively unlikely to be used as a migratory route by Gulf sturgeon because the rivers to which they migrate are on the north shore of the lake. Gulf sturgeon potentially could forage in the shallow, inshore lake habitat near the mouth of the IHNC mainly during the three to four coolest, winter months and during periods of migration between marine environments (Lake Borgne and the Mississippi Sound) and the spawning rivers that drain into Lake Pontchartrain. Sediments in the nearshore area near the IHNC that would be affected by alignment #5 are predominantly muddy sand and contain less than 50 percent sand (Ray 2007). Observations of Gulf sturgeon in marine and estuarine habitats have found them to be associated with mainly sand as well as sand/mud bottoms (USFWS and GSMFC 1995, Harris 2003). Thus, the substrate within alignment #5 may contain a less than optimal sand component, but this habitat does support an invertebrate community on which sturgeon could feed (Ray 2007). Accordingly, this area of the critical habitat may be utilized as an occasional foraging area by Gulf sturgeon, mainly during winter and migration periods.

Construction activities could result in localized and temporary increases in turbidity in the vicinity of the project area. These effects, however, would be reduced by the use of silt curtains and by the movement of the tides. The manatee, Gulf sturgeon, and sea turtles are mobile and

would be able to relocate during construction since the project area encompasses only a relatively very small area near the shoreline of the over 403,000-acre lake. There would be no substantial changes in the chemical characteristics of the waters of Lake Pontchartrain that would affect these listed species as a result of alternative #5.

NMFS developed a biological opinion (BO) to complete its formal consultation regarding the proposed action at IER #5, which is located on the south shore of Lake Pontchartrain to the west of the IHNC and would destroy critical habitat for the Gulf sturgeon through the construction of two breakwaters. The BO evaluated the primary constituent elements (i.e., the physical and biological features that are essential to the conservation of the species) for the Gulf sturgeon in Lake Pontchartrain that potentially would be affected. The BO concluded that the IER #5 project would permanently impact approximately 3.3 acres of critical habitat, but would not reduce the ability of the remaining, extensive, critical habitat to support Gulf sturgeon conservation. Alternative #5 at IER #11 Tier 2 Pontchartrain likely would permanently impact approximately 10 acres of critical habitat, so it also would require formal consultation and issuance of a BO by NMFS to determine its effects.

Indirect and Cumulative Impacts to Threatened and Endangered Species

Indirect and cumulative impacts on endangered or threatened species from alternative #5 would be essentially the same as described previously for the proposed action. However, the Gulf sturgeon would be more affected by alternative #5 due to the long-term loss of approximately 10 acres of critical Gulf Sturgeon habitat. The relatively small area of habitat lost does not appear to be habitat that is unique or highly utilized by sturgeon. Thus, indirect and cumulative impacts from this alternative would not be likely to adversely affect the Gulf sturgeon or the manatee or Kemp's ridley, loggerhead, or green sea turtles.

3.2.8 Upland Resources

Existing Conditions

Terrestrial or upland resources are defined as non-marsh or non-wetland areas within the project corridor. At Seabrook, the majority of terrestrial area is owned by the Port of New Orleans and leased as either industrial parcels or unoccupied, formerly industrial sites. All five alternatives would affect limited upland resources in industrial areas that have been previously disturbed, and each would tie in to the existing HSDRRS. Existing HSDRRS areas are regularly mowed to limit the growth of vegetation, and most of the unpaved, upland habitat in the project corridor contains only early successional vegetation, including weeds and small shrubs. These areas occur primarily along the shorelines of the IHNC and are flooded during large storm events.

Land that potentially could be used for staging or access during construction, or the ROW areas identified for increasing the height of existing levees/floodwalls under any of the alternatives, is currently used for industrial and/or municipal (roads, HSDRRS, etc.) purposes and therefore does not support substantial natural communities. None of the land potentially impacted by any of the five alternatives represents natural upland habitat.

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to Uplands

Under the proposed action, approximately 7 acres of upland would be permanently impacted and 10 acres would be temporarily impacted during the construction period (figure 6, table 8). The areas that potentially would be affected by use as staging and access areas or for increasing the height of existing levees and floodwalls are currently in use as industrial properties, roads, levees, and floodwalls and do not support substantial natural communities. Additionally, the project site contains several small paved and landscaped areas, as well as man-made earthen levees, but there are no substantial natural uplands in the project area. The staging area and the areas where the control structure would tie in to LPV 104 and LPV 105 are already mostly paved and in poor condition. The remaining areas for access roads are already in the current levee ROW, which is regularly mowed to prevent over growth of vegetation. Thus, the impacts to upland resources under the proposed action would be minimal.

Indirect and Cumulative Impacts to Uplands

No indirect impacts would be anticipated to upland resources in the area. Potential cumulative impacts on upland resources from the proposed action mainly would involve the combined effects from the multiple LPV projects in the New Orleans area. The areas that would be affected in the vicinity of the IHNC are similar to extensive areas of developed upland resources in the New Orleans region. The potentially impacted areas are very small in the context of similar uplands in the region and the proposed action would contribute negligibly to the minimal cumulative impacts on upland resources occurring in the region.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct Impacts to Uplands

Under alternative #2, approximately 8 acres of upland would be permanently impacted and a slightly larger area compared to the proposed action (11 acres) would be temporarily impacted (table 8). These areas are similar to those required for the proposed action, and therefore the impacts to upland resources under alternative #2 would be similar to those under the proposed action.

Indirect and Cumulative Impacts to Uplands

The indirect and cumulative impacts to upland resources under alternative #2 would be essentially the same as under the proposed action.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Direct Impacts to Uplands

Alternative #3, which runs through the Turning Basin approximately 1,500 ft south of the Seabrook Bridge, would cross the Port of New Orleans property leased by Cat 5 Composites, a boating manufacture and repair business (USACE 2008c). This abandoned industrial site is covered with gravel or concrete, with weedy growth in any unpaved portions. During

construction of alternative #3, approximately 10 acres of uplands would be temporarily impacted, and approximately 9 acres would be permanently lost to the footprint of the control structures (figure 12; table 8). Due to the additional ROW requirements (a permanent loss of approximately 7 acres of uplands) for raising the I-walls to T-walls north of the structure, more upland would be impacted than under the proposed action. The additional ROW required to raise the existing flood walls consists mainly of existing ROW and roadway.

Indirect and Cumulative Impacts to Uplands

The indirect and cumulative impacts to terrestrial and upland resources under alternative #3 would be essentially the same as under the proposed action.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

Direct Impacts to Uplands

Alternative #4, located just south of the Turning Basin, would cross the property leased by Lake Pontchartrain Properties. This property is currently an RV park, with landscaping and utilities for the campers (USACE 2008c). This alignment could impact a total of approximately 26 acres of upland temporarily and permanently; approximately 8 acres would be permanently lost to the floodwalls and associated ROW (figure 13; table 8).

Indirect and Cumulative Impacts to Uplands

The indirect impacts under alternative #4 would be greater than with the other alignments due to the number of buried utilities at the RV park. These would all have to be removed and relocated, creating an impact outside the immediate project area. The cumulative impacts to upland resources under alternative #4 would be essentially the same as under the proposed action.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

Direct Impacts to Uplands

Alternative #5, located in Lake Pontchartrain to the north of the Seabrook Bridge, would tie in to the existing floodwalls north of the bridge (figure 14). Approximately 2 acres of already paved upland would be permanently covered by the floodwalls, and 13 acres would be temporarily impacted by construction activities (table 8).

Indirect and Cumulative Impacts to Uplands

The indirect and cumulative impacts to upland resources under alternative #5 would be essentially the same as under the proposed action.

3.2.9 Cultural Resources

Existing Conditions

Cultural Resources are broadly described in section 3.2.14 of the IER #11 Tier 1 document (USACE 2008a) and are herein incorporated by reference. The following discussion provides a location-specific analysis of the Tier 2 Pontchartrain alternatives with respect to cultural resources within the project area.

The CEMVN contracted R. Christopher Goodwin and Associates, Inc. (RCG) to conduct a cultural resources evaluation of the IER #11 - Tier 2 Pontchartrain project area. RCG utilized background research, previous cultural resource investigations review, soil and topographic analyses, and field reconnaissance information to identify high potential areas for archaeological resources and to assess any historic structures and potential historic districts that might be located in the project area (Heller and Hannah 2009).

Background research into records on file at the Louisiana Division of Archaeology and the New Orleans District indicate no previously recorded archaeological sites are located in the Tier 2 Pontchartrain project area. However, site forms and archaeological investigation reports describe known archaeological sites within the project vicinity. Prehistoric shell midden sites have been recorded nearby on the Lake Pontchartrain shoreline along beach ridges and where bayou channels drain into the lake. Due to recent geologic development of the Mississippi delta, the earliest known archaeological sites in the project vicinity date to the Poverty Point period (1700 – 500 B.C.).

Within the greater New Orleans Metropolitan area, historic period archaeological sites and structures, such as forts, plantations, residential neighborhoods, bridges, and industrial facilities initially developed along the high ground adjacent to natural waterways and lake shorelines, and were later established along man-made canals and within drained back swamp areas. Historic period watercraft are recorded in bayous, river channels, and lakes in the region.

Background research indicates two previous cultural resources surveys were conducted within or near the IER #11 - Tier 2 Pontchartrain project area. One survey consisted of an examination of the Lake Pontchartrain and Vicinity Hurricane Protection Levee system (New World Research 1983). No cultural resources were identified in the current project portion of the survey. In the second study, researchers included an evaluation of the Seabrook Railroad Bridge and determined it was eligible for listing on the National Register of Historic Places (NRHP) (Wilson et al. 2006). The Seabrook Railroad Bridge is located in the project area.

Waterway development heavily influenced construction throughout the Tier 2 Pontchartrain project area, particularly the IHNC. Construction of the IHNC began in 1918 and was completed in 1923. The canal provided an improved route between Lake Pontchartrain and the Mississippi River through the use of one of the largest locks in the nation at the time of its construction. In addition, a complex railroad network crosses New Orleans East along Chef Menteur Highway and Hayne Boulevard. New Orleans East subsequently developed into a significant industrial center for the city of New Orleans.

Six cultural resources have been previously documented within the immediate project vicinity, but none are located directly in the project area. These properties include 1) Camp Leroy Johnson site (16OR219), 2) U.S. Army Air Base Building, 3) Downman Road Site (16OR8), 4) Pontchartrain Park Residential Area, 5) Pine Village Residential Area, 6) Lakefront Airport, and 7) Fountain of the Four Winds.

Following the completion of archival research, soil and topographic analysis, and reconnaissance level field investigations, researchers determined that no areas in the Tier 2 Pontchartrain project area possessed the potential to contain buried archaeological deposits and no Phase 1 level investigation was conducted. Only one historic structure was identified in the project area. As mentioned previously, the Seabrook Railroad Bridge is a NRHP eligible steel bascule structure constructed in 1920 on the Norfolk Southern railroad where it crosses over the IHNC. The following discussion of impacts is based on the information provided in the cultural resources investigation management summary prepared by RCG (Heller and Hannah 2009).

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to Cultural Resources

Under the proposed action, construction of the new structures across the IHNC would have no direct impact on cultural resources. The proposed action alignment has been severely impacted by previous construction related to the IHNC and flood protection, including channel excavation, maintenance dredging, land-filling to create shipping and cargo facilities, and earthen levees/floodwalls. The likelihood for intact and undisturbed archaeological sites in the proposed action alignment is considered extremely minimal. Researchers conducting the cultural resources evaluation of the proposed action alignment recommended that archaeological fieldwork was necessary due to these severe ground disturbing activities. No historic structures are located in the proposed alternative alignment.

The CEMVN held meetings with State Historic Preservation Office (SHPO) staff and Tribal governments to discuss the emergency alternative arrangements approved for NEPA project review and formally initiated Section 106 consultation for the HSDRRS, which includes the IER #11, Tier 2 Pontchartrain project, in a letter dated 9 April 2007. In letters to the SHPO and Indian Tribes dated 6 February 2009, the CEMVN provided project specific documentation for Tier 2 Pontchartrain, evaluated cultural resource investigation results, and found that construction of the proposed action would have no adverse impacts on cultural resources. The SHPO concurred with our "no adverse effect" finding a letter dated 20 February 2009. The Choctaw Nation of Oklahoma and the Alabama-Coushatta Tribe of Texas concurred with our effect determination in letters dated 19 February 2009 and 3 March 2009, respectively. No other Indian Tribes responded to our requests for comment. Section 106 consultation for the proposed action is concluded. However, if any unrecorded cultural resources are determined to exist within the proposed action alternative, then no work will proceed in the area containing these cultural resources until a New Orleans District archaeologist has been notified and final coordination with the SHPO and Indian Tribes has been completed.

Indirect Impacts to Cultural Resources

Implementation of the proposed action will provide an added level of flood protection to significant historic properties located in the immediate project vicinity, including Camp Leroy Johnson site (16OR219), 2) U.S. Army Air Base Building, 3) Downman Road Site (16OR8), 4) Pontchartrain Park Residential Area, 5) Pine Village Residential Area, 6) Lakefront Airport, 7) Fountain of the Four Winds, and 8) the Seabrook Railroad Bridge. The Seabrook Railroad Bridge is a NRHP eligible steel bascule structure constructed in 1920 on the Norfolk Southern railroad where it crosses over the IHNC just north of the proposed action alignment. Erosion of ground deposits and high water during flood events can result in damage to standing historic structures and archaeological sites.

Cumulative Impacts to Cultural Resources

Implementation of the proposed action would have beneficial cumulative impacts on cultural resources in the New Orleans Metropolitan Area. The proposed action is part of the ongoing Federal effort to reduce the threat to property posed by flooding. The combined effects from construction of the multiple projects underway and planned for the HSDRRS would reduce flood risk and storm damage to significant archeological sites, individual historic properties, engineering structures, and nineteen historic districts.

Alternatives #2 through #5

Direct, Indirect, and Cumulative Impacts to Cultural Resources

Direct, indirect, and cumulative impacts from alternatives #2 through #5 would be essentially the same as those described for the proposed action.

3.2.10 Recreational Resources

Existing Conditions

Recreational resources are broadly described in section 3.3.2.10 of the IER #11 Tier 1 document (USACE 2008a) and are herein incorporated by reference. The following discussion provides a location-specific analysis of the Tier 2 Pontchartrain alternatives with respect to recreational resources within the project area. Details regarding the existing conditions and potential impacts to recreational resources associated with particular businesses were gathered largely through interviews with business owners near the project area.

Fishing and boating are the dominant recreational resources within the project area. This section focuses on the *public* recreational activities available in the project vicinity and does not discuss socioeconomic impacts to local *private* businesses that provide recreational services (such as Seabrook Marine, Lake Pontchartrain Properties, or Trinity Yachts). An analysis of socioeconomic impacts is provided in section 3.3 of this document.

Within the project vicinity, primary public recreational activities include:

- Boat fishing in Lake Pontchartrain and the IHNC,
- Fishing from Frank Davis Pier and bank fishing along the IHNC,
- Boating from Lakeshore Park, and
- Passive recreation in Lakeshore Park.

One public boat ramps is located within 5 miles of the Tier 2 Pontchartrain project area; the Seabrook Boat Launch in Lakeshore Park (a collective term for the series of parks located along the south shore of Lake Pontchartrain; figure 36). Two private boat ramps, Seabrook Marine and Trinity Yachts, are located in the project vicinity but outside of the project footprint. These sites are illustrated in figure 36. Private recreational facilities are discussed in further detail in section 3.3.

Figure 36. Recreational Resources in the Project Area

Fishing boats (including charters) launch from various facilities on the IHNC such as Seabrook Marine and Pontchartrain Landing RV park (figure 36). Fishing boats frequently launch from Seabrook Marine (as many as 65 boats per day on busy summer weekends), and may return several times per day. The RV park at Pontchartrain Landing offers the use of boat ramps for a fee and has had as many as 100 launches per day on a busy weekend.

Fishing is an important recreational resource for the State of Louisiana. In 2003, it supported 16,999 jobs and generated a total economic impact of \$1.6 billion (LaDWF 2005b). The project site, an area that is well-known throughout the state for its record trout catches, is a popular fishing spot among local residents. Two deep scour holes located north and south of Seabrook Bridge (figure 7) provide habitat for fish and are frequented by boat fisherman during the summer months.

Seabrook Boat Launch, the launch nearest to the project area, is adjacent to Lakeshore Park, a public recreation area that provides access to activities such as boating, fishing, and birdwatching (photo 2). Seabrook Boat Launch is situated just north of the project location.

The Frank Davis Fishing Pier extends from the shore underneath the Seabrook Bridge and is managed by the Orleans Levee Board (photo 3). This pier is regionally known for catches of white trout, speckled trout, flounder, redfish, sheepshead, black drum, and croaker, primarily due to its proximity to the existing scour holes (Davis 2007). Fishing conditions in the area are also thought to be positively influenced by certain tidal flow patterns, specifically when water moves from the IHNC into Lake Pontchartrain (St. Charles Herald Guide 2008).

Although fishing occurs within all portions of the IHNC, and the Seabrook area is anecdotally reported to be the second best fishing site in the State. Public access to the shores of the project area is technically restricted and fishing is not allowed. The Port of New Orleans Harbor Police Department (HPD) has established a “No Fishing Zone” for the entire IHNC, which includes restrictions on crabbing, fishing, and shrimping. Despite the posted warnings and the fact that HPD officers have the authority to enforce these laws, fishing does occur within the IHNC at the project location. Currently, there are no health advisories for fish consumption at this location (Louisiana Department of Health and Hospitals [LaDHH] 2008).

Bird-watching is also a popular recreational activity in and around Seabrook. New Orleans Lakefront at Seabrook is listed as an official location (site 7-5) on the Louisiana Birding Trail (America’s Wetland 2009). Public benches are provided in Lakeshore Park for bird-watching or passive recreational opportunities.

Numerous recreational areas for adults and children are located near the Tier 2 Pontchartrain project area. As illustrated on figure 37, a total of 16 parks and public recreational areas are located within approximately 2 miles of the project site (City of New Orleans Geographical Information System [CNOGIS] 2007). These parks and playspots are local community facilities accessible to the public.

Photo 2. Lakeshore Park public facilities

Photo 3. Frank Davis Fishing Pier

Figure 37. Park and Recreation Areas in the Project Vicinity

Relative to the project location, the closest facilities are Morrison playspot (photo 4) and Pontchartrain Park (photo 5), both on the west side of the IHNC. The 1.7-acre Morrison playspot is approximately 700 ft southwest of the alternative #4 alignment. Currently, this area is undeveloped; however, the Downtown Neighborhood Market Consortium desires to develop the area into a community garden area, including a cypress forest, children's play area, natural wetland, amphitheater, and roadside produce stand (Goldenberg 2008). On the east side of the IHNC in Pines Village, the closest park is Digby Playground, located approximately 1 mile southeast of the project site. This 7-acre playground is a well-developed facility recently rehabilitated for public use (City of New Orleans [CNO] 2008a).

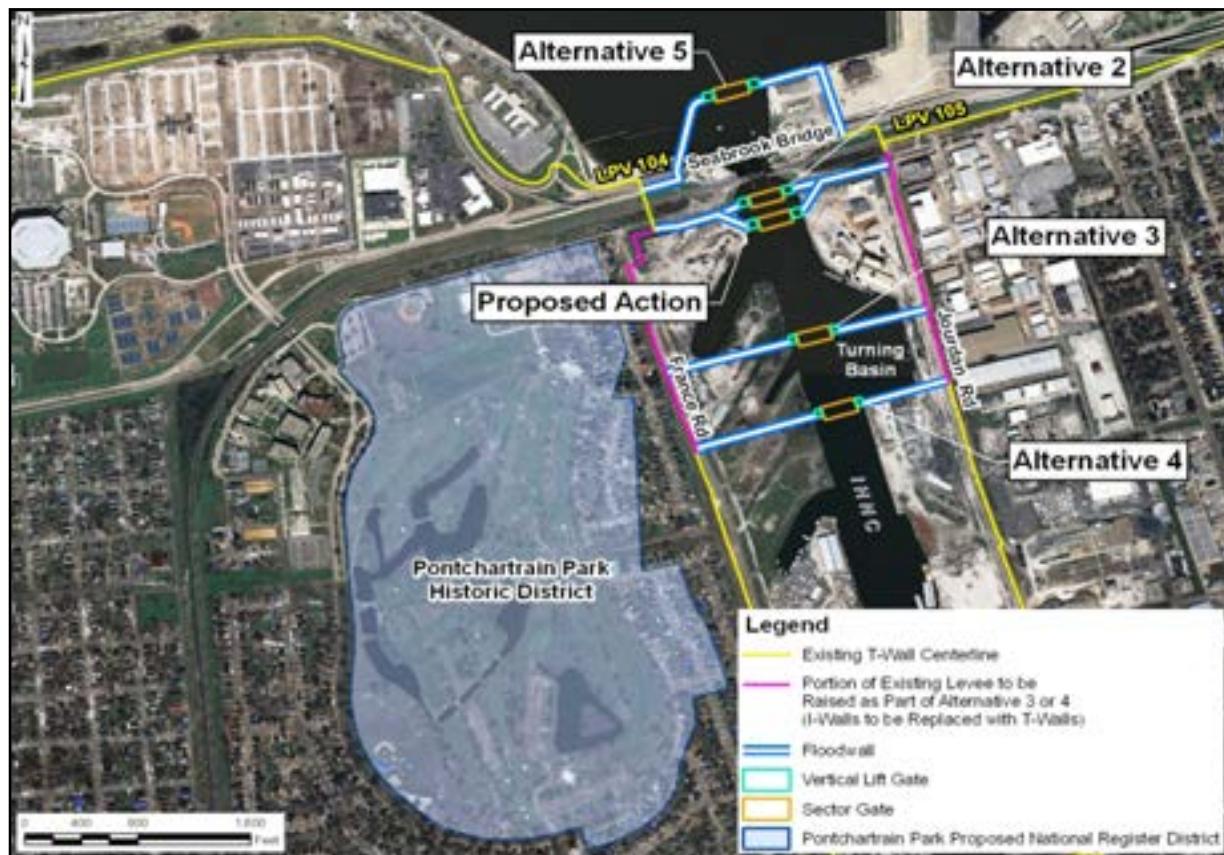

Photo 4. Morrison playspot

Photo 5. Pontchartrain Park

Pontchartrain Park is a well-developed, approximately 185-acre public facility just west of the Tier 2 Pontchartrain project site (photo 5; figure 37). At its closest point, the boundary of Pontchartrain Park is approximately 630 ft from the western floodwall tie-in associated with alternative #3. The Park is an important recreational resource to the community and to help ensure its continued use, the New Orleans Neighborhood Rebuilding Plan (NOLANRP) has identified numerous redevelopment projects for the Park and area (NOLANRP 2006). Included within Pontchartrain Park are Barrow Stadium and the Bartholomew Golf Course (figure 37). Prior to Katrina, the Wesley Barrow Stadium served as the primary site for the City's Little League teams as well as for local high schools (CNO 2007). The Joe M. Bartholomew Sr. Municipal Golf Course, an 18-hole golf course in the Pontchartrain Park neighborhood, was damaged during Hurricane Katrina and has not re-opened. Originally named the Lake Pontchartrain Golf Course, this course was the only golf course available to African-Americans during the segregation era in New Orleans. By 1979 it had undergone renovations and was renamed the Joe M. Bartholomew Sr. Municipal Golf Course, after Joseph M. Bartholomew, one of the wealthiest African American men in New Orleans at the time. Although it is not currently listed on the National Register of Historic Places (NRHP), neighborhood and civic organizations are pursuing its designation (Greater New Orleans Community Data Center (GNOCDC) 2008a; Pontchartrain Park Neighborhood Association (PPNA) 2008).

The Federal Emergency Management Agency (FEMA), in consultation with the Louisiana SHPO, identifies districts within the City that are eligible for listing in the NRHP. Prior to Hurricane Katrina, Pontchartrain Park was determined eligible for National Register Historic District (NRHD) status (CNO 2006a). The Pontchartrain Park NRHD incorporates Pontchartrain Park and portions of streets on the east side of the park including Prentiss Avenue, Congress Drive, Madrid Street, DeBore Drive, Morrison Road, and Frankfort Street (figure 38).

Figure 38. Map of Pontchartrain Park Historic District

Discussion of Impacts

To aid in the impact evaluation, multiple interviews were conducted with local users, tenants, and property owners along the IHNC.

The five alternatives would result in roughly equivalent impacts to recreational resources. All impacts would occur during the construction phase with the exception of socioeconomic impacts to the private sector. Following construction, there would be no adverse effects on recreational resources in the project vicinity. Impacts would occur to private boat launches, such as Seabrook Marine and Lake Pontchartrain Properties (RV park), which allow customers to launch their boats for a small fee within the IHNC. Socioeconomic impacts to private boating and fishing related businesses are discussed in section 3.3. This discussion of impacts to recreational resources focuses on impacts to activities that would occur from public facilities, launches, and locations.

Proposed Action (Alternative #1) – Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to Recreational Resources

Recreational resources would be expected to be temporarily impacted during the 36-month construction period. The most significantly impacted recreational features would be expected to be boating and fishing, as a result of the placement of a cofferdam structure across the entire IHNC channel for approximately 6 months to 12 months. During this time, all boat access and water flow between Lake Pontchartrain and the IHNC would be suspended. Overall impacts to boating would be moderate because the majority of recreational boating occurs in Lake Pontchartrain, not the IHNC. A public boat launch is provided at Seabrook Launch and Lakeshore Park. The proposed action would not preclude access to, or use of those launches for people who wish to access Lake Pontchartrain directly. However, the proposed action would restrict boaters who wish to travel between the lake and the IHNC. While the majority of recreational boating occurs in the lake, boaters commonly seek food and services at commercial resources along the IHNC, including the private boat launch and storage facilities. Impacts to those commercial entities are described in section 3.3, Socioeconomics. Persons who frequently use the private launch facilities on the IHNC to access the lake would either need to bring their boats to the public launch site at Seabrook, if available, or arrive at their destination by an alternative route. It is anticipated that recreational boating within the project area would return to pre-construction levels following the completion of the proposed action.

During construction, the cofferdam would likely reduce the quality of the local fishery for approximately 6 to 12 months, as described in section 3.2.4; thereby, limiting local fishing opportunities. In addition, noise and vibration generated by construction activities may temporarily affect the quality of fishing at the popular north scour hole. Since fishing at the south scour hole is technically prohibited by the Port of New Orleans, filling it would not adversely affect a legally-designed public fishing location. However, filling this scour hole will reduce habitat and refuge sites for certain recreational fishery species and organisms they depend on (as described in section 3.2.4); thereby reducing their availability to recruit into nearby areas where fishing is allowed. Recreational fishing activity may take years to recover due to the time required for recruitment levels and abundance of appropriately-sized individuals to improve.

Passive recreation opportunities are provided at Lakeshore Park. The quality of passive recreation activities such as bird-watching, lake viewing, or social gatherings would be diminished during construction due to noise, vibration, and the presence of large construction equipment in the project area. Swimming is strictly prohibited at Lakeshore Park; therefore, the

proposed action would not adversely affect recreational swimming opportunities. Overall, impacts to passive recreation, specifically at Lakeshore Park would be temporary.

Passive recreation also occurs in areas adjacent to the project area such as Pontchartrain Park. Construction of the proposed action would be expected to have a moderate adverse effect (temporary) on passive recreation in these areas. Noise and vibration construction activities could affect the quality of passive recreation activities such as walking or jogging in the park or in adjacent neighborhoods. These impacts would be temporary and somewhat mitigated by the fact that Pontchartrain Park and the adjacent recreational and residential areas are separated from the construction site by an existing concrete levee and retaining wall, which would serve to block some of the noise. Upon completion of construction, there would be no long-term effects to passive recreation in area parks and neighborhoods.

Indirect Impacts to Recreational Resources

Indirect visual impact would occur during construction as the construction cranes and equipment may be visible from area parks and neighborhoods. These impacts would be temporary, lasting only during construction of the project. The proposed action would cause both temporary and indirect impacts to the local recreational fishery (section 3.2.4) as a result of the physical disturbances resulting from construction activities, disruption of normal flow patterns, and occasional stressful water quality conditions. The proposed action may cause slight, long-term, indirect impacts to the local recreational fishery because of slight reductions of transport of larval organisms through the passes between Lake Pontchartrain and the Gulf. Reduced dispersion of larval organisms may reduce the abundance and diversity of fish available to anglers in the area.

Cumulative Impacts to Recreational Resources

The proposed action would have additive impacts to identified recent and future projects such as closure of the MRGO at Bayou La Loutre and the Borgne Barrier all resulting in a detrimental impact on the local fishery and, thereby, on boat and shore fishing. Recreational fishing may not return to pre-construction conditions, due to the cumulative impacts from the MRGO closure at Bayou La Loutre, the Borgne Barrier, and the proposed action. The closure of the MRGO would likely have the greatest effect on potential declines in fish populations because saline waters from the deep draft channel that previously flowed north into the Lake Pontchartrain were thought to be the reason for the quality of fishing around Seabrook. These effects are described in more detail in section 3.2.4, Aquatic Resources and Fisheries.

The Seabrook Launch, Lakeshore Park, and the Frank Davis Fishing Pier are accessible by vehicle via two routes, an off-ramp of eastbound Leon C. Simon Drive and the eastern terminus of Lakeshore Drive. At present, Lakeshore Drive is closed to through traffic, requiring drivers to exit the park area on Leroy Johnson Drive and connect back to Leon C. Simon Drive. In addition, IER #4, LPV, New Orleans Lakefront Levee West of Inner Harbor Navigation Canal, includes LPV 104, a reach of HSDRRS that runs from the London Avenue Canal to the IHNC at Seabrook. For this project, construction easements required on the eastern side of LPV 104 near the Seabrook Bridge would impact access to the Frank Davis Pier and Seabrook Launch. Vehicle access to the boat ramps under Seabrook Bridge could be disabled due to a reduction in roadway for 10 months to 12 months during floodwall construction; however, the fishing piers would remain accessible to pedestrian traffic.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct, Indirect, and Cumulative Impacts to Recreation Resources

Direct, indirect, and cumulative impacts from alternative #2 would be similar to those described for the proposed action. Alternative #2 would result in similar impacts to recreational fishing because alternative #2 would impact the same amount of open water as the proposed action (9 acres) but would only partially fill the southern scour hole. These project components would slightly reduce the impacts to the local recreational fishery that recreational fishing relies on.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Direct Impacts to Recreational Resources

Under alternative #3, direct impacts to recreational fishing would be similar to but generally less than those described for the proposed action. Alternative #3 would impact approximately 12 acres of open water habitat for recreational species as opposed to 9 acres for the proposed action, resulting in a greater reduction of habitat for many fisheries species. This alternative does not require any scour holes to be filled in; therefore, negative habitat and water quality impacts associated with that component of the proposed action would not occur under alternative 3. In addition, the cofferdam would only partially block flow between the IHNC and Lake Pontchartrain, resulting in fewer impacts to recreational fishing.

Alternative #3 would also result in impacts to privately-owned Lake Pontchartrain Properties (RV park) and the Seabrook Marina, as discussed in detail in section 3.3, Socioeconomics.

Indirect Impacts to Recreational Resources

Indirect impacts from construction of alternative #3 would likely be similar to those described for the proposed action. Increases in disturbance to water clarity, salinity, and DO associated with the 3-month longer construction time (as described in section 3.2.4) could result in additional indirect impacts to recreational fishing.

Cumulative Impacts to Recreational Resources

Cumulative impacts to recreation from alternative #3 would be the same as those described for the proposed action with the exception of impacts associated with filling the scour hole and the cofferdam completely blocking flow.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

Direct Impacts to Recreational Resources

Alternative #4 would result in similar impacts to recreational fishing as those that were described under the proposed action. However, alternative #4 would impact slightly more open water habitat for recreational fishery species than the proposed action (10 acres versus 9 acres). None of the positive or negative impacts on the recreational fisheries (section 3.2.4) or recreational fishing associated with filling the scour hole would occur under alternative #4.

Under alternative #4, the privately-owned RV park and its tenants, as well as Seabrook Marine, could be negatively impacted. Impacts to these private facilities are further discussed in section 3.3, Socioeconomics.

Indirect Impacts to Recreational Resources

Alternative #4 would result in indirect recreation impacts similar to those described for the proposed action.

Cumulative Impacts to Recreational Resources

Cumulative impacts related to alternative #4 would be the same as were described for the proposed action with the exception of impacts associated with filling the scour hole.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

Direct Impacts to Recreational Resources

Alternative #5 would impact significantly more open water habitat for recreational fishery species than the proposed action (19 acres versus 9 acres). In addition, the northern scour hole is larger, deeper, and more accessible from other habitats. Therefore, the partial filling of it is likely to negatively impact more recreational fishing species and recreational fishing than the proposed action.

The construction of alternative #5 requires a floodwall to be built in the vicinity of the Frank Davis Fishing Pier and Seabrook Boat Launch in Lake Pontchartrain. As a result, these resources could have to be permanently relocated from their current locations.

Indirect Impacts to Recreational Resources

Alternative #5 would require partial fill of the north scour hole, which could detrimentally alter fish habitat in that area. Alternative #5 would further impact fishing opportunities and behavior of both boat and shore fishermen, most likely due to the additional structure(s) in the footprint of this alternative. These impacts would last longer due to the extended construction schedule (45 months) for this alternative. Maintaining flow during construction would reduce fish kills and have less negative effect on the behavior, growth rate, feeding, recruitment, and growth to maturity of recreational fishery species (section 3.2.4), thereby maintaining a sufficient population to support recreational fishing in the area during construction.

Cumulative Impacts to Recreational Resources

Cumulative impacts related to alternative #5 would be the same as were described for the proposed action with slight additional impacts to water quality and the recreational fishery due to placement of the alignment in the lake and required partial filling of the northern scour hole. Although the construction period for this alternative may be longer than that of the proposed action, phased construction would maintain flow between the IHNC and the lake throughout construction.

3.2.11 Aesthetic (Visual) Resources

Existing Conditions

The Seabrook–Lake Pontchartrain project area is characterized by urbanized and industrial development. The IHNC is a man-made canal, rather than a natural waterway, and is highly developed for industrial uses on both shores in the vicinity of the project area. Visually, the project area is dominated by two transportation infrastructure components (bridges) at the north end of the area, with open water for the remainder of the project area. Earthen berm levees and floodwalls line both shores of the IHNC. Along the shores are warehouses, a rock grinding plant, a cement distribution plant, and boat repair and storage yards. Many of the remaining industrial facilities were constructed in the 1950s and some retain visual signs of damage from Hurricane Katrina.

Recently, however, land use in the vicinity of the project area has begun to change. On the west side of the IHNC, there has been an addition of a privately-operated RV park on property owned by the Port of New Orleans. This notable change in the visual landscape represents a possible future trend in accordance with long-range plans for the area to convert the west shore of the IHNC into more recreational uses, while retaining industrial uses on the east shore (CNO 2008b and 2008c). Other uses along the west shore of the IHNC in the project area blend recreational and industrial uses such as Seabrook Marina and Trinity Yachts. Seabrook Marina serves both recreational and industrial needs with boat launch and storage facilities and boat repair facilities. Trinity Yachts constructs large yachts for private customers and is largely characterized visually as a manufacturing site.

On the west side of the IHNC in the project area, residential development abuts the protected side of the existing HSDRRS. As further described in section 3.3, Socioeconomic Resources, of this document, these homes are at a lower elevation than the IHNC. Only a few two-story home rooftops approach the height of the HSDRRS; most are several feet below the height of the levee wall. Therefore, virtually none of the project area is directly visible from the residential areas.

At the northern end of the project area, where the IHNC enters the lake, the visual setting along the Lake Pontchartrain shoreline is a mixture of industrial and recreational. On the east, the lake shoreline is visually dominated by the Lakefront Airport, in particular the jet fuel storage area. On the west the lakeshore is undeveloped with an open, natural visual setting. This shoreline supports recreational land uses, including Lakeshore Park, Seabrook Boat Launch, and the Frank Davis Fishing Pier underneath the Seabrook Bridge. There are no natural resources designated for visual protection within the project area.

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct, Indirect, and Cumulative Impacts to Aesthetic Resources

Construction of the proposed flood control structure would have a minimal impact on visual resources. The visual attributes of the project area would be temporarily impacted by construction activities at the project site and the transportation of equipment and materials in the project area. Construction of the proposed flood control structure would take place within an existing industrial area. The visual character of the project area would be minimally different from current conditions. Although the proposed action would introduce a new visual element, that element would be consistent with the predominant industrial nature of development in the vicinity. The visual element of the proposed flood control structures would parallel the existing

bridge infrastructure and crossings to the north. The new elements would not be directly visible from the streets in the nearby residential areas such as in the Pontchartrain Park community. No indirect impacts would be anticipated to visual resources in the area. Construction activities, including the presence of construction equipment, associated with other HSDRRS projects in combination with numerous renovation and rebuilding projects in the area would have cumulative temporary impacts on visual resources in the New Orleans area.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct, Indirect, and Cumulative Impacts to Aesthetic Resources

The effects on visual resources from alternative #2 would be similar to those described for the proposed action.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Direct, Indirect, and Cumulative Impacts to Aesthetic Resources

The effects on visual resources from alternative #3 would be similar to those described for the proposed action. However, under alternative #3, the new element would be more visible as it would span a greater area of open water.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

Direct, Indirect, and Cumulative Impacts to Aesthetic Resources

The effects on visual resources from alternative #4 would be similar to those described for the proposed action. However, the structure would essentially divide the RV park in two, introducing a strong visual element in a location where people rent sites to park recreational vehicles. While the setting is currently primarily industrial, introduction of a new visual element spanning the IHNC would significantly detract from the visual enjoyment as viewed from the RV park.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

Direct, Indirect, and Cumulative Impacts to Aesthetic Resources

The effects on visual resources from alternative #5 would be greater than those described for the proposed action. Construction of alternative #5 would introduce a new, industrial visual element into the Lake Pontchartrain shoreline that would be clearly visible from the surrounding area, in particular from Lakeshore Park east of the project area. The scale and proximity of the new sector gate and vertical lift gates would create an industrial presence at a prime viewshed in the area, the Seabrook Bridge crossing over the IHNC. Currently, the views from the bridge are of an open connection to Lake Pontchartrain. This view would be disrupted by the new structures. There would be minimal cumulative impacts on visual resources from nearby HSDRRS projects along the Lake Pontchartrain shoreline. To the west at LPV 104, existing floodwalls and gates would be replaced by walls and gates constructed at a higher elevation and with a floodside shift away from the shoreline. To the east at LPV 105, the existing floodwall, which is located behind the Lakefront Airport, would be replaced by a T-wall constructed at a higher elevation and south

of the existing alignment. These proposed structures would not change the visual character of the lake shoreline.

3.2.12 Air Quality

The USEPA, under the requirements of the Clean Air Act of 1963 (CAA), has established National Ambient Air Quality Standards (NAAQS) for six contaminants, referred to as criteria pollutants (40 CFR 50). These are carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), particulate matter (less than 10 microns in diameter [PM₁₀] and particulate matter less than 2.5 microns in diameter [PM_{2.5}]), lead (Pb), and sulfur dioxide (SO₂). The NAAQS include primary and secondary standards. The primary standards were established at levels sufficient to protect public health with an adequate margin of safety. The secondary standards were established to protect the public welfare from the adverse effects associated with pollutants in the ambient air. The primary and secondary standards are presented in table 12.

Table 12.
National Ambient Air Quality Standards

Pollutant and Averaging Time	Primary Standard		Secondary Standard		
	µg/m ³	parts per million (ppm)	µg/m ³	ppm	
Carbon Monoxide 8-hour concentration	10,000 ¹	9 ¹	-	-	
1-hour concentration	40,000 ¹	35 ¹			
Nitrogen Dioxide Annual Arithmetic Mean	100	0.053	Same as primary		
Ozone 8-hour concentration	147	0.075 ²	Same as primary		
Particulate Matter <u>PM_{2.5}</u> : Annual Arithmetic Mean	15 ³	-	Same as primary		
24-hour Maximum	35 ⁴	-			
<u>PM₁₀</u> : Annual Arithmetic Mean	50	-			
24-hour concentration	150 ¹	-			
Lead Quarterly Arithmetic Mean	1.5	-	Same as primary		
Sulfur Dioxide Annual Arithmetic Mean	80	0.03 ¹	-	-	
24-hour concentration	365 ¹	0.14 ¹			
3-hour concentration	-	-			
			1300 ¹	0.50 ¹	

Source: 40 CFR 50.

Notes:

¹ Not to be exceeded more than once per year.

² 3-year average of the 4th highest daily maximum 8-hour concentration may not exceed 0.075 ppm, effective as of 27 March 2008.

³ Based on 3-year average of annual averages.

⁴ Based on 3-year average of annual 98th percentile values.

National Ambient Air Quality Standard Attainment Status

Areas that meet the NAAQS for a criteria pollutant are designated as being “in attainment;” areas where a criteria pollutant level exceeds the NAAQS are designated as being “in non-attainment.” The proposed action and alternative actions evaluated in this document would occur in Orleans Parish, Louisiana, an area that is currently designated as “in attainment” for all criteria pollutants. Further analysis required by the CAA general conformity rule (Section 176(c)) would not be required.

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to Air Quality

During construction of the proposed action, increases in air emissions near the project area could be expected during the construction period of approximately 36 months. These emissions could include: (1) exhaust emissions from operations of various types of non-road construction equipment such as loaders, excavators, cranes, etc. and (2) fugitive dust due to earth disturbance. These emissions would be from mobile sources for which emissions performance standards would be applicable to source manufacturers, and they are not regulated under the CAA air permit regulations.

The principal air quality concern associated with the proposed action is emission of fugitive dust near demolition and construction areas. The on-road trucks and private autos used to access the work area would also contribute to construction phase air pollution in the project neighborhood when traveling along local roads.

However, site-specific construction effects would be temporary and dust emissions would be controlled using BMPs. Construction activities related to the proposed action would not occur all at once, but would be phased throughout the construction period. Construction activities would be similar to those activities that have been ongoing throughout New Orleans since Hurricane Katrina.

Indirect Impacts to Air Quality

Under the proposed action, there would be no adverse indirect impacts to air quality within the project area.

Cumulative Impacts to Air Quality

It is expected that standard BMPs would be used for other activities or projects occurring within the vicinity of the Tier 2 Pontchartrain project area that could potentially create dust emissions. For instance, application of water to control dust and periodic street sweeping and/or wetting down of paved surfaces would aid in preventing fugitive dust from becoming airborne. Other construction activities occurring during the same timeframe and within the vicinity of the proposed action would likely occur incrementally throughout the construction period. Therefore, cumulative impacts to air quality in the project area from the proposed action and other construction activities in the area that could be occurring concurrently would be temporary. Once construction of the proposed action is complete, there would be no continued impacts to air quality, and therefore no contribution to cumulative air quality effects in the area.

Alternatives #2 through #5

Direct, Indirect, and Cumulative Impacts to Air Quality

The direct, indirect, and cumulative impacts to air quality under alternatives #2 through #5 would be similar to those described for the proposed action; however, the construction duration for alternative #5 is estimated to be approximately 9 months longer than that of the proposed action. This would result in an extended period of temporary construction-related air quality impacts in the project vicinity.

3.2.13 Noise

Existing Conditions

Noise is generally described as unwanted sound, which can be based either on objective effects (hearing loss, damage to structures, etc.) or subjective judgments (such as community annoyance). Sound is usually represented on a logarithmic scale with a unit called the decibel (dB). Sound on the decibel scale is referred to as sound level. The threshold of human hearing is approximately 0 dB, and the threshold of discomfort or pain is around 120 dB.

Noise levels are computed over a 24-hour period and adjusted for nighttime annoyances to produce the day-night average sound level (DNL). DNL is the community noise metric recommended by USEPA and has been adopted by most Federal agencies (USEPA 1974). A DNL of 65 weighted decibels (dBA) is the level most commonly used for noise planning purposes and represents a compromise between community impact and the need for activities like construction. The A-weighted sound level, used extensively in this country for the measurement of community and transportation noise, represents the approximate frequency response characteristic of an average young human ear. Areas exposed to a DNL above 65 dBA are generally not considered suitable for residential use. A DNL of 55 dBA was identified by USEPA as a level below which there is no adverse impact (USEPA 1974).

Noise levels occurring at night generally produce a greater annoyance than do the same levels occurring during the day. It is generally agreed that people perceive intrusive noise at night as being 10 dBA louder than the same level of noise during the day. This perception is largely because background environmental sound levels at night in most areas are about 10 dBA lower than those during the day.

Noise would be regulated in accordance with the City of New Orleans Ordinance 23263, Chapter 66, Article IV regarding noise.

The Tier 2 Pontchartrain project is located in an industrial portion of the New Orleans Metropolitan area, adjacent to a four-lane highway. Existing noise in the Seabrook area results from not only vehicle and boat traffic (horns), train activity, and nearby airport traffic, but also from the heavy industrial uses of the shoreline property. Noise levels surrounding the project corridor would vary depending on climatic conditions and the time of day (typically traffic is heavier at specific times and industries operate during normal business hours). Areas to the north of the project corridor primarily consist of open water (Lake Pontchartrain) and parkland with minimal noise generated by recreational users. Areas to the east are primarily industrial, and the entire western boundary of the project corridor is occupied by Pontchartrain Park residential neighborhood. Located in the southwest corner of the project corridor is Pontchartrain Landing RV park.

Table 13 describes noise emission levels for construction equipment that would be expected to be used during Tier 2 Pontchartrain construction activities, regardless of the alternative. As can

be seen from table 13, the anticipated noise levels at 50 ft range from 76 dBA to 101 dBA based on data from the Federal Highway Administration (FHWA 2006).

One construction activity, pile driving, would be expected to create temporary noise impacts above 65 dBA to sensitive receptors within 1,000 ft of the project corridor. Assuming the worst case scenario of 101 dBA (pile driver), as would be the case during the construction of floodwalls along the project corridor, all areas within 1,000 ft of the project corridor would experience noise levels exceeding 65 dBA. There are many residences and industrial facilities within 1,000 ft of the project corridor. For reference, the Pontchartrain Park homes nearest to the west end of the proposed action are located approximately 300 ft away, while the RV park is approximately 2,000 ft south of the proposed action. Construction noise levels would attenuate to 75 dBA at a distance of 350 ft from construction activities. For BMPs while pile driving, the USACE may use a quiet hydraulic machine to aid in reducing the adverse impact of noise on surrounding land uses, during the HSDRRS projects.

Table 13.
Weighted (dBA) Sound Levels of Construction Equipment and Modeled Attenuation at Various Distances¹

Noise Source	50 ft	100 ft	200 ft	500 ft	1,000 ft	3,155 ft	9,975 ft
Backhoe	78	72	68	58	52	42	32
Crane	81	75	69	61	55	45	35
Dump Truck	76	70	64	56	50	40	30
Excavator	81	75	69	61	55	45	35
Front end loader	79	73	67	59	53	43	33
Concrete mixer truck	79	73	67	59	53	43	33
Auger drill rig	84	78	72	64	58	48	38
Dozer	82	76	70	62	56	46	36
Pile driver	101	95	89	81	75	65	55
Quiet hydraulic machine	66	60	54	46	40	30	20

Notes: The dBA at 50 ft is a measured noise emission. The 100- to 9,975-ft results are modeled estimates for all sources except the quiet hydraulic machine, for which all results are modeled estimates based on a known noise emission of 69 dB at 23 ft.

Source: Highway Construction Noise Handbook (FHWA 2006).

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to Noise

Construction activities would be expected to create temporary noise impacts above 65 dBA to the sensitive receptors within 1,000 ft of the project corridor; however the majority of the noise will result from specific activities such as pile driving, which would not last the entire length of the construction period. While fewer than 50 homes within the Pontchartrain Park neighborhood are located within 1,000 ft of the western-most end of the proposed action alignment, these residents would experience temporary noise impacts during construction. The RV park is not within the 1,000 ft receptor radius, as is the case with the majority of businesses along the east bank of the IHNC, with the exception of Halliburton. Halliburton, a facility which grinds barite and bentonite for use in drilling mud, is adjacent to the proposed action footprint and would be

expected to experience temporary noise impacts from construction. In addition to noise created by construction equipment, there would also be impacts from noise generated by construction vehicles and personal vehicles for laborers that could use public roads and highways for access to construction sites. Existing noise in the project area would continue to occur; however, noise from boat horns would be minimized while the IHNC pass is closed during cofferdam placement. Following construction, noise levels would return to existing conditions.

Indirect Impacts to Noise

Potential indirect impacts from noise include those related to residents, traffic, fishermen, avoidance of the area by wildlife, and emotional and mental stress that could result from ongoing high levels of noise. Most of these impacts, with the exception of the emotional and mental stress, are discussed in other sections of this document corresponding to the resource being impacted by the construction-related noise levels. Emotional and mental stresses from increased noise levels are difficult to assess; however, it is reasonable to assume that the emotional and mental stress created by noise levels would be compensated by the relief associated with the hurricane risk reduction provided by the project.

Cumulative Impacts to Noise

Noise resulting from current and planned construction activities in the IER #11 Tier 2 Pontchartrain area as a result of HSDRRS projects and rebuilding/restoration following Hurricanes Katrina and Rita would not likely cause noise levels in the project area to exceed the maximum levels described previously under direct impacts. However, overlapping projects could extend the length of time people would be exposed to increased levels of noise.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct, Indirect, and Cumulative Impacts to Noise

The direct, indirect, and cumulative impacts to noise from alternative #2 would be similar to those described for the proposed action.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Direct Impacts to Noise

Alternative #3 is located approximately 1,000 ft further south in the IHNC than the proposed action or alternative #2 and both Pontchartrain Park residential neighborhood and the recreational RV community fall within the 1,000 ft project corridor. Under this alternative, the visitors and/or residents of the RV park would be impacted by construction-related noise, but only temporarily and BMPs would be employed to help minimize noise impacts. Higher levels of background (existing) noise would be expected under this alternative compared to the proposed action, given its alignment through the Turning Basin. The west end of alternative #3 would tie-in into a highly industrial area and the Turning Basin is frequented by large barges and equipment used for delivering, loading, and unloading industrial materials. In addition, a scrap metal recycling plant, Southern Scrap, is located just south of alternative #3, which would also contribute to higher levels of ambient noise.

Indirect and Cumulative Impacts to Noise

Indirect and cumulative impacts to noise from alternative #3 would be similar to those described under the proposed action.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

Direct, Indirect, and Cumulative Impacts to Noise

Noise impacts from alternative #4 would primarily affect the Pontchartrain Landing RV park given the location of the alignment essentially directly through the park. During the construction period, noise could reach levels high enough that visitors and/or residents would no longer be able to remain at the RV park in comfort. This could result in further indirect socioeconomic impacts to the RV park and any other businesses in the area that depend on people visiting or residing in the park. These impacts are discussed in more detail in section 3.3, Socioeconomics. Cumulative impacts would be similar to those described under the proposed action.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

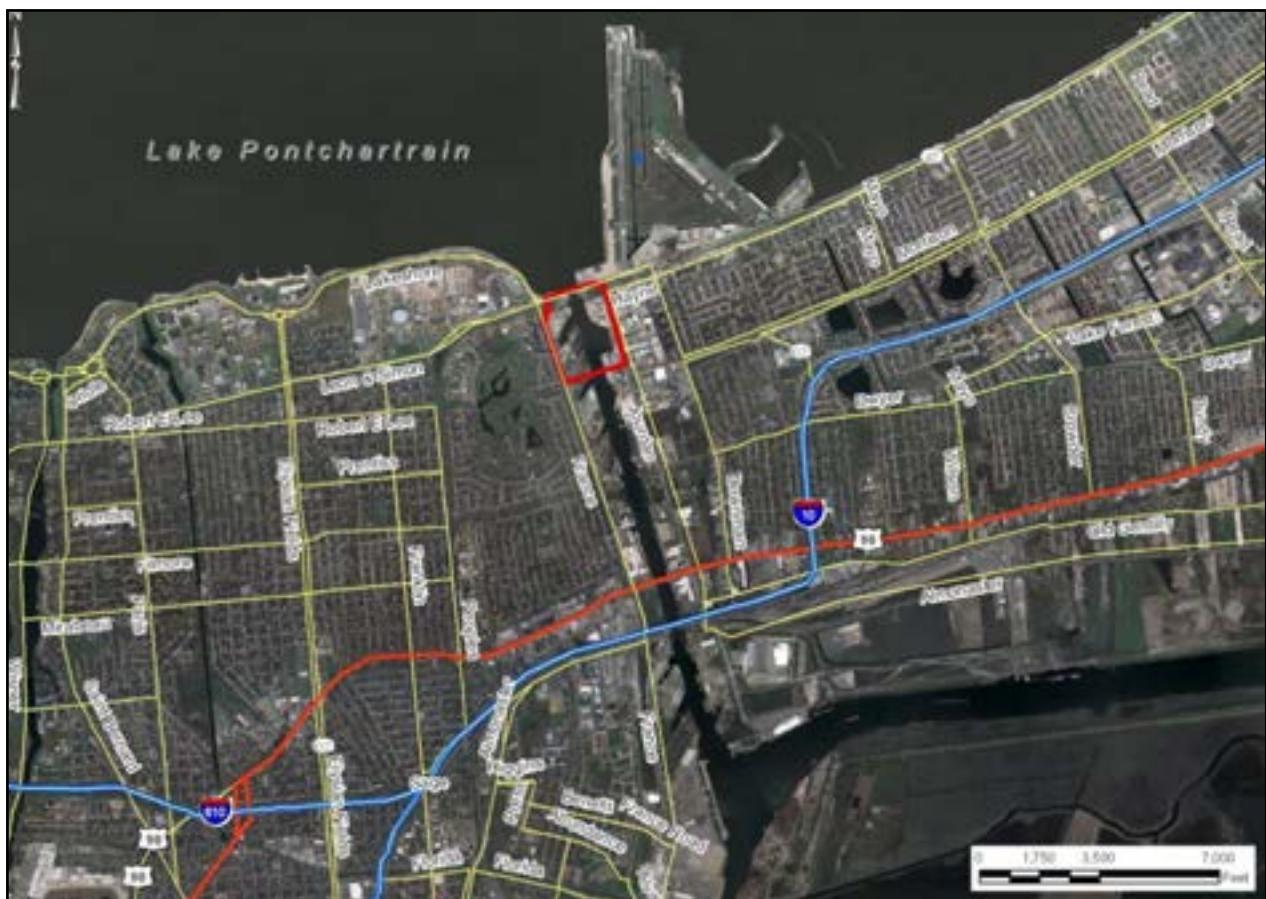
Direct, Indirect, and Cumulative Impacts to Noise

The location of alternative #5 in Lake Pontchartrain (not in the IHNC behind the existing HSDRRS floodwalls as is the case for alternatives #1 through #4) would allow noise from construction activities to travel further, thereby causing temporary, minor direct impacts greater than those for alternatives #1 through #4. Existing HSDRRS structures along the lakeshore are set back from the shoreline and would allow noise to travel across the lake, resulting in impacts to a larger area. Without nearby floodwalls such as those along the IHNC to absorb construction noise, the sounds would refract off the open body of Lake Pontchartrain. Since there are no residential communities along the shore of Lake Pontchartrain directly east or west of the alternative #5 alignment, direct noise effects are likely to only impact recreational users in the Seabrook area during construction. However, the construction duration for alternative #5 is estimated to be approximately 9 months longer than that of the proposed action. This would result in an extended period of temporary construction-related noise impacts in the project vicinity.

The indirect and cumulative impacts to noise from alternative #5 would be similar to those described for the proposed action.

3.2.14 Transportation

Existing Conditions


The project area lies south of Lake Pontchartrain at the northern end of the IHNC in Orleans Parish, Louisiana. Orleans Parish is densely developed with residential, commercial, and light to medium industrial land uses. To the southwest, the Port of New Orleans is one of the world's busiest ports with many transportation modes intersecting: river and sea vessels, rail, and highway (Port of New Orleans 2009). A more detailed discussion of navigation transportation infrastructure can be found in section 3.3.1, Navigational Resources, within section 3.3, Socioeconomic Resources.

On the east side of the IHNC, the New Orleans Lakefront Airport extends into Lake Pontchartrain. The airport is designated as a general aviation airport but also serves military and

commercial aircraft. The Louis Armstrong New Orleans International Airport is located approximately 14 miles west of the project area, on the west side of Jefferson Parish, and is the primary commercial airport for the New Orleans Metropolitan area and southeast Louisiana. Light to heavy industrial land uses are located along the Mississippi River, IHNC, and GIWW.

There are several rail lines in the New Orleans Metropolitan area. There is a major rail line that runs parallel to Interstate 10 (I-10), and a Norfolk Southern-owned rail line crosses the IHNC at Seabrook. The New Orleans Public Belt Railroad operates two rails running north/south along the east and west banks of the IHNC, but their lines do not join with the Norfolk Southern line. There are several dock facilities on the Mississippi River, IHNC, and the GIWW that would be capable of handling ocean vessels. The Mississippi River is approximately 5 miles to 8 miles south of the project area.

I-10 and US-90 are the major east-west highways that cross this area (figure 39). I-10 is a six-lane divided freeway that connects the New Orleans Metropolitan area with Baton Rouge to the west and Mississippi to the east. Baton Rouge, the state capital and second largest city in Louisiana, is a major traffic generator to the west of the project area. In addition, I-10 is a major east-west route along the northern Gulf Coast. US-90 is a six-lane divided highway with no access control. It runs parallel to I-10 in this area, and primarily serves local travel, while I-10 serves regional travel.

Figure 39. Major Roads and Highways near the Tier 2 Pontchartrain Project Area

Leon C. Simon Boulevard, Lakeshore Drive, and Hayne Boulevard provide access to the project area from the north. Leon C. Simon Boulevard, classified as a “principal arterial,” is a 4-lane, divided, urban street with no control of access. Lakeshore Drive, a 4-lane, urban street with parkway-like features, is classified as a “minor arterial” and Hayne Boulevard is classified as an “urban collector” (Louisiana Department of Transportation and Development [LaDOTD] 2009a). Roads that connect I-10 and US-90 to the project area are France Road, Jourdan Road, and Downman Road, classified as principal arterials, and Franklin Avenue, a minor arterial (LaDOTD 2009a). I-10 and US-90 are likely routes into the project area (figure 39), although transportation routes for delivering construction materials have not been fully determined.

Operational conditions on a highway can be described with “level-of-service” (LOS). LOS is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures such as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. The “Highway Capacity Manual” (Transportation Research Board [TRB] 2000) defines six LOS, designating each level with the letters A to F. LOS “A” represents the best operating condition, and LOS “F” represents the worst operating condition. LOS “C” or “D” is generally considered acceptable. Heavy trucks adversely affect the LOS of a highway. “Heavy trucks” are vehicles that have more than four tires touching the pavement. Heavy vehicles adversely affect traffic in two ways: (1) they are larger than passenger cars and occupy more roadway space; and (2) they have poorer operating capabilities than passenger cars, particularly in respect to acceleration, deceleration, and the ability to maintain speed on grades. The second impact is more critical. The inability of heavy vehicles to keep pace with passenger cars in many situations creates large gaps in the traffic stream, which are difficult to fill by passing maneuvers. The resulting inefficiencies in the use of roadway space cannot be completely overcome.

The most recent traffic volumes available from the LaDOTD are from 2008 (LaDOTD 2009b). Due to a population shift and additional construction activity that occurred in the 2005 aftermath of Hurricane Katrina, these traffic volumes may not be suitable for finitely determining the existing LOS of area highways. However, they provide an order-of-magnitude baseline for comparison when trucks associated with construction of the floodgates and floodwalls are added. The latest traffic counts for I-10 in its closest proximity to the project area are 58,800 to 74,400 vehicles a day. The two traffic counts for US-90 (Chef Menteur Highway) in the project area are 19,900 and 25,200 vehicles a day.

Discussion of Impacts

A single primary staging area has been proposed for the project area: an area immediately west of the site and south of the Bascule Railroad Bridge, between France Road and the IHNC (blue-shaded area on figure 6). Road access to this staging area would be from France Road, likely either via US-90 from the south or Hayne Boulevard from the north. In addition, barges are capable of accessing this site either from Lake Pontchartrain to the north or from the IHNC to the south, and the portion of the staging area in Slip No. 6 (figure 6) has been designated as a potential, temporary mooring location for the unloading and offloading of construction materials. While large quantities of construction materials would be staged within the designated area, the sources for these materials and the transportation routes for delivering them have not been fully determined. The following impacts to transportation are based on available information, and all new data will be reviewed as it becomes available. The CEMVN is currently completing a system-wide transportation analysis to better quantify impacts.

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to Transportation

Construction equipment would be required to conduct the work, including, but not limited to, generators, barges, boats, cranes, trucks, bulldozers, excavators, pile hammers, graders, tractors, and front-end loaders. The main staging area is located northeast of Pontchartrain Park (figure 6), a suburban neighborhood that lies along the entire western boundary of the project corridor. Two primary streets, Press Drive and Congress Drive, run through the neighborhood from US-90 (Chef Menteur Highway). These two roads, however, are not directly on the likely haul routes south of the staging area. Industrial lands on the western side of the IHNC are vacant or cleared; Pontchartrain Landing RV park, however, is located southwest of the project corridor and accessed via France Road. Recreational boating is popular among RV park tenants, making the on-site public launch very active; busy weekends sometimes see as many as 100 launches a day. However, with the temporary closure of the IHNC at Seabrook, access to and from Lake Pontchartrain would be impeded for approximately 6 months to 12 months. Recreational boating-related traffic would be reduced and construction traffic would not be expected to directly impact the traffic flow in this area. Along the east bank of the IHNC several industries are active, and the Pines Village Neighborhood residential area is located further to the east. Although exact haul routes are not yet known, the most direct routes to the project area would likely avoid these areas; therefore direct impacts from construction traffic are not expected to occur.

Construction traffic could possibly use Hayne Boulevard north of the staging area, along with the use of the IHNC, Lake Pontchartrain, I-10, and US-90. Equipment and materials would most likely come from outside the study area. The only major roads that provide access to the study area are I-10 and US-90, with Hayne Boulevard being the likely choice for local suppliers. Any materials or equipment being delivered to the project site via the Mississippi River would likely be offloaded to the staging area from the mooring facility in Slip No. 6 in the IHNC (figure 6) instead of being unloaded and hauled by truck up to the staging area. Materials and equipment could also be transported to the study area via the New Orleans Public Belt Railroad, which operates rails running north/south along the east and west banks of the IHNC.

Most of the truck traffic associated with the proposed action would likely use US-90 and I-10; US-90 is assumed to be the worst case. Impacts to highway capacity can be predicted using the methodology from the Highway Capacity Manual for multi-lane highways. Two models were built – Base and Additional Trucks – to evaluate the highway capacity impacts that additional trucks would have to US-90. The “Base” model looked at future conditions with no action, which serves as a comparison. The “Additional Trucks” model looked at the future conditions and calculated the number of trucks that were operating in addition to the “Base” traffic stream during the peak hour. It was assumed that there are 19,900 vehicles per day in the “Base” condition, based on traffic volumes from LaDOTD (2009b), 10 percent of which are operating in the peak hour, 5 percent of the base vehicles are trucks, and base free-flow speed is 47 mph. For the “Additional Trucks” model, 8 trucks per hour in each direction were added to the “Base condition.” For the “Base” and “Additional Trucks” models, US-90 would operate at LOS “B.” The additional truck traffic would have a temporary impact on the LOS for US-90. After construction is complete, the proposed action would have no long-term impact on transportation.

Local streets would be used to access work sites from the arterials. The access roads used by the trucks to access the work site and staging area could have substantial changes in their LOS. It should be noted that without a detailed transportation routing plan, a more specific evaluation of impacts on the LOS of minor highways and roads cannot be done; however, this information will be included in the draft CED. Additionally, it can only be presumed that increases in traffic in

the Tier 2 Pontchartrain project area could potentially increase traffic accidents and related traffic fatalities. However, a slow-down in traffic due to the construction activities in the project area would also reduce speeds and thereby reduce traffic accident-related fatalities.

Indirect Impacts to Transportation

Heavy trucks are the primary loading source causing pavement degradation. The additional truck traffic resulting from the proposed action could contribute to additional wear-and-tear of paved roads within the project vicinity. Additionally, traffic delay and accidents may increase.

Cumulative Impacts to Transportation

Additional wear-and-tear of paved roads within the project vicinity could occur due to increased truck traffic under the proposed action. On-going construction related to other reconstruction projects in the Seabrook area would also contribute to increased truck traffic, which would therefore increase wear-and-tear on roads and add to area congestion. A single lane of Hayne Boulevard may be closed during a portion of construction for IER #6, which is located along the south shore of Lake Pontchartrain adjacent to the east end of the proposed Tier 2 Pontchartrain alignment. This could add to traffic congestions anticipated on Hayne Boulevard and may increase the risk of accidents.

Alternatives #2 through #5

Direct, Indirect, and Cumulative Impacts to Transportation

The direct, indirect, and cumulative impacts to transportation from alternatives #2 through #5 would be similar to those described under the proposed action. The construction duration for alternative #5 is estimated to last approximately 9 months longer than that of the proposed action, which could result in increased construction traffic on the small access roads on the east and west sides under the Seabrook Bridge. The majority of the footprint of alternative #5 is located within Lake Pontchartrain and on Lakefront Airport property; therefore, barges would be utilized for delivery of a large portion of materials and the portion of construction occurring on airport property would not require public roads to be temporarily impacted.

3.3 SOCIOECONOMIC RESOURCES

Existing Conditions

The socioeconomic conditions of the project area are broadly described in section 3.3 of the IER #11 Tier 1 document. Additionally, updated socioeconomic data was provided in IER #11 Tier 2 Borgne. These data are summarized but are not repeated in this document. The socioeconomic descriptions that follow refresh the analysis provided in the IER #11 Tier 2 Borgne document, and then focus on the immediate project area to the east and west of the IHNC at Seabrook. Details regarding the existing conditions and potential impacts to socioeconomic resources associated with particular businesses were gathered largely through interviews with business owners near the project area.

- By December 2008, the population of New Orleans reached 73.7 percent of pre-Katrina levels as indicated by the number of households actively receiving mail. Orleans Parish accounted for most of this growth gaining a total of 5,478 households throughout 2008 (GNOCDC 2008c). Orleans Parish is estimated to have approximately 70 percent of pre-Katrina population (UNO 2008a, UNO 2008b).

- By the end of the third quarter of 2008, real Gross Domestic Product fell by 0.5 percent and unemployment was at 6 percent. However, compared to the third quarter of 2007, the New Orleans Metropolitan area experienced a net gain of 2.3 percent in new jobs added. For instance, while construction jobs in the U.S. lost 5.9 percent, construction jobs in the New Orleans area gained 6.2 percent, mostly in infrastructure improvement projects (UNO 2008a, UNO 2008b).
- Housing affordability remains a challenge as fair market rents in the metro area continue to climb, increasing 46 percent since Katrina. While rent increases have slowed in the past two years, rents remain high. In 2008, a two-bedroom apartment in the region rents for an average of \$990, up from \$676 in 2005. Construction workers are included in the list of occupations where 30 percent of the gross monthly income would not be sufficient to meet the average rentals for an efficiency, one-bedroom, or two-bedroom apartment (GNOCDC 2008a, GNOCDC 2008c).

The most recent Greater New Orleans Multi-Family Report indicates that garden apartments in the Orleans–Algiers and East New Orleans areas average \$728 with an 83 percent occupancy rate (Schedler 2009). These data include a mix of studio units to three-bedroom/two-bath units. The fall 2008 Report indicated that an additional 1,528 units would be added to the existing inventory in 2009 (Schedler 2008). With respect to the project area, the closest apartment units in major renovation are the Lake Terrace Gardens (183 units in Orleans Parish), and Hidden Lake (461 units in New Orleans East (Schedler 2008).

Figure 40. Planning Districts in the Project Vicinity

The IHNC divides the project area into two planning districts, Gentilly Planning District 6 to the west and New Orleans East Planning District 9 to the east (figure 40). The Gentilly area is also known as Pontilly by the City of New Orleans City Planning Commission Neighborhoods Rebuilding Plan (CNO 2006a). Within these two planning districts, the INHC separates two neighborhoods at the project area, Pontchartrain Park to the west and Pines Village to the east (figure 41). Both neighborhoods are described below to provide the basis for understanding and assessing potential impacts.

Figure 41. Primary Land Uses Adjacent to Project Area (Facing South)

Pontchartrain Park Neighborhood

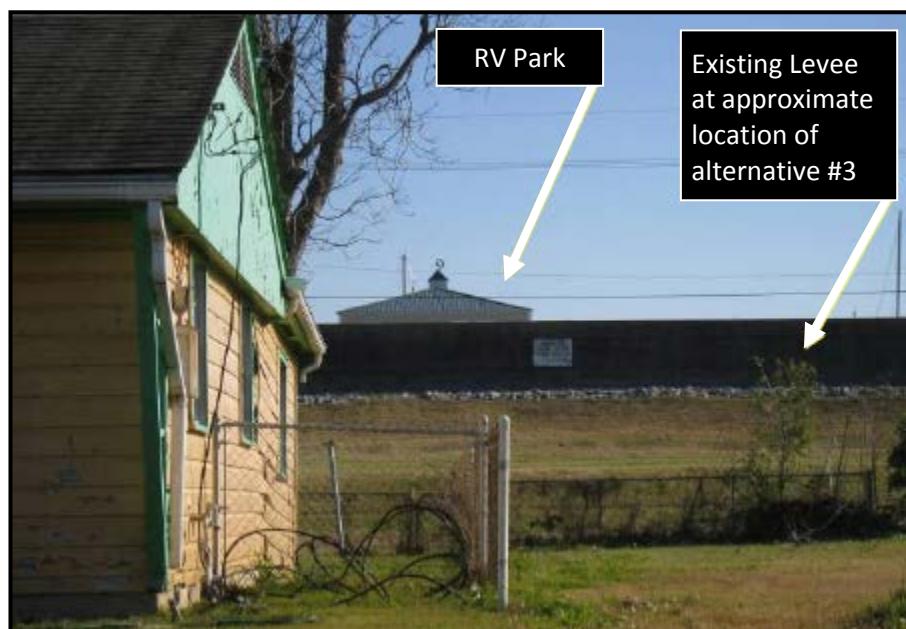
Information on the Pontchartrain Park neighborhood was collected from sources such as the Pontchartrain Park Neighborhood Association (PPNA) and the Pontilly Neighborhood Association (PPNA 2008; Pontilly 2008), the Gentilly Civic Improvement Association (GCIA 2008), the GNOCDC (GNOCDC 2008a), and the City of New Orleans City Planning Commission Neighborhoods Rebuilding Plan (CNO 2006a). The following neighborhood description is compiled from those and other data sources as noted.

Pontchartrain Park is a suburban neighborhood developed in the 1950s. It is within Census Tract 17.01, ZIP Code 70126, Township 12 South/Range 11/ Section 11. It is one of the first areas in New Orleans designed to provide home ownership to middle and upper income African Americans and one of the last Gentilly neighborhoods to be developed. Two major streets run through the neighborhood from Chef Menteur Highway, Press and Congress Drives. All other streets are curvilinear and prevent passage out of the neighborhood, creating a degree of privacy and pedestrian safety. The neighborhood has access to public transit as served by the New Orleans Regional Transportation Authority (RTA).

The neighborhood is at the eastern terminus of a bike corridor and sports route (cycling) that extends along 6.5 miles along Lakeshore Drive from the IHNC to West End. This segment is not part of the Mississippi River Trail (a multi-state bike route) (Regional Planning Commission [RPC] 2006). The neighborhood has several active civic organizations such as the Pontilly Neighborhood Association and Pontchartrain Park Home Improvement Association.

Geographically, the neighborhood sits in a *polder*, a low-lying tract of land enclosed by embankments. The IHNC is at a higher base elevation than the adjacent Pontchartrain Park neighborhood.

Approximately 30 homes in the Pontchartrain Park neighborhood back up to the existing HSDRRS on the west bank of the IHNC, with distances ranging from approximately 50 ft to 80 ft from the levee to the rear of individual houses. The height of the levee wall is generally well-above the existing rooftops of the houses which are primarily one-story (photo 6).


Photo 7 captures the view of the levee wall from a neighborhood road, in the approximate location of the alternative #3 alignment. The building in the background is a facility at the RV park.

As discussed in section 3.2.10, the Pontchartrain Park neighborhood contains a notable resource, the Joe M. Bartholomew Sr. Municipal Golf Course. During the segregation era in New Orleans, this golf course was the only course available to African-Americans. Although not currently listed on the National Register of Historic Places, neighborhood and civic organizations are pursuing such

designation (GNOCDC 2008a). As part of its compliance responsibilities under Section 106 of the National Historic Preservation Act of 1966, as amended, to identify and evaluate historic properties, FEMA conducted an historic properties identification and evaluation survey after

Photo 6. Proximity of Pontchartrain Park Homes to the Existing Levee

Photo 7. View of Existing Levee from Pontchartrain Park

Hurricanes Katrina and Rita. FEMA, in consultation with the Louisiana SHPO, has identified the Pontchartrain Park National Register Historic District, which incorporates Pontchartrain Park and portions of streets on the east side of the park including Prentiss Avenue, Congress Drive, Madrid Street, DeBore Drive, Morrison Road, and Frankfort Street, as eligible for listing in the National Register of Historic Places (FEMA 2006).

The Pontchartrain Park neighborhood is within the New Orleans Redevelopment Authority (NORA) jurisdiction, District 6 (Gentilly). NORA is assisting in various ways with the post-Katrina recovery efforts in Pontchartrain Park and other areas. Organizations such as The Road Home have helped to purchase properties to prepare them for redevelopment. Redevelopment plans include organizations such as Ponchartrain Park Community Development LLC, with plans to construct 25 affordable, wood-homes around the golf course (WDSU 2008).

Portions of the neighborhood are within an Economic Development/Enterprise Zone. This state-administered program provides tax credits and refunds to businesses locating or expanding in designated enterprise zone areas. Within the project area, the following Census Block Group is included within an Economic Development/Enterprise Zone (RPC 2007): 17.01 2 (Pontchartrain Park area to Dreaux Avenue).

Within the broader Gentilly area, approximately 80 percent of residents indicated an intent to come back (UNO 2006). Current data from the GNOCDC indicate a 53 percent rate of return in the Gentilly Planning District 6 (which includes Pontchartrain Park). The current population estimate for District 6 (June 2008) is 10,355 (GNOCDC 2008b). As of March 2008, Planning District 6 has the third largest number of unoccupied addresses at more than 8,000 or 44 percent of all addresses in that planning district (GNOCDC 2008b).

Residents have expressed a desire to rebuild their community in the same fashion for the residential construction as it was before Hurricane Katrina, characterized by single family homes (CNO 2006a).

To establish a baseline of community conditions, pre-Katrina data are presented. While this is not necessarily reflective of current conditions, it establishes a baseline which defines the community that may rebuild. These data are from the City of New Orleans for the broader Pontilly neighborhood (of which Pontchartrain Park is one of 20 neighborhoods) (CNO 2006a):

- Population in 2000: 7,017;
- Mean household income in 2000: \$42,917;
- Owner-Occupied housing in 2000: 82.2 percent.

Five projects are identified within the Pontchartrain Park neighborhood for redevelopment (CNO 2006a):

- Renovate and re-open the Pontchartrain Park Senior Community Center,
- Restore Pontchartrain Park, Bartholomew Golf Course, and Barrow Stadium,
- Create a pedestrian/bike path around Pontchartrain Park,
- Renovate and reopen the Coghill Elementary School,
- Enclose Dreaux Canal and create a walking path.

Current land use zoning within the Pontchartrain Park neighborhood is single-family residential to the west of France Road, and Heavy Industrial between France Road and the IHNC. Future land use in this area is being defined by the Master Plan and Comprehensive Planning Ordinance Process. The City Planning Commission conducted a public meeting within Planning District 6 on 11 November 2008.

The following long-term key projects and initiatives were presented for Planning District 6 and the Pontchartrain Park neighborhood (CNO 2008b):

- Create a long-term framework for transformation of the Industrial Canal into a waterfront incorporating mixed-use development, boating, parkland, and neighborhood access.
- Restore Pontchartrain Park as the District's signature public space.

Current real estate or property values are estimated at \$106,000 in Pontchartrain Park, up from about \$50,000 in January 2008. The average for New Orleans area is \$143,000 as of January 2009 (Zillow 2009).

Pines Village Neighborhood

Information on the Pines Villages neighborhood was collected from sources such as the GNOCDC (GNOCDC 2008a), and the City of New Orleans City Planning Commission Neighborhoods Rebuilding Plan (CNO 2006b). The following neighborhood description is compiled from those and other data sources as noted.

The Pines Village Neighborhood is located at the far western edge of Planning District Nine. It is within Census Tract 17.20, ZIP Code 70126, Township 12 South/Range 12/Section 6. Pines Village is generally bordered by the IHNC on the west, I-10 to the east and south, and Morrison Road to the north.

In the 1950s, the neighborhood's namesake, Sigmund Pines, purchased a large piece of marsh land adjacent to the Industrial Canal and proceeded to develop it with residences. In the 1950s and early 1960s, substantial numbers of dwellings, both doubles and single-family detached, were built in the Pines Village Subdivision. Pines Village is one of five neighborhood areas in Planning District 9. The Pines Village neighborhood was one of the first to be developed in New Orleans East.

With construction of the Industrial Canal, completed in 1923, the Pines Village and other neighborhoods to the east were separated from New Orleans neighborhoods to the west. New Orleans East became isolated because of limited transportation crossings.

Approximately 67 acres of industrial/commercial use property are located between the IHNC and the residential areas of Pines Village, whereas residential areas in Pontchartrain Park abut the existing HSDRRS and are separated from the IHNC by a narrower industrial buffer (approximately 39 acres). The residential areas in Pines Village are located approximately a quarter of a mile east of the edge of the project site. The residential areas in Pontchartrain Park are located as close as 50 ft to 60 ft from the edge of the project site.

The street patterns for the Pines Village neighborhood reflect an interconnected street and grid system. There are a few select locations in which the street grid dead ends. The neighborhood is primarily accessed through Downman Road. Additional entrances on Chef Menteur Highway are most readily accessible if traveling west on Chef Menteur Highway. The neighborhood has access to public transit as served by the New Orleans Regional Transit Authority. The neighborhood does not include identified city-wide bike corridors (RPC 2006).

As with Pontchartrain Park, the Pines Village neighborhood sits in a *polder*. The IHNC is at a higher base elevation than the adjacent neighborhoods. Pines Village contains one neighborhood park, several churches, two schools and commercial/industrial development. There is only one notable neighborhood playground in the Pines Village neighborhood. Digby Playground, approximately 0.85 miles from the boundary of the project site (figure 37), is the home to one of

the New Orleans Recreation Departments youth programs. The 1.91-acre site contains playground equipment, a basketball court and baseball field. There are also open spaces that are part of the apartment complexes. There are no local, state, or Federal Historic Districts designated in the neighborhood.

The Pines Village neighborhood is not within the NORA jurisdiction. The industrial portions of the neighborhood are, however, within an Economic Development/Enterprise Zone. This state-administered program provides tax credits and sales and use tax refunds to businesses locating or expanding in designated enterprise zone areas. The following Census Block Group is included within an Economic Development/Enterprise Zone (RPC 2007): 17.20 4 (Lakeshore Drive to Downman Road to Dwyer Road to Stemway Drive to Chef Menteur Highway).

Redevelopment goals of the neighborhood include improving residential conditions. Current zoning has allowed for mass concentration of subsidized housing in single development sites. It has been clearly expressed that there is no opposition to affordable or subsidized housing but there is opposition to high density concentrations at such sites. Current density regulations would be capped to a maximum of sixteen units/gross acre (CNO 2006b).

The vision of the Neighborhood Recovery Plan is to restore the quality of life in Pines Village to the level that existed prior to Hurricane Katrina plus make key improvements to the quality of life in the neighborhood, seeking a clear delineation between the industrial and residential areas. The Pines Village neighborhood is comprised of a mixture of single family detached, doubles, and multi-family homes and apartment complexes. It is the desire of the neighborhood to maintain and enhance the structure of the single family detached residential neighborhoods and encourage the multi-family complexes to rebuild under the proposed RM-2E District. Current data from the GNOCDC indicate a 49 percent rate of return in the New Orleans East Planning District 9 (which includes Pines Village) and a 49 percent rate of unoccupied residences. The current population estimate for District 9 (June 2008) is 15,866 (GNOCDC 2008b). As of March 2008, Planning District 9 has by far the largest number of unoccupied addresses at more than 14,000 or 49 percent of all addresses in that planning district (GNOCDC 2008b).

To establish a baseline of community conditions, pre-Katrina data are presented. While this is not necessarily reflective of current conditions, it establishes a baseline which defines the community that may rebuild. These data are from the City of New Orleans (CNO 2006b):

- Population in 2000: 5,092;
- Mean household income in 2000: \$43,386;
- Owner-Occupied housing in 2000: 63.5 percent.

The following summarizes redevelopment projects as identified by the City of New Orleans for the Pines Village neighborhood (CNO 2006b):

- Street repairs (Downman Road),
- Replace street trees,
- Repair signage and signals,
- Dwyer Road drainage improvements,
- Digby Park improvements,
- Develop new school and community center at Ray Abrams Elementary,
- Bus shelters on Dwyer and Downman Roads.

Current land use zoning within the Pines Village neighborhood includes:

- Heavy Industrial,
- Light Industrial,
- Single-Family Residential,
- Two-Family Residential,
- Multiple-Family Residential,
- General Commerce.

Future land use in this area is being defined by the Master Plan and Comprehensive Planning Ordinance Process. The City Planning Commission conducted a planning meeting within Planning Districts 9, 10, and 11 on 12 November 2008. The following long-term key projects and initiatives were presented for Planning District 6 and the Pines Village Neighborhood with respect to the project area:

- Maintain the Industrial Canal Employment/Industrial Development Zone,
- Enhance buffer area between industrial and residential areas along Downman Road,
- Extend Dwyer Road into the Industrial zone with a buffer area,
- Expand low-density residential infill areas north of Morrison Road with ground-level parking.

Current real estate/property values are estimated at \$72,000 in Pines Village, up from about \$50,000 in January 2008. The average for New Orleans area is \$143,000 as of January 2009 (Zillow 2009).

Industrial and Commercial Resources

The banks of the IHNC provide land for industrial uses. The east bank is more heavily dominated by active industrial uses. The west bank has more vacant land. Some industrial resources decided not to return after Hurricane Katrina and the closure of the MRGO at Bayou La Loutre (DeGregorio 2008). However, several industrial and commercial resources remain within the project area or vicinity.

The western bank of the IHNC is characterized by approximately 48 acres of industrial property between the IHNC and France Road with residential homes backing up to the existing levee west of France Road. Most of the industrial lands on the western side of the IHNC are vacant or cleared. Among the industrial users on the west bank is a relatively new addition that may be indicative of future land use change on this side of the IHNC: an RV park. The eastern bank of the IHNC is characterized by approximately 25 acres of industrial property between the IHNC and Jourdan Road with approximately 100 acres of additional industrial use from the existing levee to residential homes east of Seabrook Place.

Industrial and commercial resources identified within the project vicinity or known to use the project vicinity are listed below in table 14 and shown in figure 42.

Table 14.
Facilities on the IHNC in the Project Vicinity

Facility	In Project Area?	Intermodal Transport Requirements			
		Boat/Barge		Rail	Truck
		IHNC to Lake Pontchartrain	IHNC to GIWW		
Shavers – Whittle Yard	Yes		X		
Cat5 Composites	Yes	X	X		X
RV park	Yes	X			
Seabrook Marine	No	X	X		
Orleans Materials	No		X	X	X
Holcim Cement	No		X	X	X
Trinity Yachts	No	X	X	X	
US Gypsum	No		X	X	X
Port Maintenance Facility	Yes		X	X	X
Morrison Wharf/Turning Basin	Yes	X	X	X	X
Halliburton	Yes		X	X	X
Trinity (Madisonville)	No	X	X		
USCG	No	X	X		

Figure 42. Industrial Commercial Resources along IHNC

The following is a discussion of industrial users along the IHNC beginning on the west bank at the northern portion of the project area. Industrial and commercial resources within the project area are discussed first, followed by industrial and commercial users outside of the project area. Interviews were conducted with representatives of each business to collect basic operational information as well as to receive their feedback on the different alternatives.

Port of New Orleans – The open water of the IHNC and adjacent land is owned by the Port of New Orleans. Parcels are leased to tenants who may need water access for their operations.

Shavers-Whittle Construction Material Yard (former) – The property at 6401 France Road is approximately 144,000 square ft and is owned by the Port of New Orleans. It extends into the IHNC along Slip Number 6. The current lease has expired. The Port plans to use the property as a laydown yard for a period of about 4 months to 6 months starting in the spring of 2010 to construct a new dredge assembly.

Cat 5 Composites – Cat5, located on 3.2 acres at 6201 France Road, holds various government contracts for ship repairs. The current lease with the Port of New Orleans has expired. The business would likely remain, but under sub-lease to Pontchartrain Landing when they expand their holdings to the north. Cat5 Composites has plans to add docks and ramps to facilitate their sea trials. Currently, Cat5 uses both Lake Pontchartrain and the GIWW for sea trials. Speed runs are conducted in the GIWW. When conducting sea trials in the lake, they rely on access to the lake through Seabrook.

Pontchartrain Landing Waterfront RV Park – The property at 6001 and 6101 France Road is an approximately 20-acre RV park owned by the Port of New Orleans and leased to Pontchartrain Properties. The site fronts the IHNC approximately 2,500 ft south of Lake Pontchartrain and borders Slip No. 5 with the Seabrook Marina. The park's capacity is 152 RV parking slips (105 currently available) in various price ranges from \$38 to \$125 per day or \$700 to \$1400 per month. Tenants often bring their boats and can pay to use the on-site public launch for quick access to the lake and the popular fishing spot (deep scour hole) immediately north of the proposed gate. On a busy weekend, the ramp handles as many as 100 launches a day with boats ranging from 30 ft to 130 ft. Tenants frequent the park for various recreational uses including fishing in Lake Pontchartrain at Seabrook. The RV park site plan illustrates that the facility either currently provides, or plans to provide: boat launches, boat trailer parking, houseboat parking, houseboat rentals, and RV storage. Currently, the RV park provides quick access to the lake and the popular fishing location immediately north of the proposed Seabrook gate (the existing deep scour hole). The distance from the RV park to this location is about one mile at present and customers of the Park can easily launch for a day trip and make frequent returns as needed to the Park for bait, supplies, or restroom facilities. The RV park provides services supportive of recreational uses, consistent with long-range plans for the west bank of the IHNC. Vehicle access is provided from France Road. Pontchartrain Landing identifies itself as the newest and largest waterfront RV park in New Orleans. The RV park states it has long-term plans to expand their operations north along the IHNC to include mixed-use facilities. Financing for this phase has not been secured as of the present time.

Morrison Yard Wharf and Turning Basin – Owned by the Port of New Orleans, and located in the 7300 block of Jourdan Road, this site houses pile driving equipment and is used for top-side repair of Port vessels. Fender piles are stored on the east side of the Turning Basin. They are delivered by rail and loaded on vessels for installation along their various wharfs. The wharf structure is leased for lay-berthing third-party vessels and on occasion for cargo unloading. The large warehouse was leased for storage pre-Hurricane Katrina. The approximately 8-acre Turning Basin is used by the Port, Halliburton, and Trinity Yachts. Industrial resources along the IHNC also recognize that the Turning Basin is used as a temporary safe haven for boats to stop overnight or as conditions on the lake warrant need for temporary shelter.

Halliburton/Baroid Drilling Fluids Inc./Dresser Industries – For approximately 50 years, Halliburton has performed grinding operations at their plant on the IHNC, immediately south of the Seabrook bridge on the eastern bank off Jourdan Road. The facility grinds barite and bentonite for use in drilling muds for petroleum drilling operations. This processing plant is located at 8000 Jourdan Road on 12.19 acres owned by the Port of New Orleans and leased to Halliburton Energy Services currently through 2011.

Materials for grinding/crushing operations are barged in from the Mississippi River on the GIWW, not through Seabrook. Raw materials (barite from China and bentonite from Wyoming) are received on large ships two to three times per year. The material is off-loaded onto 120-foot barges for transport up the IHNC through the GIWW to the plant. Material is off-loaded at the northern portion of the Morrison Wharf facility in the Turning Basin, or along the eastern side of the IHNC. Their scales are on the eastern side of the IHNC, immediately north of the Turning Basin. About 30 barges are required to off-load the contents of a single ship. Halliburton had previously utilized MRGO but now relies on the GIWW for these shipments. They do not rely on access to the lake under the Seabrook Bridge for any materials movement (imports or exports). They utilize rail, truck, and water for materials transport. They have a rail spur that enters their facility from the line that runs north/south along the eastern shore of the IHNC.

The plant employs 12 full-time equivalents (FTE). Operations are generally during the daytime, but they occasionally will operate in various shifts depending on production schedules/needs. Operations may occasionally produce airborne dust; however, the dust is not toxic/hazardous and would not result in a risk to construction workers working on the Seabrook gate project. The facility operates under permit from the LaDEQ. The plant also employs six contract employees two times to three times per year when unloading ships for their stockpile.

The site is within a 10-year Foreign Trade Zone Operating Agreement (New Orleans City Business 2007). This designation exempts the facility from customs duty payments on imported barite used in export production. Less than 1 percent of production is exported. The facility also recognizes benefits on elimination of duties on materials that become scrap/waste during manufacturing (Federal Register [FR] 73 2008).

New Orleans Public Belt Railroad - New Orleans Public Belt Railroad operates both rails running north/south along the east and west banks of the IHNC. Their lines do not join with the Norfolk Southern line that spans the IHNC at Seabrook. Of the industries shown in figure 42, New Orleans Public Belt provides rail service to:

- Halliburton/Baroid/Dresser,
- US Gypsum,
- Orleans Materials,
- Holcim Cement, and
- Trinity Yachts.

Current operations are generally at night or early morning, about three times a week, with approximately 10 to 12 rail cars, based on needs. The existing rail lines on the west side of the IHNC terminate approximately 3,500 ft from the northern-most endpoint of the line.

Users of the IHNC Outside the Project Area

The following discussion, with information provided by the facilities, focuses on industrial and/or commercial facilities that utilize the IHNC to access Lake Pontchartrain or the GIWW, but are not located within the project area. The following facilities are outside of the project area (shown in figure 42) but could be affected by the Tier 2 Pontchartrain project:

- Seabrook Marine;
- Orleans Materials;
- Holcim Cement;
- Trinity Yachts;
- US Gypsum; and
- Trinity Marine Products.

This list may not be all-inclusive, but represents the known IHNC (Seabrook area) users. Additional users may be further identified through the public comment process.

Seabrook Harbor/Seabrook Marine, LLC – Located at 5801 France Road, this 7.81 acre facility provides services to refurbish and repair boats, including dockage and dry storage. Additional facilities include a store, showers, fuel, bait sales, and fish cleaning facilities. Dry storage is available for up to 200 vessels in a stacked configuration in a warehouse. There are eight in-water slips with 250 ft dockage. Approximately 80 spaces are available for storage for boats up to 80 ft.

The property is owned by the Port of New Orleans and leased to Seabrook Harbor LLC which is operated by a local family. The current lease extends through 2018. The facility has been in operation since 1993 and is open seven days a week except for primary holidays. Approximately 40 people are employed by Seabrook. Their workers typically come from New Orleans East and are typically Vietnamese fishermen who are skilled in boat repairs.

The location of Seabrook Marine on the IHNC is important to their customer base for quick access (less than 0.5 miles) to Lake Pontchartrain. Seabrook Marine depends on this location to readily serve recreational fishermen on Lake Pontchartrain. For example, they sell bait for the popular fishing locations in the lake on the northern side of the IHNC. On a typical weekend day, they will sell 20,000 shrimp at \$0.30 each, and launch as many as 65 boats per weekend day.

In addition, Seabrook Marine processes 400 boats to 500 boats per year for repairs. Maintenance can be as quick as 4 days to 5 days for hull cleaning (removal of marine growth, etc.), to 3 months to 4 months for a refit.

Seabrook Marine states it has invested over \$10M over the past 15 years in equipment and improvements at this location, including over \$1M in repairs following Hurricane Katrina not financed by FEMA or insurance.

Trinity Yachts, Inc. – Located at 4325 France Road, Trinity Yachts is a builder of custom yachts of steel and aluminum construction for vessels up to 160 ft and 300 tons. These crafts typically have a draft of 8 ft to 10 ft as most are not displacement hulls. The France Road yard does not have launch capacity for larger sizes. Larger yachts (up to 300 ft) are constructed at their Gulfport facility. The France Road yard constructs modules for shipment to the Gulfport yard for larger vessels. The France Road yard receives construction materials on barges. Delivery of completed yachts is made through the GIWW. The France Yard operation employs about 250 workers (fitters, welders, carpenters, painters, etc). They were in a hiring mode as of mid-2009.

The France Road facility conducts sea trials on their vessels prior to delivery to the customer. They previously used both the MRGO and the IHNC. With the closure of the MRGO, they now rely on the IHNC for access to Lake Pontchartrain. At any given time, they typically have about five yachts in their production process. Approximately every 90 days, a yacht comes off the production line. They run sea trials about four times a year.

Trinity Marine Products – Located at 150 Highway 21 in Madisonville, Louisiana, Trinity Marine Products Inland Barge Group operates a shipyard on the north shore of Lake Pontchartrain. They are the largest manufacturer of barges used to transport cargo on U.S. inland waterways. Trinity Marine manufactures tank barges that carry petroleum, petroleum products, fertilizer, ethanol, chemicals, and other liquid cargo.

The Madisonville yard receives about 16 barges per year with incoming steel shipments. Barge sizes are generally about 200 ft by 35 ft by 12 ft. Loaded with steel, the barges require about 9 ft draft. They receive steel from Mobile, Alabama using the GIWW. Some steel components also arrive on truck. The Madisonville yard produces about 32 barges per year with an approximate size of 300 ft by 54 ft by 12 ft. On average, they turn out a completed product every 3 months with about seven barges in the production pipeline at any given time. The Madisonville yard employs about 300 FTE.

A completed empty barge for customer delivery requires about 3 ft draft. They have typically used the Seabrook pass at the IHNC for delivery from the north shore to the GIWW. However, delivery through the Rigolets would be a possibility. Approximate distance from their yard to the GIWW through the Rigolets is 50 miles. Approximate distance from their yard to the same point on the GIWW through Seabrook is about 60 miles. Although a slightly longer distance, the Seabrook pass is a more favorable navigational route for their barges.

Holcim Cement – Holcim Cement is a distributor of cement products. The facility at 5301 France Road facility employs 7 FTE. Operations can occur at this facility 7 days a week, 24 hours a day. Their product is made in Theodore, Alabama and received at this location via barge from the GIWW and rail. Holcim does not rely on the Seabrook pass between the IHNC into Lake Pontchartrain; however, the long delivery barges (340 ft) might require the functionality of the Turning Basin. Product is distributed from this facility by way of rail and truck. The plant would require France Road and the rail lines to remain functional. Their facility was damaged during Hurricane Katrina but recovered using private money within approximately one year.

Orleans Materials – The France Road yard of Orleans Materials fabricates various materials from steel. Currently, the yard is producing 60-ft deck barges. Within a period of 18 months recently, they produced six barges. Twenty-five FTE are employed at this location. The yard receives steel by both barge and rail. Barge traffic does not rely on the Seabrook pass; shipments are received through the GIWW. Following Hurricane Katrina, self-funded recovery of this facility took about 18 months.

US Gypsum – US Gypsum previously produced both wallboard and mineral wool ceiling tile such as SHEETROCK® brand gypsum panels and DUROCK® brand cement board. Sheetrock production was suspended in December 2007 but the plant still produces cement board. Approximately 60 FTE are currently employed, down from 160 at peak production.

US Gypsum utilizes the GIWW for shipments to their plant. They also receive trucked shipments of cement from the Holcim plant on the west bank of the IHNC and rely on rail operations of New Orleans Public Belt Railroad to send out their finished product. The plant does not utilize the IHNC for access to Lake Pontchartrain.

Navigational Resources

Navigational resources in the project area are associated with the IHNC and the associated slips in the project vicinity. The IHNC was completed in 1923 to provide navigation between the Mississippi River and Lake Pontchartrain, a distance of approximately 5 miles. The channel where the IHNC connects to Lake Pontchartrain is maintained at an elevation of -16 ft.

Inner Harbor Navigation Canal (IHNC)

The IHNC within the project area consists of approximately 30 acres of open water (including the slips and Turning Basin). The channel is approximately 95 ft wide at its most narrow point and serves as an active navigation route for the Port of New Orleans and other vessels.

The IHNC lock connects the Lower Mississippi River to the IHNC and other sea-level waterways. The IHNC Lock is the only lock that provides access to the eastern segment of the GIWW. Shallow draft traffic that uses the IHNC Lock is predominantly made up of transits with origins and destinations beyond the local area. Shallow draft traffic forecasts developed for the 2005 Investigative Study showed a 0.8 percent annual compound growth rate in IHNC Lock traffic for the period 2002 – 2055 (USACE 2008d). The IHNC Lock is an obstacle for most of the deep-draft ships using the Mississippi River and the IHNC.

Actual tonnage of commodities passing through the IHNC Lock for 2007 was 17.4 million tons, lower than the forecasted tonnage of 18.8 million tons (USACE 2008d). Traffic records from the Waterborne Commerce Statistics Center (WCSC) show 17,228 thousand short tons of cargo passed through the IHNC in 2006 (WCSC 2006). The IHNC EIS reports that 17,253 thousand short tons of cargo passed through the IHNC in 2002. The traffic projection for 2015 is 22,625 thousand short tons of cargo (USACE 2008d).

In addition to barge and deep-draft vessel traffic, the IHNC Lock also serves recreational and other commercial vessels (such as fishing vessels), U.S. Government vessels, and local law enforcement vessels (USACE 2008d).

Depths in the IHNC within and around the project vicinity range from 30 ft to 41 ft, except for the scour hole located in the northern part of the IHNC, south of the railroad bridge.

The Seabrook Railroad Bridge provides a maximum horizontal clearance of 91.77 ft. Operations are monitored on Marine Channel 16. The Port of New Orleans has a storm operations plan that specifies that operations of the bridge cease with the bridge locked and fully lowered if winds exceed 40 mph (Port of New Orleans 2008).

The Seabrook Bridge is a medium-rise twin bascule, four-lane roadway bridge carrying Lakeshore Drive, connecting Leon C. Simon Drive on the upper side of the bridge with Hayne Boulevard on the lower side. The bridge is operated by the Orleans Levee District. It normally stays in the down position for vehicular traffic but provides sufficient clearance for most marine traffic. The vehicular bridges operate under Federal regulation 33 CFR 117.458 which requires the draw bridge to open on signal; except that, from 7 a.m. to 8:30 a.m., and 5 p.m. to 6:30 p.m. Monday through Friday, the draw need not be opened (Port of New Orleans 2008). The navigational pass under this bridge is referred to as the Seabrook pass in this document.

In addition to the specific navigational needs as discussed previously, the CEMVN, in discussions with the Gulf Intracoastal Canal Association, Trinity Marine (in Madisonville), and McDonough Marine estimate that the maximum design vessel utilizing the Seabrook Pass would be 700 ft long, 74 ft wide, with a draft of 12 ft. The 700-foot length is estimated from two 300-foot barges in addition to a 90-foot tug. As verified by the CEMVN in consultation with the

Norfolk Southern rail bridge tender, many barges that utilize the Seabrook pass are a two-barge configuration. No vessels having more than two barges have passed through Seabrook. The average number of barges passing through per month is 12 to 15.

Discussion of Impacts

Each of the alternatives would result in impacts to residential, industrial, and/or commercial resources along the IHNC. These impacts are discussed in detail below.

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Direct Impacts to Socioeconomics

Residential

The proposed action would temporarily affect the residential area of Pontchartrain Park, particularly those residences along Pauline Drive. The proposed action floodwalls would tie into the existing levee immediately adjacent to the houses on the east side of this street. Impacts to the residential areas during the construction would be limited to noise which is further discussed in section 3.2.14 of this IER. Noise would be regulated in accordance with the City of New Orleans Ordinance 23263, Chapter 66, Article IV. There would be no direct impacts to residential neighborhood following completion of the proposed action.

U.S. Coast Guard

To help assess potential impacts to the USCG, an interview was conducted with the Commander, Eighth District, the USCG, and others. The USCG has two primary concerns with respect to this project: (1) emergency readiness and response time; and (2) hazard to navigation. The USCG frequently utilizes the Seabrook pass (estimated 450 to over 500 times over six months). Construction of any of the four alignments on the south side of the Seabrook Bridge would require the USCG to stage a vessel both north and south of the project site during construction to be able to respond to any emergent situation without having to make the detour through the Rigolets, a 2-3 hour trip (figure 44).

This would require the USCG to double their staff and asset deployment requirements for the duration of the construction period, at least for the period during which the cofferdam is in place (approximately 6 months to 12 months). A new mooring site would need to be obtained and prepared south of the project site as no such site currently exists. The USCG would need to seek budget allocation to provide for this unplanned expense.

Following construction, the USCG would not experience any adverse impacts. The USCG would need to plan accordingly to be prepared for emergency response before and after hurricane conditions coordinating placement of their vessels with gate closure schedules.

Port of New Orleans

To help assess potential impacts to the Port of New Orleans, an interview was conducted with the Director of Business Development and the Real Estate Coordinator from the Port of New Orleans. During construction of the proposed action, the former Shavers-Whittle Yard (Port property) would be used as the laydown/construction area. The Port could lose the financial benefits of this property during its use as a construction yard. In addition, the Port has plans to use this parcel for approximately 4 months to 6 months beginning in spring 2010 to build a dredge barge. Depending on the timing, this could possibly overlap with the Seabrook floodgate

construction timeframe, or the Port would need to find an alternate location or work in cooperation with the USACE for joint use of this parcel. The proposed action's new permanent easement on the Shavers-Whittle Yard (figure 5) would reduce the amount of land available for future use or lease by the Port.

New Orleans Public Belt Railroad

The proposed action would not adversely affect their rail operations following completion of construction. To aid the evaluation of impacts to this operation, an interview was conducted with the Chief and Assistant Chief Engineers of New Orleans Public Belt Railroad. During construction, the proposed action would not adversely affect their rail operations. The existing rail lines have not been rebuilt to the northern extent of the project site. Therefore, should the USACE wish to use rail delivery for any construction supplies or equipment during construction of the proposed action, NOLA Public Belt Railroad has the option to rebuild the rail line, given approximately 6 months lead time.

Cat5 Composites

To help assess potential impacts to this operation, an interview was conducted with the Vice President for Engineering, and the President of Cat5 Composites. Under the proposed action during construction, Cat5 would experience impacts associated with the restriction of navigational access to the lake via the IHNC and construction dust caused by an increase in construction vehicles on France Road. As their facility is not equipped with filtration, the vehicular traffic associated with the proposed action could result in dust contamination on their coatings; however, overall direct impacts to Cat5 would not be detrimental following completion of the proposed action.

Halliburton/Baroid/Dresser

To help assess potential impacts to this operation, an interview was conducted with the regional Location Manager with follow-up discussion with the on-site plant manager. During and following construction, the proposed action could result in operational changes such as relocating loading/unloading operations from the east bank of the IHNC into the Turning Basin. The distance between the proposed Seabrook floodgate structure under the proposed action and the east bank of the IHNC may not be sufficient to allow unloading on the IHNC bank on the north end of the facility's lease. Halliburton currently does not hold a lease on the dock in the Turning Basin, although at least one of their vendors obtains approval on a ship-by-ship basis to unload in the Turning Basin. Under the proposed action following construction, Halliburton would need to negotiate a lease with the Port for access and use of the Turning Basin. Otherwise, incoming ore would need to be trucked from an alternate unloading site (not yet identified).

A portion of the Halliburton property would be required as permanent easement, however, very little of this property would be affected as construction would occur north of the existing plant infrastructure.

Holcim Cement

To help assess potential impacts to this operation, an interview was conducted with the site manager of Holcim Cement. Holcim Cement would not experience any direct impacts from the construction of the proposed action.

Orleans Materials

To help assess potential impacts, an interview was conducted with the President of Orleans Materials. This facility would not experience any direct impacts, either during or after construction of the proposed action.

Lake Pontchartrain Properties (RV park)

To help assess potential impacts to this operation, an interview was conducted with the Managing Partner, Lake Pontchartrain Properties, LLC; the General Manager of the facility, and a General Contractor. This commercial resource would be impacted during the construction of the proposed action due to the restriction of navigation from the RV park to the lake. Alternative routes to the lake are available through the Rigolets and Chef Menteur Pass (figure 43). The Rigolets detour; however, requires an 11-hour round trip and is not a viable option for this resource's clientele (day-fishermen). The Chef Menteur Pass is considered by many boaters to be unreliable for navigation. If boats could be transported over land to an alternative launch site (e.g., Seabrook Launch), boaters could still enjoy close access to the fishing site, but would require additional coordination to arrange for drop-off and pick-up. Following the construction, the proposed action would have no direct impacts on the RV park.

Figure 43. Alternative Navigation Routes (bypassing the project area)

Seabrook Marine

Although not in the immediate project area, Seabrook Marine would be severely impacted under the proposed action during construction due to the disruption of navigation through the Seabrook pass. The majority of their clientele (boaters from Lake Pontchartrain) would no longer be able to readily access the goods and services available at Seabrook Marine. Boaters may use the alternative passage through the Rigolets as a detour with additional time requirements as described previously for the RV park. This alternate route has very shallow passes and height restrictions that would preclude many common taller boats that use Seabrook Marine. The same restrictions are true to an even greater extent through the Chef Menteur pass. Some boaters may still use the launch and services provided by Seabrook Marine and change their destination to accessible areas such as Lake Borgne.

According to Seabrook Marine, even following construction, the proposed action would have detrimental impacts on Seabrook Marine. Unlike the RV park, the loss of business following completion of the construction phase would not be readily reparable; impacts could be felt up to 3 years in rebuilding customer base. The reason for this is that much of the customer base is from the approximately 200 boats in dry storage. This accounts for approximately one-third of their operational revenue (whereas about two-thirds of their revenue is from repair of larger vessels). If these day-trip customers were not able to access the lake from this location during construction, they would likely relocate to another facility that would meet their needs for day-trip access to the lake and the popular fishing location. After relocating, they would be less likely to return. Based on industry standards, it is estimated it would take 2 years to 3 years to re-populate the 200 boats in dry storage (assuming there was sufficient demand from the area population). Impacts could include closure of Seabrook Marine, and the subsequent loss of 45 to 50 jobs. In addition, the proposed action may have long-term impacts on the local fishery (as discussed in sections 3.2.4 and 3.2.10), which may take years to recover from and in turn, could reduce the number of people fishing in the area and using Seabrook Marine.

Boats that are housed at Seabrook with their trailers could be towed a short distance over land to the public boat launch at Seabrook Boat Launch. This option provides boaters with easy access to nearby popular fishing sites in the lake. This option would require additional coordination to arrange for drop-off and pick-up. In addition, Seabrook clients could change their destinations to areas that will remain accessible during the construction such as Lake Borgne and the Golden Triangle.

Trinity Yachts

To help assess potential impacts to this operation, an interview was conducted with the Facility Engineer. Although not in the immediate project area, Trinity Yachts would be affected under the proposed action during construction. During construction, Trinity Yachts would experience operational impacts due to the closure of the IHNC leading to Lake Pontchartrain for approximately 6 months to 12 months. Trinity Yachts conducts sea trials on their vessels prior to delivery to the customer. They previously used both the MRGO and the IHNC. With the closure of the MRGO, they now rely on access to Lake Pontchartrain. At any given time, they typically have about five yachts in their production process. Approximately every 90 days, a yacht comes off the production line. They run sea trials about four times a year. Therefore, during construction of the proposed action, access to the lake would likely temporarily adversely affect four sea trials. Alternative sites for the sea trials may include Lake Borgne or the Gulf of Mexico. Following construction, Trinity Yachts would not experience further operational impacts.

Trinity Marine Products (Madisonville)

To help assess potential impacts to the Trinity Marine Products Inland Barge Group operation, an interview was conducted with the Vice President, Liquid Cargo Business Unit. During construction, Trinity Marine Products would experience moderate operational impacts and would need to re-route delivery of completed barges through the Rigolets. The Rigolets would be the preferred detour over the Chef Menteur Pass for navigating large barges. The approximate distance from their yard to the GIWW through the Rigolets is 50 miles. The approximate distance from their yard to the same point on the GIWW through Seabrook is about 60 miles. Although a slightly longer distance, the Seabrook pass is a more favorable navigational route for their barges. Following construction, operations would return to pre-construction conditions for Trinity Marine and no further impacts would be anticipated.

US Gypsum

To help assess potential impacts to this operation, an interview was conducted with the facility Engineering/Maintenance Manager. The plant does not utilize the IHNC for access to Lake Pontchartrain. The proposed Seabrook floodgate (any alternative) would not appear to have adverse effects on their facility or operations during construction or following construction.

Indirect Impacts to Socioeconomics

Local Economy

The local economy could see direct beneficial impacts in terms of use of local materials and human resources as well as an overall beneficial impact to the reconstruction efforts in New Orleans. However, due to a relatively tight labor market, there may not be adequate local human resources for the construction activities and some construction workers may need to be brought in from other areas. This could be beneficial for the local economy in terms of short-term housing. However, due to the current limited supply of short-term housing, it could also adversely affect residents looking for rental housing while recovery efforts are underway. Additional demand could drive up rental prices which are already high. Overall, however, the influx of additional construction workers would be expected to provide positive economic benefits to area support services such as food, lodging, and entertainment venues. It is expected that the local economy would benefit from having 100-year level flood damage risk reduction by encouraging redevelopment of and investment in the New Orleans area.

ROW Acquisition

Construction would require acquisition of new ROW. The proposed action would utilize the Shavers-Whittle property at 6401 France Road for the construction staging area for approximately 36 months. The proposed action would result in obtaining a total of approximately 26 acres of ROW including 14 acres for permanent easements and 12 acres for temporary easements. Acquisitions would be required from the Port of New Orleans (7.16 acres) and the Norfolk Railroad (3.47 acres). An easement (2.56 acres) would be required with the Port of New Orleans on the Shavers-Whittle property at 6401 France Road. A portion of the Halliburton property (8000 Jourdan Road) would be required as well, however, very little of this property would be affected as construction would occur north of the existing plant infrastructure.

Facility and Utility Relocations

Of all alternative actions, the proposed action would have the least impact on facilities and utilities. Properties would be affected at the Shavers-Whittle property, Halliburton property,

including facilities/utilities owned by the state Department of Transportation, Entergy, and the Sewerage and Water Board of New Orleans.

Cumulative Impacts to Socioeconomics

The cumulative impacts to socioeconomics from the proposed action, the Borgne Barrier, and the MRGO closure structure at La Loutre include temporary and permanent closures of navigation routes. The Decision Record for the IER #11 Tier 2 Borgne document verifies that navigational access would remain open on the GIWW during that construction process. Navigation south of the Seabrook floodgate, therefore, would not be cut off from the GIWW due to provision of a barge gate (150 ft by 16 ft) at the GIWW approximately 1,150 ft east of the Michoud Canal. Under the proposed action, there would be a period of approximately 11 months where construction activities would be in process on the Seabrook gate and the gate at the GIWW. In the overlapping period, there would be approximately 6 months to 12 months where the access to Lake Pontchartrain is closed at Seabrook. During this time, navigational traffic would require diversion through the GIWW which would remain open to navigation. The cumulative effect of this impact would mean increased travel time for users who need to access Lake Pontchartrain from the IHNC and/or possible loss of business to commerce that provides a primarily recreational function during this time.

The various HSDRRS and CWPPRA projects throughout the project vicinity are expected to have both beneficial and detrimental cumulative impacts on recreational fishing. As described in more detail in section 3.2.4, beneficial impacts to the recreational fishery, and therefore, recreational fishing, including improving salinity and DO concentrations in some areas. Negative impacts include both temporary and permanent decreases in dispersion of recreational species and organisms they depend on. Detrimental cumulative impacts on the local fishery would be expected to decrease fishing opportunities during construction. Reduced transport of larval organisms from the Gulf into Lake Pontchartrain over the long term may result in slightly smaller populations of some sport fish and/or their prey, which may in turn reduce the effectiveness of fishing in the area. The reduction in this recreational activity may also have a detrimental economical impact on the industrial and commercial resources in the project area that service boat and bank fishermen during this time. It is expected that the local economy would benefit from having 100-year level flood damage risk reduction by encouraging redevelopment of and investment in the New Orleans area.

The proposed action would also have cumulative beneficial impacts to socioeconomic resources in the New Orleans metropolitan area. The cumulative effects of the referenced projects in the area could provide long-term and sustainable beneficial impacts to the communities within the study area by reducing the risk of damage within flood-prone areas and by generating economic growth. Economic growth could encourage repopulation within the New Orleans metropolitan area overall. Improved HSDRRS would benefit all residents, regardless of income or race, increase confidence, reduce insurance rates, and allow for development and redevelopment of existing urban areas.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct, Indirect, and Cumulative Impacts to Socioeconomics

Direct, indirect, and cumulative impacts from alternative #2 would be similar to but greater than those described under the proposed action.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Direct Impacts to Socioeconomics

Alternative #3 would result in more impacts both during and after construction than the proposed action. Overall, alternative #3 would offer no advantages either in terms of construction or post-construction. Following construction, alternative #3 would result in greater impacts due to functional loss of the Turning Basin, and would offer 100-year level of flood risk reduction to a fewer number of facilities than the proposed action.

Residential

In terms of impacts to the two adjacent neighborhoods, alternative #3 would result in generally the same impacts as discussed under the proposed action. The difference would be a slightly greater degree of potential for noise impact as alternative #3 has residential areas both northwest and southwest of the alignment (whereas the proposed action only has residential to the southwest). Noise would be regulated in accordance with the City of New Orleans Ordinance 23263, Chapter 66, Article IV regarding noise.

US Coast Guard

Impacts to the USCG associated with alternative #3 would be similar to those described for the proposed action.

Port of New Orleans

Under alternative #3, the port would experience impacts both during and after construction. The construction would obstruct functionality of the Turning Basin and the Morrison Wharf (figure 42). The port has a maintenance facility at the southern portion of the Turning Basin that would be obstructed both during and following construction. Under any of the alternatives, the former Shavers-Whittle Yard would be used as the laydown/construction area. While the port could benefit from a short-term lease of this property during its use as a construction yard, the port has plans to also use this parcel for approximately 4 months to 6 months beginning in spring 2010 to build a dredge facility. As this may overlap with the construction of the Seabrook floodgate beginning in spring 2010, the port may need to find an alternate location or work in cooperation with the USACE for joint use of this parcel.

New Orleans Public Belt Railroad

During construction, alternative #3 would result in service interruptions to relocate track and construct rail gates. Approximately 610 ft of track would need to be relocated. Following completion of construction, operations would return to pre-construction conditions.

Cat5 Composites

During construction, impacts under this alternative would be the same as discussed under the proposed action. After construction, alternative #3 would affect approximately one-third of Cat5's leased property at the northern end and would also traverse the frontage on the Industrial Canal where Cat5 would like to build docks and ramps.

Halliburton/Baroid/Dresser

Under alternative #3, both during and following construction, the alignment would continue to make it necessary to unload all ore barges along the east bank of the IHNC, and require moving a

floating crane to the location for discharging material from barges to the bank. The unloading vendor does not own equipment mounted on a barge. Operational costs are generally greater to unload from a floating crane due to insurance costs. Mobilizing a floating crane in and out of each shop arrival would also increase operations costs.

Alternative #3 during construction would result in operational interruptions due to relocation of the New Orleans Public Belt Rail lines which the Halliburton plant uses for materials receipt and delivery. It is necessary for this company to have the ability to receive raw material and ship out finished product by barge during the entire construction project. Logistically, it would not be cost-feasible for Halliburton to import sufficient material to stockpile to offset potential down-time resulting from construction-related interruptions. While the plant has been able to order surplus materials in the past to off-set impact from the repair of the Mississippi River locks, operational impacts are in part based on supply and demand from the supply quarry overseas. If demand is particularly high, orders may not be able to be filled in a timely manner. While alternative quarry locations exist overseas, their current source is preferred due to quality and price considerations.

Holcim Cement

Holcim relies on long barge (340 ft) shipments from the GIWW that require the functionality of the Turning Basin. The Turning Basin would lose its functionality during the construction of this alternative as well as after the project's completion. Therefore, Holcim would experience permanent detrimental impacts from the construction of alternative #3.

Orleans Materials

The impacts from alternative #3, both during and following construction, would generally be the same as described for the proposed action.

Lake Pontchartrain Properties (RV park)

During construction of alternative #3, this facility would experience the same impacts as described for the proposed action. In addition, during and after construction, this alternative would impact approximately 30 percent of present development and approximately 50 percent of the proposed future development (homes and structures).

Seabrook Marine

The impacts from alternative #3, both during and following construction, would generally be the same as described for the proposed action.

Trinity Yachts

The impacts from alternative #3, both during and following construction, would generally be the same as described for the proposed action. Trinity Yachts does have operational need of the Turning Basin. Therefore, the loss of functionality of the Turning Basin under alternative #3 during and following construction would impact this facility.

Trinity Marine Products

The impacts from alternative #3, both during and following construction, would generally be the same as described for the proposed action.

US Gypsum

The impacts from alternative #3, both during and following construction, would generally be the same as described for the proposed action.

Recreational and Commercial Fisheries

Under alternative #3, impacts to recreational and commercial fisheries, both during and following construction, would be similar to those described for the proposed action.

Indirect Impacts to Socioeconomics

Local Economy

The local economy would experience the same generally beneficial impacts under this alternative as described for the proposed action. Additional impacts may be experienced by the port. As the owner of the Turning Basin, the port would experience adverse impacts from loss of tenants who rely on the functional use of the Turning Basin such as Halliburton on the northern end of the Turning Basin. Under alternative #3, the port's largest lease holder in terms of land area associated with this project's area of potential effect (the 20-acre RV park) would also be severely impacted. Should the RV park lose its customer base due to selection of alternative #3, the port could lose this customer and would need to renegotiate its longest-term lease (currently through 2041).

ROW Acquisition

Construction would require acquisition of new ROW. All alternatives would utilize the same construction staging area: an approximately 9.5-acre area consisting primarily of Shavers-Whittle property at 6401 France Road and 2.5 acres of adjacent open water for approximately 36 months.

Alternative #3 would result in obtaining approximately 37 acres of ROW: approximately 18 acres for permanent ROW, 12 acres for temporary construction easements, and 7 acres for raising existing I-walls to T-walls. Acquisitions would be required from the Port of New Orleans affecting the following: Shavers-Whittle, Cat5 Composites, Lake Pontchartrain Properties, Halliburton, and the Morrison Yard Wharf.

Facility and Utility Relocations

Alternative #3 would require relocation of portions of France Road and Jourdan Road, fencing, railroad track, retaining wall, 2 fire hydrants, sanitary sewer, overhead power lines, 10 power poles, and 9 transformers. Properties would be affected at Lake Pontchartrain Properties, Cat5 Composites, Halliburton, including facilities/utilities owned by Entergy, the Sewerage and Water Board of New Orleans, and rail facilities owned by New Orleans Public Belt Railroad.

Cumulative Impacts to Socioeconomics

Cumulative impacts under alternative #3 would be the same as those defined for the proposed action.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

Direct Impacts to Socioeconomics

Alternative #4 would result in the greatest degree of adverse impacts to the IHNC users, both during and following construction. Navigational access would be restricted for approximately 6 months to 12 months during its construction, and following construction, this alternative would provide 100-year flood risk reduction to the fewest number of tenants and resources along the IHNC.

Residential

In terms of impacts to the two adjacent neighborhoods, alternative #4 would affect more residents than the proposed action due to their proximity to the alignment. The impacted residents' homes are immediately adjacent to the existing levee that the project would tie into. Because of the proximity of these homes to the levee, residents of these homes would experience noise impacts during construction. Noise would be regulated in accordance with the City of New Orleans Ordinance 23263, Chapter 66, Article IV regarding noise.

Port of New Orleans

During construction of alternative #4, direct impacts to the Port would generally be the same as described under the proposed action. Following construction, access to the Port's maintenance facility at the southern end of the Turning Basin would be obstructed.

U.S. Coast Guard

The potential impacts under alternative #4 would be the same as for the proposed action.

New Orleans Public Belt Railroad

Alternative #4 would result in impacts during construction due to service interruptions to relocate track and construct rail gates. Approximately 2,185 ft of track would need to be relocated.

Cat5 Composites

In addition to the impacts described under the proposed action, alternative #4 would place a small portion of the construction zone on a small portion of the Cat5 property.

Halliburton/Baroid/Dresser

During construction, alternative #4 would also result in operational interruptions due to relocation of the New Orleans Public Belt Rail lines which the Plant uses for materials receipt and delivery as described in alternative #3. Following construction, this alternative would have less impact on Halliburton than the proposed action because it would not disrupt Halliburton's ability to continue using the Turning Basin as it does currently.

Holcim Cement

Alternative #4 would result in operational interruptions due to relocation of the New Orleans Public Belt Rail lines which the Plant uses for materials receipt and delivery. There are no impacts anticipated following construction.

Orleans Materials

The impacts to Orleans materials under alternative #4, both during and following construction, would be the same as those described for the proposed action.

Lake Pontchartrain Properties (RV park)

Impacts to this facility would be similar to, although greater in magnitude than, those described under alternative #3. Alternative #4 would affect 50 percent of the present development, and all of the proposed future development in that existing operations and infrastructure would need to be relocated into the area reserved for future mixed-use development, thereby completely changing the long-term land use plans for the park. It would render their northern slip sight unusable. It may also necessitate demolition of the business's existing office building and other infrastructure. In addition to impacts on future RV park land use and potential impacts to existing buildings, the RV park tenants would be temporarily exposed to noise from construction activities. Given the proximity of alternative #4 to the RV park, noise from certain activities such as pile driving could be intense enough to encourage tenants to vacate the park until construction is completed. The repercussions of these actions would be felt after construction is complete as well.

Seabrook Marine

Direct impacts to Seabrook Marine during and after construction of alternative #4 would be the same as described under the proposed action.

Trinity Yachts

Direct impacts to Trinity Yachts during and after construction of alternative #4 would be the same as described under the proposed action.

Trinity Marine Products

Direct impacts to Trinity Marine Products during and after construction of alternative #4 would be the same as described under the proposed action.

US Gypsum

Direct impacts to US Gypsum during and after construction of alternative #4 would be the same as described under the proposed action.

Recreational and Commercial Fisheries

Under alternative #4, impacts to recreational and commercial fishery resources would be similar to those described for the proposed action.

Indirect Impacts to Socioeconomics

Local Economy

The local economy would experience the same generally beneficial impacts under this alternative as described for the proposed action.

ROW Acquisition

Construction would require acquisition of new ROW. All alternatives would utilize the same construction staging area: an approximately 9.5-acre area consisting primarily of Shavers-Whittle property at 6401 France Road and 2.5 acres of adjacent open water in Slip No. 6 for approximately 36 months.

Alternative #4 would result in obtaining a total of approximately 36 acres of ROW; approximately 15 acres would be required for permanent ROW and easements, 12 acres for temporary construction easements, and 9 acres for raising existing I-walls to T-walls. Acquisitions would be required from the Port of New Orleans affecting the following: Cat5 Composites, Lake Pontchartrain Properties, and the Morrison Yard Wharf.

Facility and Utility Relocations

Alternative #4 would require the relocation of a portion of concrete slab at the Morrison Yard Wharf, numerous RV hookups and facilities at the Lake Pontchartrain Park including the office, swimming pool, pond, and boat launch; chain link fence, sanitary sewer, portions of France Road and Jourdan Road, railroad track, power poles, drain line, and retaining wall and sheet piling at Morrison Yard Wharf. Properties would be affected at the Morrison Yard Wharf, Cat5 Composites, and Lake Pontchartrain Properties, including facilities/utilities owned by the Department of Transportation, Entergy, and the Sewerage and Water Board of New Orleans, and rail facilities owned by New Orleans Public Belt Railroad.

Cumulative Impacts to Socioeconomics

Cumulative impacts under alternative #4 would be similar to those defined for the proposed action.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

Direct Impacts to Socioeconomics

Alternative #5 would have the fewest impacts on socioeconomic resources that use the project area due to its location in the lake (away from residential, industrial, and commercial properties) and because limited navigation could be maintained through the Seabrook Pass during construction.

Residential

Due to this alternative's location in the lake, rather than in the IHNC, noise impacts to the residential neighborhoods adjacent to the IHNC would be much less under this alternative as compared to the other alternatives. The duration of construction noise would be longer due to the longer construction period allotted for this alternative; however, noise would be regulated in accordance with the City of New Orleans Ordinance 23263, Chapter 66, Article IV regarding noise.

Industrial/Commercial

Alternative #5 would not have any direct impacts on the industrial or commercial facilities that use the project area.

Recreational and Commercial Fisheries

Under alternative #5, impacts to recreational and commercial fishery resources would be similar to those described for the proposed action.

Indirect Impacts to Socioeconomics

Local Economy

The local economy would experience the same generally beneficial impacts under this alternative as described for the proposed action.

ROW Acquisition

Construction of alternative #5 would require acquisition of new ROW from the state of Louisiana. This alternative would require a total of approximately 34 acres of temporary and permanent ROW, including approximately 12 acres of permanent easements and 21 acres for temporary construction easements.

Facility and Utility Relocations

Alternative #5 would require minimal relocations of facilities/utilities including a concrete road, chain link fence, drain line, and one drop inlet.

Cumulative Impacts to Socioeconomics

Cumulative impacts under alternative #5 would be the same as those defined for the proposed action.

3.4 ENVIRONMENTAL JUSTICE

Environmental Justice (EJ) is institutionally significant because of Executive Order 12898 of 1994 and the Department of Defense's Strategy on Environmental Justice of 1995, which direct Federal agencies to identify and address any disproportionately high adverse human health or environmental effects of Federal actions on minority and/or low-income populations. The USEPA defines EJ as "the fair and equitable treatment (fair treatment and meaningful involvement) of all people with respect to environmental and human health consequences of federal laws, regulations, policies, and actions."

The methodology to accomplish this analysis includes identifying low-income and minority populations within the study area using up to date economic statistics, aerial photographs, 2000 Census data (USCB 2000), Environmental Systems Research Institute, Inc. (ESRI) estimates (ESRI 2008), as well as conducting community outreach activities such as small neighborhood focus meetings. The smallest political unit(s) containing an EJ project area is/are considered the reference community of comparison, whose population is therefore considered the reference population for comparison purposes. A potential disproportionate impact may occur when the percent minority and/or percent low-income population in an EJ study area are greater than those in the reference community. References cited in this EJ section explain this rationale in more detail.

The sources for the data used in the analysis include aerial imagery and the 2000 U.S. Census and estimates from ESRI. Despite the 2000 U.S. Census being 9 years old, it serves as a logical baseline of information for the following reasons:

- Census 2000 data is the most accurate source of data available due to the sample size of the Census decennial surveys; with one of every six households surveyed, the margin of error is negligible;
- The Census reports data at a much smaller geographic level than other survey sources, providing a more defined and versatile option for data reporting; and
- Census information sheds light upon the demographic and economic framework of the area, pre-Hurricane Katrina. By accounting for the absent population, the analysis does not exclude potentially low-income and minority families that wish to return home.

Due to the considerable impact of Hurricane Katrina upon the New Orleans Metropolitan area and the likely shift in demographics and income, the 2000 Census data are supplemented with more current data, including 2008 estimates and 2013 projections provided by ESRI. For this analysis, an area within a 1-mile radius of the IER #11 proposed action footprint was surveyed and evaluated as the IER #11 EJ study area.

Existing Conditions

The IER #11 Tier 2 Pontchartrain project area is located in the Seabrook area of New Orleans, at the confluence of Lake Pontchartrain and the IHNC. According to the 2000 Census and 2008 ESRI estimates, the area within a 1-mile radius of the project's footprint, in various reaches of the project work, includes low-income or minority groups, particularly in the areas of the IHNC and vicinity in Orleans Parish. The minority population in the area is greater than 50 percent, and is not substantially different than the percentage of minorities within Orleans Parish. Similarly, the percentage of the populations living below the poverty line was comparable to the Orleans Parish figure and significantly lower than the State of Louisiana figure for 2000. Based on the available descriptions of the project and work site locations, the area within a 1-mile radius of the project footprint, in various reaches of the work in Orleans Parish, are temporary and permanent residences to the west; but are primarily industrial in nature to the south and east of the project area, where the greatest direct impacts would occur.

Discussion of Impacts

Proposed Action (Alternative #1) - Bridgeside Alignment: Sector Gate located 540 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls built on Existing Levees

Minority and/or low income communities are located within 1- mile of the proposed action alignment. With implementation of the proposed action, impacts from project construction activities such as air quality, noise, traffic, safety, etc. would occur, but are usually limited to within 1-mile of the project area, are temporary in nature, and would equally impact non-minority/non-low populations as well. Direct impacts from the proposed alignment would include the acquisition of public or industrial property in an industrial area on the northern end and in an uninhabited area to the southern end of the project area. Acquisition of residential property is not anticipated in this project area.

All population groups inside the HSDRRS system would benefit equally from the completed risk reduction system. Thus, disproportionately adverse human health and environmental impacts would not be anticipated on minority and/or low income communities from the proposed action.

Alternative #2 - Bridgeside Alignment: Sector Gate located 398 ft south of Seabrook Bridge and approximately 1,300 ft of T-walls built on Existing Levees

Direct, indirect, and cumulative impacts from alternative #2 would be similar to those described under the proposed action.

Alternative #3 - Turning Basin Alignment: Sector Gate located 1,500 ft south of Seabrook Bridge and approximately 1,500 ft of T-walls

Minority and/or low income communities are located adjacent to the northwest and southwest of the alternative #3 alignment. With implementation of the alternative #3, impacts from project construction activities such as air quality, noise, traffic, safety, etc. would occur, but are usually limited to within 1-mile of the project area, would be temporary in nature, and would equally impact non-minority/non-low populations as well. Acquisition of residential property is not anticipated in this project area.

All population groups inside the HSDRRS system would benefit equally from the completed risk reduction system. Thus, disproportionately adverse human health and environmental impacts are not anticipated on minority and/or low income communities from alternative #3.

Alternative #4 – South of Turning Basin Alignment: Sector Gate located 2,000 ft south of Seabrook Bridge and approximately 1,450 ft of T-walls

There are two residential communities immediately adjacent to the alternative #4 alignment. With implementation of alternative #4, impacts from project construction activities such as air quality, noise, traffic, safety, etc. would occur, but are usually limited to within 1-mile of the project area, would be temporary in nature and would equally impact non-minority/non-low populations as well. Direct impacts from the proposed alignment would include the acquisition of public or industrial property for ROW. Acquisition of residential property is not anticipated in this project area.

All population groups inside the HSDRRS system would benefit equally from the completed risk reduction system. Thus, disproportionately adverse human health and environmental impacts are not anticipated on minority and/or low income communities from alternative #4.

Alternative #5 – Lake Pontchartrain Alignment: Sector Gate located 502 ft north of the Seabrook Bridge and approximately 1,800 ft of T-walls

There are no residential communities adjacent to the alternative #5 alignment. Impacts from construction activities such as air quality, noise, traffic, etc., would not be exerted on any community groups. Direct impacts from the proposed alignment would include the acquisition of public or industrial property for ROW in the project area. Acquisition of residential property is not anticipated in this project area.

All population groups inside the HSDRRS system would benefit equally from the completed risk reduction system. Thus, disproportionately adverse human health and environmental impacts are not anticipated on minority and/or low income communities from alternative #5.

3.5 HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE

The USACE is obligated under ER 1165-2-132 to assume responsibility for the reasonable identification and evaluation of all hazardous, toxic, and radioactive waste (HTRW) contamination within the vicinity of the proposed action. ER 1165-2-132 identifies CEMVN HTRW policy to avoid the use of project funds for HTRW removal and remediation activities. Costs for necessary special handling or remediation of wastes (e.g., Resource Conservation and Recovery Act [RCRA] regulated), pollutants, and other contaminants, which are not regulated

under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), will be treated as project costs if the requirement is the result of a validly promulgated Federal, state, or local regulation.

An American Society for Testing and Materials (ASTM) International E 1527-05 Phase I ESA was completed for the project area(s). A copy of the Phase I ESA will be maintained on file at the CEMVN. The Phase I ESA documented the Recognized Environmental Conditions (RECs) for the proposed action areas, and a Phase II was conducted to further analyze suspected contaminants. If a REC cannot be avoided, due to construction requirements, the CEMVN may further investigate the REC to confirm the presence or absence of contaminants, and actions to avoid possible contaminants. Federal, state, or local coordination may be required. Because the CEMVN plans to avoid RECs, the probability of encountering HTRW in the project area is low.

An ASTM E 1903-97 Phase II ESA was completed to further verify the nature of sediments at proposed construction footprint(s) of the closure gates in the proposed action area(s). The Phase I and Phase II ESAs referenced below will be maintained on file at the office of the CEMVN and are incorporated herein by reference. Copies of the reports are available by requesting them from the CEMVN, or accessing them at www.nolaenvironmental.gov.

The following Phase I and Phase II ESAs were prepared for the CEMVN in November 2006 (Phase I ESA), December 2007 (Phase II ESA) and November 2009 (Final Limited Phase II ESA) in accordance with ASTM International E 1527-05, ASTM E 1903-97 and USACE ER 1165-2-131 (Materials Management Group, Inc. 2006a; 2006b; 2006c; 2007):

- Final Phase I ESA – Seabrook Site, New Orleans, Louisiana;
- Final Phase II ESA – Proposed Closure Structures – Seabrook, GIWW-MRGO, Michoud Slip, New Orleans, Louisiana.
- Final Limited Phase II ESA – Proposed Seabrook Gate Location, New Orleans, Louisiana

These ESAs are located within the study area. Relevant and significant findings and recommendations are summarized below.

Final Phase I ESA – Seabrook Site, New Orleans, Louisiana (November 2006)

The site investigated under this ESA is located at the confluence of Lake Pontchartrain and the IHNC. Following the USEPA's All Appropriate Inquiry (AAI) and ASTM Phase 1 guidelines, there are no RECs identified at the site. It should be noted however that LaDEQ required a residential deed restriction, due to the rupture of a used oil tank in 1998, on a property outside of the project area on the west bank of the IHNC.

Final Phase II ESA – Proposed Closure Structures – Seabrook (December 2007)

The proposed action site located at the confluence of the IHNC and Lake Pontchartrain (near Seabrook Bridge) was investigated as part of this ESA. The Phase II ESA investigated baseline conditions of the project area.

Based on sampling and testing of sediment collected from a total of 21 boring locations, if sediment near the proposed action construction footprint were excavated or dredged, and subject to land management and disposal, only one location with unacceptable concentrations of contaminants was located. Two contaminants of concern (barium and lead) are present in the sediment above the LaDEQ Risk Evaluation/Corrective Action Program (RECAP) standards at

this one location in the canal at Seabrook (Tier 2 Pontchartrain project area). However, these results are below what is considered hazardous waste as defined by CFR 261.24 for barium (<http://www.epa.gov/epaoswer/hazwaste/id/hwirwste/hwirprop.txt>), and appear to be an isolated occurrence because both barium and lead concentrations in samples from adjacent sediment boring locations in the IHNC at Seabrook are significantly lower. Concentrations of all other contaminants tested, including but not limited to volatiles, semi-volatiles, polychlorinated biphenyls (PCBs), herbicides and pesticides, are below risk levels in the locations where sediment samples were taken. However, based on these analytical results, past and current site usage, and one sediment sample absent from the canal suggests additional investigation. This recommended additional investigation was performed as a Limited Phase II ESA in October 2009 and is discussed in the following section.

Final Limited Phase II ESA – Proposed Seabrook Gate Location (November 2009)

Soil and sediment samples from the proposed Seabrook sector gate construction site south of the Seabrook Bridge and the Bascule Railroad Bridge were investigated as part of this limited ESA. The limited Phase II investigated the soil samples along the proposed floodwall alignments on the east and west banks of the IHNC and the sediment samples where the steel sector gate and retaining walls from the east and west banks tie in.

Based on the sampling and testing of soil and sediments collected from a total of 12 boring locations (3 soil and 3 sediment samples from each side of the bank), the soil samples from the west bank indicated no significant contamination with the exception of barium which exceeded RECAP screening level. The elevated barium concentrations are most likely attributed to historical oil drilling in the area. The east bank had total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), arsenic, and barium levels above RECAP screening levels which may have resulted from a surface spill from boating or historical rail activity. There was no significant contamination identified from sediments on the west side of the IHNC. The PCBs, PAHs, dichlorodiphenyltrichloroethane (DDT) and elevated metals (antimony, lead, and barium) contaminations from the east side of the IHNC sediment samples may have resulted from the existence of historical lead facility in the area and historical oil drilling activities.

Only arsenic and PAHs from soil samples on the east side of bank were above RECAP industrial standards. These locations of elevated concentrations will require appropriate personal protective equipment and precautions for exposures to construction workers during the construction phase. However, the results from four toxicity characteristic leaching procedures (TCLPs) obtained from composite samples of each side of the bank, indicated the material in each of the investigation areas would be classified as non-hazardous.

Based on the Phase I and Phase II ESA reports of the project area, and because the CEMVN plans to avoid RECs during implementation of the proposed action, the probability of encountering HTRW in the project area is low. Any contaminated soils excavated would be disposed of according to applicable Federal and state laws and regulations.

HTRW Investigations – ADDENDUM (5 May 2009)

An addendum to the original Phase I investigated possible current RECs within the project areas that may not have been documented by past investigations, as well as, investigates the status of past noted environmental issues from the IER per Phase I and Phase II ESAs.

Seabrook

In February 2009, USACE's Environmental Team conducted another Phase I ESA in the vicinity of the floodwalls lining the IHNC. No new RECs were identified in this assessment; however, the industrialized nature of the area is of note.

On 14 April 2009, CEMVN conducted a site reconnaissance of the Seabrook area. No significant changes appear to have occurred to the adjacent properties since the original Phase I ESA, except some construction activities on the West end of the property. A fenced-in area along the LeRoy Johnson Drive, which used to be the Naval Reserve Training Center, has been demolished and scrap metal and other scrap demolition materials were observed. East of Jourdan Road is the New Orleans Lakefront Airport that owns an active above-ground storage tank (AST) field of four tanks containing aviation gas or AVGAS. The ASTs are immediately adjacent to the target property site for the sector gate construction in Lake Pontchartrain. No RECs or obvious signs of major contamination were discerned during the site reconnaissance of the Seabrook area.

4.0 CUMULATIVE IMPACTS

NEPA requires a Federal agency to consider not only the direct and indirect impacts of a proposed action, but also the cumulative impacts of the action. Direct, indirect, and cumulative impacts of the proposed action are evaluated specifically for each IER, but will also be addressed within the draft CED that is being prepared by the CEMVN. A cumulative impact is defined as "the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions" (40 CFR 1508.7). Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time. Cumulative impacts were addressed for each alternative and resource in the preceding sections.

4.1 METHODOLOGY

To successfully assess cumulative impacts, a broad range of activities and patterns of environmental changes that are occurring in the vicinity of the project were considered. The following items were guidelines for the cumulative impact analyses in this document:

- The proximity of the projects to each other, both geographically and temporally.
- The probability of actions affecting the same environmental resource, especially systems that are susceptible to development pressures.
- The likelihood that the project would lead to a wide range of effects or lead to a number of associated projects.
- Whether the effects of other projects are similar to those of the project under review and the likelihood that the project would occur.

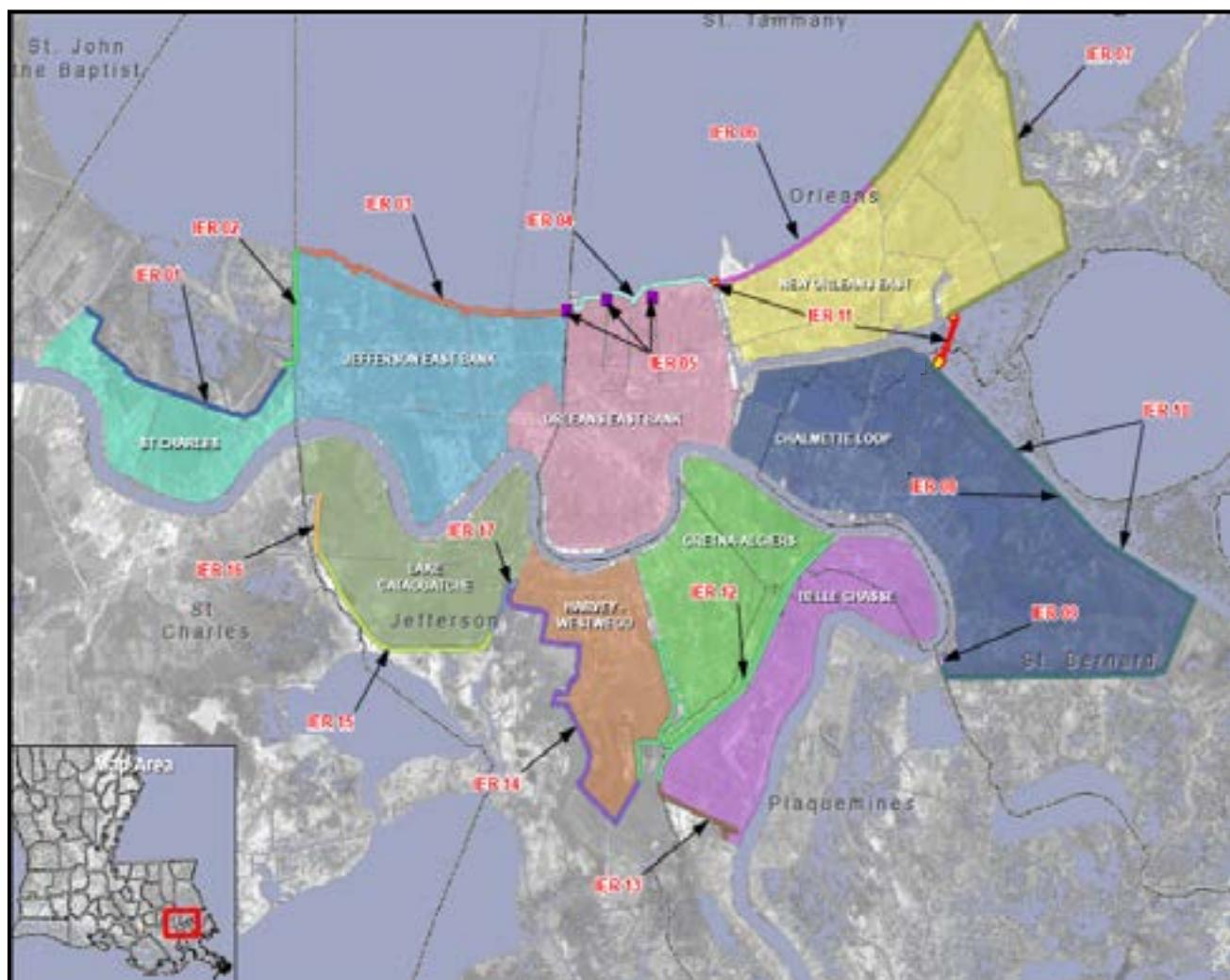
4.2 DESCRIPTIONS OF PROJECTS CONSIDERED

Rebuilding efforts as a result of Hurricane Katrina are taking place throughout southeast Louisiana and along the Mississippi and Alabama Gulf Coast. The Insurance Information Institute (III) has estimated that the total insured losses from Hurricane Katrina were \$40.6 billion in six states, and in Louisiana the insured losses are estimated at \$25.3 billion (III 2007). Much of those insured losses would be a component of the regional rebuilding effort. Although

the full extent of construction in Orleans and St. Bernard Parishes and throughout the Gulf Coast over the next 5 years to 10 years is unknown, a large-scale rebuilding effort is underway.

The Water Resources Development Act of 2007 (WRDA 07) became law in November 2007. This bill authorized several additional projects and studies in the general vicinity of the IER #11 Tier 2 Pontchartrain project area and could contribute to cumulative impacts. WRDA 07 included authorization of the LPV and WBV HSDRRS projects to raise risk reduction levels to 100-year levels, as well as coastal restoration projects, Morganza to the Gulf hurricane risk reduction, hurricane risk reduction in Jean Lafitte and lower Jefferson Parish, a study of coastal area damage that could be attributable to the USACE, the MRGO closure at Bayou La Loutre, an EIS for the IHNC lock, and the formation of a Coastal Louisiana Ecosystem Protection and Restoration Task Force (Alpert 2007). The majority of these projects or studies still require specific appropriations. The WRDA does not guarantee financing of these projects but does allow Congress to allocate money for them in future spending bills (Alpert 2007). These additional projects could contribute to resource impacts, either adversely or with long-term positive impacts.

As indicated previously, in addition to this IER, the CEMVN is preparing a draft CED that will describe the work completed and the work remaining to be constructed. The purpose of the draft CED will be to document the work completed by the USACE on a system-wide scale. The draft CED will describe the integration of individual IERs into a systematic planning effort. Overall cumulative impacts, a finalized mitigation plan, and future OMRR&R requirements will also be included. The following discussion describes an overview of other actions, projects, and occurrences that may contribute to the cumulative impacts previously discussed.


4.2.1 CEMVN HSDRRS IERs

Federal hurricane damage risk reduction for the greater New Orleans area is referred to as the HSDRRS and is divided into three USACE authorized projects: (1) LPV; (2) WBV; and (3) New Orleans to Venice (NOV). The NOV and WBV projects have no or limited discussion in this IER because their alignments are not located within the project region and, with the exception of some positive cumulative impacts to socioeconomics, these projects would not greatly increase cumulative impacts. The various projects that make up the LPV projects include the construction of 125 miles of levees, concrete floodwalls, and other structures. Many of these projects are broken out by area and referred to by their IER document number. Figure 44 shows LPV and WBV IER projects. A summary of the projects that fall within the New Orleans Metropolitan area is provided below:

- **IER #1, LPV, La Branche Wetlands Levee, St. Charles Parish, Louisiana** – evaluates the potential impacts associated with raising approximately 9 miles of earthen levees; replacing over 3,000 ft of floodwalls; rebuilding, modifying or closing five drainage structures; and modifying one railroad gate along the existing levee system on the north side of U.S. 61 (Airline Highway) between the Bonnet Carré Spillway and the northwest end of the Louis Armstrong New Orleans International Airport near the St. Charles/Jefferson Parish line.
- **IER #2, LPV, West Return Floodwall Jefferson and St. Charles Parishes, Louisiana** – evaluates the potential impacts associated with the proposed replacement of 17,900 ft (3.4 miles) of floodwalls along the line between Jefferson Parish and St. Charles Parish in the northeastern portion of the Mississippi River deltaic plain. The project area is adjacent to the Parish Line Canal from the north side of the Louis Armstrong New Orleans International Airport to the south shore of Lake Pontchartrain.
- **IER #3, LPV, Lakefront Levee, Jefferson Parish, Louisiana** – evaluates the potential impacts associated with the proposed rebuilding of 9.5 miles of earthen levees, upgrading of the foreshore protection, the replacement of two floodgates, the construction of fronting

protection, and construction or modification of breakwaters at four pumping stations just east of the St. Charles Parish and Jefferson Parish line to the western side of the 17th Street Canal.

- **IER #4, LPV, New Orleans Lakefront Levee, Orleans Parish, Louisiana** – investigates improvement of the levee, floodwall, and Bayou St. John Sector Gate extending from the 17th Street Canal to the IHNC.

Figure 44. HSDRRS Lake Pontchartrain and Vicinity and West Bank and Vicinity IER Projects

- **IER #5, LPV, Permanent Protection System for the Outfall Canals Project on 17th Street, Orleans Avenue, and London Avenue Canals, Jefferson and Orleans Parishes, Louisiana** – evaluates the impacts of a new permanent pump station and closure (i.e. gates) at or near the mouth of each of the outfall canals operating in series with the existing Sewerage and Water Board of New Orleans pump stations.
- **IER #6, LPV, New Orleans East, Citrus Lakefront Levee, Orleans Parish, Louisiana** – investigates improvement of approximately 6 miles of levees, floodwalls, and floodgates that

extend from the IHNC and the New Orleans Lakefront Airport east to Paris Road – locally known as the Citrus Lakefront. Foreshore protection enhancements along this reach could include the dredging of access channels in Lake Pontchartrain.

- **IER #7, LPV, New Orleans East, New Orleans East Lakefront to Michoud Canal, Orleans Parish, Louisiana** – investigates improvement of approximately 19.3 miles of levee and three floodgates stretching from the New Orleans East Lakefront Levee to New Orleans East Back Levee – CSX Railroad to Michoud Canal. This portion of the LPV HSDRRS encompasses a large portion of the Bayou Sauvage National Wildlife Refuge (NWR). The northern portion of this reach could include foreshore protection enhancements requiring dredged access channels in Lake Pontchartrain.
- **IER #8, LPV, Bayou Dupre Control Structure, St. Bernard Parish, Louisiana** – evaluates the impacts of the construction of a new flood control structure on Bayou Dupre with steel sector gates and floodwall tie-ins, constructed on the floodside of and adjacent to the existing structure.
- **IER #9, LPV, Caernarvon Floodwall, St. Bernard Parish, Louisiana** – evaluates the impacts of replacing two floodgates and constructing approximately 1,500 ft of floodwall, and a levee tie-in at the southwest terminus of the Chalmette Loop levee.
- **IER #10, LPV, Chalmette Loop Levee, St. Bernard Parish, Louisiana** – evaluates the impacts of constructing a T-wall on top of the existing Chalmette Loop levee.
- **IER #11, Improved Protection on the IHNC, Orleans and St. Bernard Parishes, Louisiana (Tier 2 Borgne)** – evaluates the potential impacts associated with constructing surge barriers on Lake Borgne. This is the Tier 2 review for alternatives to protect against storm surge from the IHNC originating from Lake Borgne. This project was initially evaluated in IER #11 Tier 1 (USACE 2008a). Currently, this project is under construction; dredging and piles tests are complete and approximately 1.2 million cubic yards of dredged material has been beneficially used for marsh nourishment within 205 acres of open water ponds near the project area.
- **IER #11, Improved Protection on the IHNC, Orleans and St. Bernard Parishes, Louisiana (Tier 2 Borgne Supplemental)** – evaluates the potential impacts associated with constructing a vertical lift gate on Bayou Bienvenue in lieu of a sector gate, which was evaluated in the original Tier 2 Borgne document.
- **IER #12, GIWW WCC, Harvey, and Algiers Levees and Floodwalls, Jefferson, Orleans, and Plaquemines Parishes, Louisiana** – includes a sector gate across the GIWW and levee tie-ins to the adjacent Hero Canal levee to the east and the V-line levee to the west. Approximately 3 miles of levee and floodwall would be constructed, along with a closure complex across the GIWW, a pump station, fronting protection, and a bypass channel. Levees would generally be raised to 14 ft, requiring 3.1 million cubic yards of earthen material and 310,000 tons of stone.
- **IER #13, WBV, Hero Canal Levee and Eastern Terminus, Plaquemines Parish, Louisiana** – evaluates 22,000 LF of levee improvements and the construction of 1,500 LF of floodwalls.
- **IER #14, WBV, Westwego to Harvey Levee, Jefferson Parish, Louisiana** – evaluates 12 miles of levee, construction of 7,013 LF of floodwalls, and modifications to three pump stations.

- **IER #15, WBV, Lake Cataouatche Levee, Jefferson Parish, Louisiana** – evaluates 8 miles of levee and fronting protection modifications for one pump station.
- **IER #16, WBV, Western Tie-In, Jefferson and St. Charles Parishes, Louisiana** – evaluates construction of a new levee section to complete the western terminus of the West Bank and Vicinity Hurricane Protection Project.
- **IER #17, WBV Company Canal Floodwall, Jefferson Parish, Louisiana** – evaluates 442 LF of floodwalls and fronting protection modifications to two pump stations.
- **IER #18 - Government Furnished Borrow Material, Jefferson, Orleans, Plaquemines, St. Charles, and St. Bernard Parishes, Louisiana and IER #19 – Pre-Approved Contractor Furnished Borrow Material, Jefferson, Orleans, St. Bernard, Iberville, and Plaquemines Parishes, Louisiana, and Hancock County, Mississippi** – The purpose of these two IERs is to identify borrow areas that contain suitable material that can be excavated to supply clay material to Federal HSDRRS levee and floodwall projects.
- **IER #20, LPV Hurricane Protection Project – Mitigation: Manchac Wildlife Management Area Shoreline Protection Modification, St. John the Baptist Parish, Louisiana** – This mitigation IER will be completed to document the mitigation plan for unavoidable impacts from the resulting actions of the aforementioned IERs #1 to #11.
- **IER #21, WBV Hurricane Protection Project – Mitigation** – This mitigation IER will be completed to document the mitigation plan for unavoidable impacts from the resulting actions of the aforementioned IERs #12 to #17.
- **IER #22, Government Furnished Borrow Material #2, Jefferson and Plaquemines Parishes, Louisiana and Hancock County, Mississippi** – evaluates the potential impacts associated with the actions taken by the USACE while excavating borrow areas for use in construction of the HSDRRS.
- **IER #23, Pre-Approved Contractor Furnished Borrow Material #2, St. Bernard, St. Charles, Plaquemines Parishes, Louisiana, and Hancock County, Mississippi** – evaluates the potential impacts associated with the actions taken by commercial contractors as a result of excavating borrow areas for use in construction of the HSDRRS.
- **IER #24, Stockpile Sites for Borrow Material, Orleans and St. Bernard Parishes, Louisiana** – evaluates the potential impacts associated with the actions taken by commercial contractors as a result of stockpiling borrow material for use in construction of the HSDRRS.
- **IER #25, Government Furnished Borrow Material #3, Orleans, Jefferson, and Plaquemines Parishes, Louisiana** – evaluates the potential impacts associated with the actions taken by the USACE while excavating borrow areas for use in construction of the HSDRRS.
- **IER #26, Pre-Approved Contractor Furnished Borrow Material #3, Jefferson, Plaquemines, and St. John the Baptist Parishes, Louisiana, and Hancock County, Mississippi** – evaluates the potential impacts associated with the actions taken by commercial contractors as a result of excavating borrow areas for use in construction of the HSDRRS.
- **IER #28, Government Furnished Borrow Material #4, Plaquemines, St. Bernard, and Jefferson Parishes** – evaluates the potential impacts associated with the possible excavation

of two government furnished borrow areas, and an access road to a previously-approved government furnished borrow area.

- **IER #29, Pre-Approved Contractor Furnished Borrow Material #4, Orleans, St. John the Baptist, and St. Tammany Parishes** - evaluates the potential impacts associated with the actions taken by commercial contractors as a result of excavating borrow areas for use in construction of the HSDRRS.
- **IER #30, Contractor-Furnished Borrow Material #5, St. Bernard and St. James Parishes, Louisiana, and Hancock County, Mississippi** - evaluates the potential impacts associated with the actions taken by commercial contractors as a result of excavating three proposed borrow areas for use in construction of the HSDRRS.
- **IER #32, Contractor-Furnished Borrow Material #6, Ascension, Plaquemines, and St. Charles Parishes, Louisiana** – evaluates the potential impacts associated with the actions taken by commercial contractors as a result of excavating seven proposed borrow areas for use in construction of the HSDRRS.

A discussion of habitat restoration, stabilization, and creation projects that would contribute to cumulative impacts to resources in the IER #11 – Tier 2 Pontchartrain study area are discussed in the following section.

Table 15 provides a summary of the cumulative impacts to be mitigated for the HSDRRS based on the IERs completed (draft or final) to date. In addition to the impacts shown in table 15, approximately 170.5 acres of impacts to forested habitats requiring mitigation would occur as part of projects for the raising of the Mississippi River Levee.

Table 15.
HSDRRS Impacts and Compensatory Mitigation to be Completed

IER	Parish		Non-wet	Non-wet BLH	BLH	BLH	Swamp	Swamp	Marsh	Marsh	Water Bottoms
			acres	AAHUs	acres	AAHUs	acres	AAHUs	acres	AAHUs	acres
1 LPV, La Branch Wetlands Levee	St. Charles	Protected Side	-	-	-	-	73.23	39.53	-	-	-
		Flood Side	-	-	-	-	38.48	29.73	-	-	
1 Supplemental LPV, La Branch Wetlands Levee	St. Charles	Protected Side	-	-	-	-	-	-	-	-	-
		Flood Side	-	-	-	-	-	-	-	-	
2 LPV, West Return Floodwall	St. Charles, Jefferson	Protected Side	-	-	-	-	-	-	17.00	9.00	-
		Flood Side	-	-	-	-	-	-	17.00	9.00	
2.a Supplemental LPV, Jefferson East Bank	Jefferson, St. Charles	Protected Side	-	-	-	-	-	-	-	-	-
		Flood Side	-	-	-	-	-	-	-	-	
3 LPV, Jefferson Lakefront Levee	Jefferson	Protected Side	-	-	-	-	-	-	-	-	26.40
		Flood Side	-	-	-	-	-	-	-	-	
3.a Supplemental LPV, Jefferson East Bank	Jefferson	Protected Side	-	-	-	-	-	-	-	-	64.5
		Flood Side	-	-	-	-	-	-	-	-	
4 LPV, Orleans Lakefront Levee	Orleans	Protected Side	-	-	-	-	-	-	-	-	-
		Flood Side	-	-	-	-	-	-	-	-	
5 LPV, Lakefront Pump Stations	Jefferson, Orleans	Protected Side	-	-	-	-	-	-	-	-	3.29
		Flood Side	-	-	-	-	-	-	-	-	
6 LPV, Citrus Lands Levee	Orleans	Protected Side	-	-	-	-	-	-	-	-	6.90
		Flood Side	-	-	-	-	-	-	4.00	-	
7 LPV, Lakefront Levee	Orleans	Protected Side	-	-	151.70	79.30	-	-	100.40	36.80	106.00
		Flood Side	-	-	30.00	11.90	-	-	70.00	37.20	
8 LPV, Bayou Dupre Control Structure	St. Bernard	Protected Side	-	-	-	-	-	-	-	-	0.30
		Flood Side	-	-	-	-	-	-	-	-	
10 LPV, Chalmette Loop	St. Bernard	Protected Side	-	-	38.32	16.44	-	-	106.55	57.31	95.00
		Flood Side	-	-	35.31	15.22	-	-	323.04	209.94	
11 Tier 2 Borgne IHNC	Orleans, St. Bernard	Protected Side	-	-	-	-	-	-	-	-	-
		Flood Side	-	-	15.00	2.59	-	-	122.00	24.33	
11 Tier 2 Borgne Supplemental IHNC	Orleans, St. Bernard	Protected Side	-	-	-	-	-	-	-	-	-
		Flood Side	-	-	-	-	-	-	-	-	
12 GIWW, Harvey, Algiers	Jefferson, Orleans, Plaquemines	Protected Side	-	-	251.70	177.3	-	-	-	-	-
		Flood Side	-	-	2.30	1.90	74.90	38.50	-	-	
13 Hero Canal and Eastern Tie-In	Plaquemines	Protected Side	13.00	28.27	-	-	-	-	-	-	-
		Flood Side	-	-	19.00	10.59	39.00	28.27	-	-	

Table 15.
HSDRRS Impacts and Compensatory Mitigation to be Completed

IER	Parish		Non-wet	Non-wet BLH	BLH	BLH	Swamp	Swamp	Marsh	Marsh	Water Bottoms	
			acres	AAHUs	acres	AAHUs	acres	AAHUs	acres	AAHUs	acres	
14 WBV, Westwego to Harvey Levee	Jefferson	Protected Side	-	-	45.00	30.00	-	-	-	-	-	
		Flood Side	-	-	45.50	18.58	29.75	17.02	-	-		
15 WBV, Lake Cataouatche Levee	Jefferson	Protected Side	-	-	23.50	6.13	-	-	-	-	-	
		Flood Side	-	-	3.60	1.35	-	-	-	-		
16 WBV, Western Tie- in	Jefferson, St. Charles	Protected Side	-	-	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	137.80	66.30		
17 Company Canal Floodwall	Jefferson	Protected Side	-	-	5.50	2.69	-	-	-	-	-	
		Flood Side	-	-	-	-	19.00	17.09	-	-		
18 GFBM	Jefferson, Orleans, Plaquemines, St. Bernard, St. Charles	Protected Side	379.30	152.32	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
19 CFBM	Hancock County, MS; Iberville, Jefferson, Orleans, Plaquemines, St. Bernard	Protected Side	-	-	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
22 GFBM	Jefferson, Plaquemines	Protected Side	244.69	118.54	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
23 CFBM	Hancock County, MS; Plaquemines, St. Bernard, St. Charles	Protected Side	-	-	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
25 GFBM	Jefferson, Orleans, Plaquemines	Protected Side	933.00	284.00	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
26 CFBM	Jefferson, Plaquemines, St. John the Baptist; Hancock County, MS	Protected Side	-	-	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
28 GFBM	Jefferson, Plaquemines, St. Bernard	Protected Side	19.94	8.45	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
29 CFBM	Orleans, St. Tammany, St. John the Baptist	Protected Side	107.30	48.60	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
30 CFBM	St. Bernard and St. James; Hancock, MS	Protected Side	225.00	189.40	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
32 CFBM	Ascension, Orleans, Plaquemines, St. Charles	Protected Side	195.00	96.20	-	-	-	-	-	-	-	
		Flood Side	-	-	-	-	-	-	-	-		
Totals		Protected Side	2117.23	925.78	515.72	311.89	73.23	39.53	223.95	103.11	00.00	
		Flood Side	-	-	150.71	62.13	201.13	130.61	673.84	346.77	295.49	
		Both	2117.23	925.78	666.43	374.02	274.36	170.14	897.79	449.88	295.49	

4.2.2 Habitat Restoration, Creation, and Stabilization Projects

4.2.2.1 Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) Program Projects

The CEMVN and other Federal and state agencies participate in coastal restoration projects through the CWPPRA (also known as the Breaux Act). These are specific prioritized restoration projects implemented coast-wide by the USACE in cooperation with the LaDNR Coastal Restoration Division and other Federal agencies. Within the Lake Pontchartrain Basin, there are 14 projects proposed or constructed under CWPPRA that are designed to restore, enhance, or build marsh habitat and prevent erosion of marsh habitat. The projects involve numerous protection and restoration methods, including rock-armored shoreline protection breakwaters, dredged-material marsh construction, marsh terracing and planting, freshwater and sediment diversion projects, and modification or management of existing structures. Figure 45 indicates the locations of and table 16 lists and provides additional detail for CWPPRA projects in the region of the study area.

One restoration project is the Caernarvon Freshwater Diversion Canal (CFDC). The CFDC consists of a diversion structure containing five 15-ft square gated culverts and inflow and outflow channels that (as designed) can discharge freshwater and associated nutrients at the rate of 8,000 cubic fps from the Mississippi River to the Plaquemines Wetland Area (PWA) and the coastal bays and marshes in Breton Sound (USACE 1998). Management of the CFDC is expected to prevent approximately 95 percent of the marsh loss predicted for the next 50 years within the Breton Sound (Louisiana Coastal Wetlands Conservation and Restoration Task Force [LCWCRTF] and WCRA 1998 and 1999). Studies indicate that this project has already increased oyster harvests, largemouth bass catches, freshwater and brackish marsh, waterfowl usage, and alligator and muskrat nests (USACE 1998).

Two additional federally sponsored shoreline restoration projects on Lake Borgne and the MRGO (project numbers PO 30 and 32) are the larger CWPPRA projects within the IER #11 Tier 2 Pontchartrain project area. The Lake Borgne and MRGO shoreline restoration projects would maintain the integrity of existing marsh and would also help preserve the existing shorelines in this area. The projects are currently under construction, and an EIS is being developed for the remainder of the proposed work. One of the projects under construction provides a breakwater along the southern Lake Borgne shoreline from Doullut's Canal to Jahnke's Ditch. The second project under construction involves foreshore protection along the north bank of the MRGO between river miles 39.9 and 44.4. Future projects could involve wetland creation through the placement of material dredged from the waterbottoms of Lake Borgne and the construction of retention dikes, where needed, to contain the hydraulically dredged material and facilitate stacking to an elevation supportive of wetland vegetation while minimizing adverse impacts to water quality.

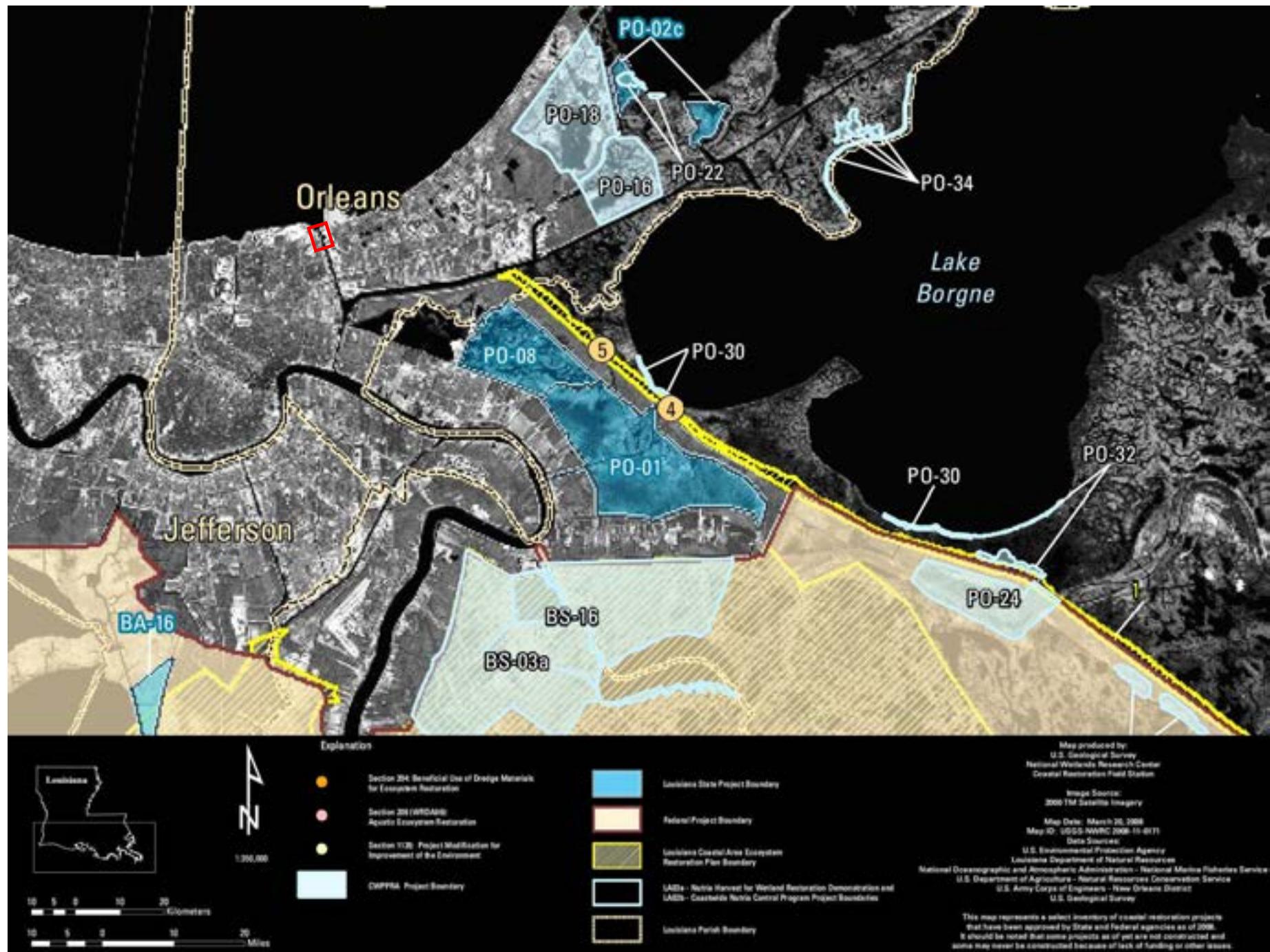


Figure 45. CWPPRA Restoration, Stabilization, and Creation Projects Near the Tier 2 Pontchartrain Project Area

Table 16.
Selected CWPPRA Projects Near the Tier 2 Pontchartrain Project Area

State Number	PPL	Agency	Project Name	Project Area	AAHU	Acres Created/Restored	Acres Protected	Total Net Acres	Construction Date	Status
BA-16	n/a	n/a	Bayou Segnette Shoreline Protection	n/a	n/a	n/a	n/a	n/a	n/a	Completed 1994
BS-03a	2	NRCS	Caernarvon Diversion Outfall Management	15,556	504	802	0	802	6/1/2001	Complete
BS-16	17	USFWS	Caernarvon Outfall Management/Lake Lery SR	16,260	302	268	384	652	n/a	n/a
PO-01	n/a	n/a	Violet Siphon Freshwater Diversion	n/a	n/a	n/a	n/a	n/a	n/a	Completed 1992
PO-02c	n/a	n/a	Bayou Cheevee Shoreline Protection	n/a	n/a	n/a	n/a	n/a	n/a	Completed 1994
PO-08	n/a	n/a	Central Wetlands Pump Outfall – Freshwater Diversion	n/a	n/a	n/a	n/a	n/a	n/a	Completed 1992
PO-16	1	USFWS	Bayou Sauvage National Wildlife Refuge Hydrologic Restoration, Phase I	3,800	520	1,050	500	1,550	6/1/1995	Completed May 1996
PO-18	2	USFWS	Bayou Sauvage National Wildlife Refuge Hydrologic Restoration, Phase II	5,475	584	7850	530	1,280	4/15/1996	Completed May 1997
PO-19	3	USACE	MRGO Disposal Area Marsh Protection	855	435	0	755	755	1/25/1999	Completed Jan. 1999
PO-22	5	USACE	Bayou Cheevee Shoreline Protection	212	42	0	75	75	8/25/2001	Construction
PO-24	8	NMFS	Hopedale Hydrologic Restoration	3,805	269	0	134	134	1/10/2004	Construction
PO-30	10	EPA	Lake Borgne Shoreline Protection	192	61	0	165	165	8/1/2007	Construction
PO-32	12	USACE	Lake Borgne and MRGO Shoreline Protection	465	70	17	249	266	n/a	Engineering and Design
PO-34	16	USACE	Alligator Bend Marsh Restoration and Shoreline Protection	584	166	285	45	330	n/a	n/a

Summary Acres for all approved projects (including those not shown): **1,488,841** **51,829** **69,890** **121,719**

Notes:

 = Projects within 10 miles of the IER #11 Tier 2 Pontchartrain Project Area

n/a = information not available

Agency/Sponsor: USEPA = Environmental Protection Agency; NMFS = National Marine Fisheries Service; NRCS = Natural Resources Conservation Service; USFWS = U.S. Fish and Wildlife Service; USACE = U.S. Army Corps of Engineers.

PPL – Priority Project List

Project Area – the benefitted area as determined by the Environmental Work Group for purposes of conducting Wetland Value Assessments.

AAHU – Average Annual Habitat Units as determined by the Environmental Work Group. Habitat Units represent a numerical combination of habitat quality (Habitat Suitability Index) and habitat quantity (acres) within a given area at a given point in time. Average Annual Habitat Units represent the average number of Habitat Units within any given area.

Acres Created/Restored – The acres of emergent marsh created or restored as a result of project implementation.

Acres Protected – The acres of emergent marsh protected from loss as a result of project implementation.

Total Net Acres – The net gain in emergent marsh as a result of project implementation as determined by the Environmental Work Group. This table includes acres of emergent marsh protected, created, and restored as a result of project implementation.

4.2.2.2 Mississippi River Gulf Outlet Deep-Draft Deauthorization (Closure of the MRGO at Bayou La Loutre)

The WRDA 07 provided for the deauthorization of the MRGO upon the submission of the USACE Chief's Report, Legislative EIS and signed Decision Record to Congress. On 5 June 2008, the Assistant Secretary of the Army for Civil Works forwarded said report, Legislative EIS, and Decision Record to Congress. The report recommended deauthorization of the MRGO and construction of a closure structure across the MRGO just south of Bayou La Loutre. Therefore, the MRGO Federal navigation channel from the south bank of the GIWW at Mile 60 to the Gulf of Mexico at Mile -9.4 is deauthorized, and a closure structure constructed at Bayou La Loutre was completed 9 July 2009.

The deauthorization, construction of the closure structure, and the impacts of such actions were disclosed in a final Legislative EIS (USACE 2007d). Habitat shifts caused by saline waters brought in by the MRGO might have caused the following changes in wetland types in the vicinity of the MRGO: the conversion of 3,350 acres of fresh/intermediate marsh and 8,000 acres of cypress swamp to brackish marsh and 19,170 acres of brackish marsh and swamp to saline marsh. Also, during the period 1964 to 1996, 5,324 acres of marsh were lost adjacent to the MRGO channel. The MRGO closure structure at La Loutre is expected to reduce salinity and erosion in those areas (USACE 2007d). Additionally, impacts associated with the action proposed for the IER #11 Tier 2 Borgne project, which is located near the IER #11 Tier 2 Pontchartrain project in the Gulf Intracoastal Waterway (GIWW), were described in the final IER #11 Tier 2 Borgne document (USACE 2008c). The cumulative impact of a closure on the IHNC as part of the storm surge barrier proposed in IER #11 Tier 2 Pontchartrain would be comparatively small. Shifts and changes in habitats occur naturally as part of the deltaic processes where land is built and then erodes as the river shifts course over thousands of years. Over time, species adapt and change behaviors with these shifting habitats. Thus, closure of the MRGO should have beneficial cumulative impacts to the estuarine waters, wetlands, EFH, and possibly species important to fisheries within the Lake Pontchartrain Basin and the Breton Sound Basin including those associated with the IER #11 Tier 2 Pontchartrain project area.

4.2.2.3 Coastal Impact Assistance Program

The Energy Policy Act of 2005 (PL 109-58) was signed into law by President Bush on August 8, 2005. Section 384 of the Act establishes the Coastal Impact Assistance Program (CIAP), which authorizes funds to be distributed to Outer Continental Shelf (OCS) oil and gas producing states to mitigate the impacts of OCS oil and gas activities. Pursuant to the Act, a producing state or coastal political subdivision can use all amounts received for projects and activities for the conservation, protection, or restoration of coastal areas, including wetlands and for mitigation of damage to fish, wildlife, or natural resources. Amounts awarded under the provisions of the act can also be used to develop comprehensive conservation management plans.

The State of Louisiana worked with the coastal parishes to prepare a draft Louisiana Coastal Impact Assistance Plan that identifies restoration, conservation, and infrastructure projects to be supported by the State and each coastal parish for the 4 years of CIAP funding. The plan was most recently authorized in November 2007 and is regularly amended and updated as needed. This plan includes projects for the enhanced management of Mississippi River water and sediment, protection and restoration of critical land bridges, barrier shoreline restoration and protection, interior shoreline protection, marsh creation with dredged material, and a coastal forest conservation initiative. This plan and management strategies it proposed would have beneficial cumulative impacts to the estuarine waters, wetlands, fisheries, and EFH within the Lake Pontchartrain Basin including those associated with the Tier 2 Pontchartrain project area. Table 17 provides information on CIAP funded projects in the area.

Table 17.
Selected CIAP Projects near the IER #11 Tier 2 Pontchartrain Project Area

Project Name	State Project ID	Project Area (acres)	Benefit (acres)
Orleans Land Bridge Shoreline Protection and Marsh Creation	PO-36(EB)	220	1400
Violet Freshwater Diversion	PO-35(EB)	49	14000
Lake Lery Rim Re-Establishment and Marsh Creation	BS-17	n/a (in design phase)	n/a

4.2.2.4 State Coastal Planning and Restoration

The State of Louisiana has initiated a series of programs to offset the catastrophic loss of coastal wetlands. The Louisiana State and Local Coastal Resources Management Act was passed in 1978 to regulate the developmental activities that affect wetland loss. The resulting Louisiana Coastal Resources Program became a federally approved coastal zone management program in 1980. The Louisiana Legislature passed Act 6 in 1989 (R.S.49:213-214), and a subsequent constitutional amendment which created the Coastal Restoration Division within the LaDNR, as well as the Wetlands Conservation and Restoration Authority (Wetlands Authority).

In the First Extraordinary Session, 2005 of the Louisiana Legislature, which ended on 22 November 2005, Senate Bill No. 71 (Act No. 8) was passed, which provided for the new 16-member panel, called the Coastal Protection and Restoration Authority, which is a broader version of the previous board that was named the Wetlands Conservation and Restoration Authority (WCRA). In addition, Senate Bill No. 71 also provided for the establishment of the Coastal Protection and Restoration Fund, previously named the Wetlands Conservation and Restoration Fund. The Fund is used for coastal wetlands conservation, coastal restoration, hurricane and storm damage risk reduction, and infrastructure impacted by coastal wetland losses.

The Louisiana Coastal Protection and Restoration (LaCPR) Final Technical Report, a closely coordinated effort between the CEMVN and the OCPR, identifies risk reduction measures that can be integrated to form a system that would provide enhanced risk reduction to coastal communities and infrastructure, as well as for the restoration of coastal ecosystems. The report addresses the full range of flood control, coastal restoration, and HSDRRS measures available, including those needed to provide comprehensive Category 5-Hurricane protection. The analysis was performed and a technical document has been produced with recommendations related to enhanced hurricane risk reduction and the restoration of coastal ecosystems. As of September 2009, the technical document is undergoing review by the Assistant Secretary of the Army for Civil Works prior to submittal to Congress.

The LaDNR Office of Coastal Restoration and Management is responsible for the maintenance and protection of the state's coastal wetlands. The Coastal Restoration and Engineering Divisions are responsible for the construction of projects aimed at creating, protecting, and restoring the state's wetlands. These divisions are divided further and provide ongoing management and restoration of resources in the Louisiana coastal zone. The LaDNR is involved in several major programs that are working to save Louisiana's coastal wetlands. These programs include the CWPPRA, Coast 2050, the Louisiana Coastal Area (LCA) Ecosystem Restoration Plan, and the Coastal Impact Assistance Plan of 2005. Other programs include state restoration projects, Parish Coastal Wetlands Restoration Program, Vegetation Plantings, Section 204/1135, and WRDA.

The LCA Ecosystem Restoration Study (USACE and State of Louisiana 2004a) is a comprehensive report that identified the most critical human and natural ecological needs of the coastal area. The study presented and evaluated conceptual alternatives for meeting the most critical needs; identified the kinds of restoration features that could be implemented in the near-term (within 5 years to 10 years) that address the most critical needs, and proposed to address these needs through features that would provide the highest return in net benefits per dollar of cost. The study also established priorities among the identified near-term restoration features, described a process by which the identified priority near-term restoration features could be developed, approved, and implemented, identified the key scientific uncertainties and engineering challenges facing the effort to protect and restore the ecosystem, and proposed a strategy for resolving them. The study also identified, assessed and recommended feasibility studies that should be undertaken within the next 5 years to 10 years to fully explore other potentially promising large-scale and long-term restoration concepts. The study concluded by presenting a strategy for addressing the long-term needs of coastal Louisiana restoration beyond the near-term focus of the LCA Plan. The 2007 WRDA authorized approximately \$1.9 billion for the USACE to carry out the LCA restoration program. The CEMVN has signed an agreement with the State of Louisiana to begin studies on the first six LCA projects, with study completion by December 2010.

Two components of the LCA Ecosystem Restoration Program “near-term plan” are located within the IER #11 Tier 2 Pontchartrain project vicinity. The Modification of Caernarvon Diversion project is located southwest of the project area. It includes the modification of the CFDC to allow an increase in the freshwater introduction rate in order to increase wetland creation and restoration outputs for the structure. This change in operation of the CFDC will accommodate the wetland building function of the system by facilitating organic and sediment deposition, improving biological productivity, and preventing further deterioration of the marshes (USACE and State of Louisiana 2004b). The second project, MRGO Ecosystem Restoration Plan, will address the comprehensive restoration and maintenance of estuarine habitat areas affected by the MRGO navigation channel. Potential features of the plan include wetland protection, restoration, and creation; shoreline protection; barrier island restoration and protection; and freshwater, sediment, and nutrient introduction from the Mississippi River (USACE 2009f).

4.2.2.5 Violet Freshwater Diversion Project

Another restoration project that could influence the IER #11 Tier 2 Pontchartrain project area is the recently authorized Violet Diversion. Authorized under the provisions of the WRDA, the Violet Diversion would divert freshwater from the Mississippi River east across the wetland areas from the Mississippi River to Lake Borgne. The purpose of this diversion is to reduce the salinity in the western Mississippi Sound by diverting freshwater from the Mississippi River to the Biloxi Marshes and Lake Borgne. This diversion project could greatly increase fine sediment transport and deposition into the marshes located between the Mississippi River and the MRGO. It is unlikely that sediments would be transported across the MRGO into Lake Borgne and the Biloxi Marshes because the deep water MRGO would trap most of these sediments.

4.2.2.6 Miscellaneous Wetland Restoration Projects

The New Orleans Sewerage and Water Board is pursuing a feasibility study to evaluate the potential discharge of treated effluent from the East Bank Sewer Treatment Plant (EBSTP), located off Florida Avenue and Dubreuil Street in the Ninth Ward Basin, into wetlands to provide water quality improvement, solids handling, hazard mitigation, and coastal wetland restoration.

4.2.3 Other Projects

The East Jefferson Levee District is placing more than 1,000-3-ton highway traffic barriers along the Lake Pontchartrain shoreline to help slow the rate of erosion in East Jefferson Parish. The Southeast Louisiana Flood Protection Authority-East is considering constructing a new breakwater along portions of the IER #3 project area. Over 100,000 tons of rock would be used, primarily along Reach 1 (the Recurve I-wall in Northwest Kenner to the Duncan Pumping Station) and Reach 4 (Suburban Canal to Bonnabel Canal), with another 8,000 tons of rock placed along the remaining reaches of the IER #3 project area. The Greater New Orleans Expressway Commission (GNOEC) is considering improvements to the Causeway near the USACE HSDRRS project at the Causeway. These improvements could include roadway modification to maintain the new proposed ramp height of 16.5 ft from the HSDRRS levee out onto the Causeway itself as well as additional roadway modifications. Although these projects could contribute to adverse impacts for some of the resources, several of them would have long-term positive impacts, including improved hurricane, storm, and flood damage risk reduction.

4.3 SUMMARY OF CUMULATIVE IMPACTS

The magnitude and significance of cumulative impacts were evaluated by comparing the existing environment with the expected impacts of the proposed action when combined with the impacts of other proximate actions. Projects that occur within the greater New Orleans area, within the Lake Pontchartrain Basin, and within the designated coastal zone for Louisiana were considered collectively (as appropriate) for the evaluation of cumulative impacts.

The majority of the HSDRRS projects are currently in the construction, planning, and design stages, and impacts from these component projects will be addressed in separate IERs and the CED. Construction of levees, gates, floodwalls, and onshore breakwaters throughout the region could cause direct and indirect wetland (including open water) and upland habitat loss. Construction damage as part of the 100-year HSDRRS projects to quality wetland habitats would be avoided to the maximum extent practicable, minimized if unavoidable, and fully mitigated through formal mitigation planning. The closing of the MRGO with a plug at Bayou La Loutre reduces the intrusion of higher salinity waters into Lake Pontchartrain via the IHNC, which has impacted the habitat of Lake Pontchartrain and adjacent wetlands. Barriers at La Loutre, Lake Borgne, and the IHNC would reduce storm surge inundation impacts for low-lying areas on the protected side of the HSDRRS. Depending on design and maintenance, shoreline stabilization measures could alter existing shoreline habitat and block access of aquatic organisms to interior wetlands.

Potential cumulative impacts to hydrology, water quality, aquatic resources, fisheries, and EFH in the project vicinity could occur from construction-related activities (e.g., turbidity from dredging, noise) and from other on-going, completed, and authorized projects in the area (e.g., changes in DO, salinity, velocity, and circulation/flow). The proposed action will have additive positive and negative impacts to identified recent and future projects such as closure of the MRGO at Bayou La Loutre and the Borgne Barrier. Fishing and boating access in the area will be impacted by the construction of all closure structures, but particularly during the 6 months to 12 months of cofferdam placement for the proposed action since Seabrook is a popular fishing passage. The aquatic community would also experience localized water quality degradation, i.e. smothering, increased turbidity, low DO events, during the construction period, with subsequent negative effects on fishing activity. Given the limitations of the modeling conducted, relative reductions in transport of larval organisms from the Gulf of Mexico into Lake Pontchartrain may cause slight reductions, over the long-term, of certain species and life stages of aquatic organisms, including sport fish and their prey.

Although the project area has already been altered by construction and maintenance of navigable waterways (GIWW, IHNC, and MRGO) and the existing HSDRRS, the proposed action would contribute to changes both beneficial (improving salinity, DO conditions in some areas) and negative (temporary and permanent decrease in dispersion of organisms, decreased DO and increased salinity in some areas) to fisheries resources, including prey species.

ADH modeling has shown that closing the MRGO at La Loutre creates large changes to circulation patterns, water surface elevations and velocities within the Lake Pontchartrain Basin. These parameters would continue to change with the implementation of the Borgne Barrier and the proposed action. The ADH model results predict a clear change in circulation patterns once the MRGO is cut off from the Gulf of Mexico. Before the closure structure at La Loutre, flow moves up the MRGO and splits at the GIWW, with a portion moving west and up the IHNC and a portion moving east down the GIWW; however, once the closure is in place, the tide cannot move up the MRGO as previously done. Water can only enter the GIWW at its connections at Lake Borgne. Flow does move through Bayou Bienvenue, but the amount of water it transports is much less than the flows that move up the MRGO or enter through Lake Borgne, and it has little effect on the overall circulation pattern through the GIWW. These changes show a clear direction of flow along the GIWW as opposed to a direction that may vary at times. Changes in water surface elevations are most noticeable at the MRGO closure at Bayou La Loutre according to the ADH model simulations. North of the closure, a 2.5 hour lag in tidal phasing is predicted. With the implementation of the Borgne Barrier and the proposed action, the elevation ranges continue to drop; however, these differences are less extreme.

Velocity modeling results were reported in positive and negative numbers to demonstrate flood and ebb tidal movement. Positive velocity numbers represent directional flow to the north or east and negative numbers represent directional flow to the south and west. Modeled data for plan 1 predict average velocities in the IHNC of 1.59 fps and -1.57 fps in September along with 1.87 fps and -1.68 fps in March (USACE 2009c). With the addition of the Borgne Barrier (plan 2), modeled data predicts a decrease in average velocities in the IHNC. Under plan 3 final (proposed action), velocities are expected to increase during March and September conditions. Average velocities during March would increase to 2.63 fps and -2.33 fps and the average velocity during September would increase to 2.24 fps and -2.13 fps.

Concurrent construction of 100-year HSDRRS projects could cause short-term impacts to water quality that may exceed the LaDEQ water quality standards. Although the proposed action, when combined with the closure structures along the GIWW and Bayou Bienvenue indicate changes in DO and salinity values, the changes described would be minimal compared to the shift that would occur due to the MRGO closure at Bayou La Loutre. Modeling conducted by ERDC illustrated that the closure of the MRGO at Bayou La Loutre had a significant effect on monthly average bottom salinity values not only in the MRGO/GIWW/IHNC complex, but also in the Lake Pontchartrain area. Most areas are expected to show decreases of 3 ppt to 4 ppt, with the MRGO channel showing the highest decrease in the region just north of the La Loutre closure at approximately 10 ppt (USACE 2009d).

The overall change to salinity could be both positive and negative to aquatic resources, fisheries, and EFH. It is expected that environmental conditions would become fresher, and closer to historical salinity conditions. Reductions in salinity would impact the existing system in the short-term by creating localized community and habitat shifts, a disconnection between predators and prey species, changes in behavior, decreased growth rates, and shifts in populations of some species. The initial reductions in salinity may cause adverse short-term effects. However, over the long term, salinities in Lake Pontchartrain near the project would be slightly lowered to levels that are closer to historical salinities typically experienced by aquatic organisms in the area.

Dispersion of all life stages of aquatic resources and fisheries would experience an additive effect from the MRGO closure at La Loutre, the Borgne Barrier, and the proposed action. Organisms would be unable to use the MGRO and access through the Golden Triangle marsh would be restricted to a small opening at Bayou Bienvenue for transport or migration to Lake Pontchartrain; however, the IHNC via the GIWW (except for approximately 6 months to 12 months of cofferdam placement during construction of the proposed action) and two passes in the eastern portion of the lake would be available. While organisms could see a benefit from the overall change in flow direction from the implementation of MRGO closure structure, the Borgne Barrier, and the proposed action, recruitment of larvae and other life stages into Lake Pontchartrain after construction of these closures would be decreased.

For approximately 6 months to 12 months during construction, a cofferdam would block flow between the IHNC and Lake Pontchartrain, potentially causing an increase in predation of some lower trophic level species. This blockage along with the Borgne Barrier and the MRGO closure at La Loutre may require larvae and predators to travel longer distances, thereby extending an already lengthy trip and possibly decreasing growth rates, overall health, and the ability for some individuals to reproduce.

Fish kills in Lake Pontchartrain coupled with potential fish kills at the Bienvenue closure and the IHNC would impact a large number of individuals. Fish kills could cause slower growth rates in individuals subjected to this environment, and would decrease survival of some species causing changes in overall community structure near the closures. Greater impacts are expected due to the MRGO closures (due to the higher salinities and deeper water depth in the area) as compared to the proposed action.

Cumulative adverse impacts to human populations within the study area are not expected to be permanent; however, there would be temporary adverse impacts from the increased traffic, detours, road closures, and noise associated with construction activities that could occur 24 hours a day, 7 days a week for approximately 36 months. Construction of these projects could cause temporary and localized decreases in air quality that would mainly result from the emissions of construction equipment during dredging and construction. However, these changes in air quality should return to pre-construction conditions shortly after construction completion and these changes in air quality are not expected to change the area's attainment status. The proposed action in conjunction with other actions in the region would not contribute to cumulative impacts from HTRW.

The cumulative effects of the many projects in the area could provide long-term and sustainable beneficial impacts to the communities within the study area by reducing the risk of damage within flood-prone areas and by generating economic growth. Economic growth could attract displaced residents and new workers and encourage repopulation within the New Orleans Metropolitan area. Although a few businesses would be negatively impacted during construction, the proposed action would have cumulative beneficial impacts to socioeconomic resources in the New Orleans Metropolitan Area. It is part of the ongoing Federal effort to reduce the threat to life, health, and property posed by flooding. The LPV HSDRRS project would provide additional HSDRRS, reducing the threat of inundation of infrastructure due to severe tropical storm events. The combined effects from construction of the multiple projects underway and rebuilding the HSDRRS in the area would reduce flood risk and storm damage to residences, businesses, and other infrastructure from storm-induced and tidally-driven flood events and, thereby, would encourage recovery. Providing 100-year level of risk reduction within all reaches of the LPV allows for FEMA certification of that level of risk reduction. Improved HSDRRS would benefit all residents, regardless of income or race, increase confidence, reduce insurance rates, and allow for development and redevelopment of existing urban areas.

In conclusion, although there are many ongoing and authorized projects that would similarly impact resources in the Lake Pontchartrain Basin portion of Louisiana, most of the resulting impacts would be temporary. Cumulative impacts to social and economic resources would not only be beneficial, but are considered essential.

5.0 SELECTION RATIONALE

The USACE established the Alternative Evaluation Process (AEP), a logical, systematic process for recommending a proposed action alternative. The AEP is utilized throughout the HSRRS to promote a consistent method of selecting a proposed action, across the system. The AEP for IER #11 Tier 2 Pontchartrain was conducted in two phases. The first phase evaluated four alternatives before identifying one as the proposed action. Subsequently, it was determined during the hydraulic analysis process that the size of the navigation opening designated for the proposed action was not adequate to pass the required flow without exceeding the acceptable flow velocities. Project evaluation was re-initiated to address the need for a larger opening and different gate configurations that would allow the flow to pass through at velocities that are acceptable for navigation and human and natural environmental factors. During this second phase, four alternatives were evaluated, including two modified versions of the proposed action selected during the first phase (the final proposed action and alternative #2); both of these options included lift gates in addition to the original sector gate to increase the flow through area and reduce the flow velocities to an acceptable range. The alternative selected as the proposed action during the second phase of the AEP was a modified version of the alignment selected during the first phase.

The proposed action (alternative #1) was selected to balance the necessity for better reduction of risk to life and property from hurricane and storm related flooding with engineering costs, feasibility, practicality, and impacts to the human and natural environment. Most of the adverse resource impacts expected would be short-term and would occur only during construction. Some permanent impacts to open water and waterbottoms would occur from permanent placement of in-channel structures and associated scour protection and from filling the existing scour hole. These resource impacts were considered along with AEP factors or practicality criteria that included risk and reliability, constructability, real estate requirements, OMRR&R, schedule, and cost.

The risk and reliability associated with the various alternatives are similar; however, for some factors considered for this criterion (i.e., storm load exposure, inspections and maintenance, quality control and exposure during the construction period) there were some subtle differentiations. The proposed action and alternative #2 are preferable over alternatives #3 and #4 for these factors primarily because of the greater length of the floodwall in both alternatives #3 and #4. The proposed action and alternative #2 are preferable over alternative #5 primarily because of the extreme conditions associated with being in the lake versus the IHNC and other impacts associated with the length of floodwall over water in alternative #5, especially during construction. Due to the location of alternative #5 in the lake, this alternative would offer the greatest level of protection to the widest range of properties along the IHNC. The proposed action and alternative #2 alignments would provide an increased level of risk reduction to a majority of Seabrook properties; however, slightly less due to their location further south in the IHNC compared to alternative #5. Alternatives #3 and #4 would potentially allow the greatest amount of storm surge to enter the IHNC due to their southern alignments and therefore have more risk associated with them compared to alternatives #1, #2, and #5.

For the constructability criterion, the proposed action and alternative #2 are preferable over alternatives #3 and #5 primarily because of the difficulty associated with construction over water

(i.e., alternatives #3 and #5 have long segments of floodwalls in the IHNC and in Lake Pontchartrain, respectively). The construction duration of alternative #5 would be approximately 9 months longer than that of alternatives #1 through #4, further prolonging the establishment of 100-year level of protection to the Seabrook area. The constructability of the proposed action and alternative #2 is favorable over alternative #4 because of significant underground utility conflicts on the eastern end of alternative #4. The construction period for the proposed action would be shorter than that for alternatives #2 through #5. Although alternative #5 would be more favorable for navigation compared to alternatives #1 through #4 because limited navigation could be maintained through the Seabrook Pass during construction, it would result in greater long-term negative impacts to the environment (aquatics and Threatened and Endangered Species) than the other alternatives considered. Costs for alternatives #3 and #4 would be significantly higher than for the proposed action or alternative #2, primarily because of the additional cost associated with replacing the I-walls connecting the gate alignments with LPVs 104 and 105 with T-walls. O&M costs for alternative #5 would be higher because a large portion of the work would be done from a barge.

Between the proposed action and alternative #2, which were rated similarly for most criteria, the proposed action, which is farther from the railroad bridge, would have less long-term impact on the railroad bridge piers. Based on a comparison of the results of the criteria evaluation, the proposed action was selected. The proposed action is compatible and works in concert with other projects that have been completed, are in progress, or have been authorized to improve the risk reduction provided by the HSDRRS.

6.0 COORDINATION AND CONSULTATION

6.1 PUBLIC INVOLVEMENT

Extensive public input has been sought in preparing this report. The proposed action analyzed in this IER was publicly disclosed and described in the Federal Register on 13 March 2007 and on the website www.nolaenvironmental.gov. Scoping for this project was initiated on 12 March 2007 through placing advertisements and public notices in *USA Today* and *The New Orleans Times-Picayune*. Nine public scoping meetings were held throughout the New Orleans Metropolitan area to explain scope and process of the Alternative Arrangements for implementing NEPA between 27 March and 12 April 2007, after which a 30-day scoping period was open for public comment submission. Additionally, the CEMVN is hosting monthly public meetings to keep the stakeholders advised of project status. The public is able to provide verbal comments during the meetings and written comments after each meeting in person, by mail, and via www.nolaenvironmental.gov.

Public meetings were held in March 2007 through January 2008 regarding improved risk reduction specific to the draft IER #11 (Tier 1 document), which detailed the impacts from the proposed actions. The draft IER #11 Tier 1 document was released for public review on 31 January 2008 and stakeholders had until 29 February 2008 to comment on the document.

Comments were received from governmental agencies, non-governmental organizations, and citizens. The Decision Record for the Tier 1 document was signed on 14 March 2008.

Public meetings were held between 17 April and 29 July 2008 regarding improved risk reduction specific to the draft IER #11 Tier 2 Borgne document which detailed the impacts from proposed actions in the GIWW, MRGO, and Bayou Bienvenue near Lake Borgne. The draft IER #11 Tier 2 Borgne document was released for public review on 20 August 2008 and stakeholders had until 18 September 2008 to comment on the document. Comments were received from governmental

agencies, non-governmental organizations, and citizens. The Decision Record for the Tier 2 Borgne document was signed on 21 October 2008.

Public meetings were held 10 January 2009, 3 March 2009, 5 March 2009, 27 October 2009, 3 December 2009 and 27 January 2010 regarding improved risk reduction on the IHNC and this draft IER #11 Tier 2 Pontchartrain document.

The draft IER #11 Tier 2 Pontchartrain document was distributed for a 30-day public review and comment period on 8 December 2009. Comments were received during the public review and comment period from Federal and state agencies, businesses and citizens. A public meeting specific to the proposed action was held on 27 January 2010 at the request of a stakeholder. The CEMVN District Commander reviewed public and agency comments, and interagency correspondence. The District Commander's decision on the proposed action is documented in the IER Decision Record.

6.2 AGENCY COORDINATION

Preparation of this IER has been coordinated with appropriate Congressional, Federal, state, and local interests, as well as environmental groups and other interested parties. An interagency environmental team was established for this project in which Federal and state agency staff played an integral part in the project planning and alternative analysis phases of the project (members of this team are listed in appendix C). This interagency environmental team was integrated with the CEMVN PDT to assist in the planning of this project and to complete a mitigation determination of the potential direct and indirect impacts of the proposed action. Monthly meetings with resource agencies were also held concerning this and other IER projects. The following agencies, as well as other interested parties, received copies of the draft IER:

U.S. Coast Guard
U.S. Department of the Interior, Fish and Wildlife Service
U.S. Department of the Interior, National Park Service
U.S. Environmental Protection Agency, Region VI
U.S. Department of Commerce, NOAA National Marine Fisheries Service
U.S. Natural Resources Conservation Service
Governor's Executive Assistant for Coastal Activities
Louisiana Department of Wildlife and Fisheries
Louisiana Department of Natural Resources, Coastal Management Division
Louisiana Department of Natural Resources, Coastal Restoration Division
Louisiana Department of Environmental Quality
Louisiana State Historic Preservation Officer
Orleans Levee District
Coastal Protection and Restoration Authority of Louisiana

The USCG provided input during the early stages of project planning on 13 February 2009. The USCG would likely determine that the proposed action would impair their ability to quickly and effectively respond to emergency situations, and would likely determine that the proposed action would result in a Hazard to Navigation (during construction).

The Orleans Levee District provided input on the project during a meeting held 20 February 2009. The Levee District did not envision that the project would adversely affect their plans to replace bumper and dolphin structures on the north side of the Seabrook pass. The Levee District did not believe the proposed action would adversely affect their Marina operations with the exception of impacts to a limited number of their customers who operate large sailboats with masts higher than 50 ft, which exceeds the maximum height of the pass under the twin spans at I-

10 at the Rigolets, the alternate route to Lake Pontchartrain when Seabrook is closed during construction.

The USFWS reviewed the proposed action to determine if it would affect any threatened or endangered species or critical habitat under their jurisdiction. The USFWS concurred with the CEMVN in a letter dated 2 February 2009, that the proposed action would not have adverse impacts on threatened or endangered species (appendix E).

The NMFS reviewed the proposed action to see if it would affect any threatened or endangered species or critical habitat under their jurisdiction. The NMFS concurred with the CEMVN in a letter dated 31 August 2009 that the proposed action would not have adverse impacts on threatened or endangered species or their critical habitat (appendix E).

The LaDNR reviewed the proposed action for consistency with the Louisiana Coastal Resources Program (LaCRP). The proposed action was found to be consistent with the LaCRP, as per a letter dated 9 November 2009 (appendix E).

Water Quality Certification (WQC 091102-02/AI 158513/CER 20090001) was received from LaDEQ on 28 December 2009.

Section 106 of the National Historic Preservation Act, as amended, requires consultation with the Louisiana SHPO and Native American tribes. Eleven federally recognized tribes that have an interest in the region were given the opportunity to review the proposed action. The SHPO concurred with the CEMVN's "no adverse effect" finding in a letter dated 20 February 2009. The Choctaw Nation of Oklahoma and the Alabama-Coushatta Tribe of Texas concurred with the CEMVN's effect determination in letters dated 19 February 2009 and 3 March 2009, respectively. No other Indian Tribes responded to the request for comments.

The CEMVN formally initiated Section 106 consultation for the LPV Hurricane Risk Reduction Project (100-year), which includes IER #11, in a letter dated 9 April 2007. SHPO staff and Tribal governments met with the CEMVN to discuss the development of a PA [Programmatic Agreement] to tailor the Section 106 consultation process under the Alternative Arrangements for implementing NEPA. A public meeting was held on 18 July 2007, to discuss the working draft PA. It is anticipated that the PA would be executed in the near future.

Coordination with the USFWS on the Alternative Arrangements process was initiated by letter on 13 March 2007, and concluded on 6 August 2007. The CEMVN received a draft programmatic Coordination Act Report (CAR) from the USFWS on 26 November 2007. A draft CAR was provided by the USFWS on 23 October 2009 for IER #11 Tier 2 Pontchartrain. This report's recommendations are addressed below. The draft programmatic CAR and draft CAR specific to the Tier 2 Pontchartrain project provide fish and wildlife conservation recommendations that would be implemented concurrently with project implementation. In addition, as discussed previously in section 3.2.7, measures recommended by the USFWS in their letter dated 22 February 2008, for protection of the manatee would be followed during construction of the proposed action. A copy of the draft and final CAR for IER #11 Tier 2 Pontchartrain, received on 29 March 2010, are provided in appendix E.

The USFWS' programmatic recommendations applicable to this project will be incorporated into project design studies to the extent practicable, consistent with engineering and public safety requirements. The USFWS' programmatic recommendations, and the CEMVN's response to them, are listed below:

Programmatic Recommendation 1: To the greatest extent possible, situate flood protection features so that destruction of wetlands and non-wet bottomland hardwoods are avoided or minimized.

CEMVN Programmatic Response 1: Not applicable; there are no wetlands or bottomland hardwoods within the project area.

Programmatic Recommendation 2: Minimize enclosure of wetlands with new levee alignments. When enclosing wetlands is unavoidable, acquire non-development easements on those wetlands, or maintain hydrologic connections with adjacent, un-enclosed wetlands to minimize secondary impacts from development and hydrologic alteration.

CEMVN Programmatic Response 2: Not applicable.

Programmatic Recommendation 3: Avoid adverse impacts to bald eagle nesting locations and wading bird colonies through careful design project features and timing of construction.

CEMVN Programmatic Response 3: Concur. No bald eagle nests or wading bird colonies have been recorded in or near the project area, and suitable habitat for nesting of these species does not occur in the vicinity.

Programmatic Recommendation 4: Forest clearing associated with project features should be conducted during the fall or winter to minimize impacts to nesting migratory birds, when practicable.

CEMVN Programmatic Response 4: No forest clearing would occur with implementation of the proposed action.

Programmatic Recommendation 5: The project's first Project Cooperation Agreement (or similar document) should include language that includes the responsibility of the local-cost sharer to provide operational, monitoring, and maintenance funds for mitigation features.

CEMVN Programmatic Response 5: USACE Project Partnering Agreements (PPA) do not contain language mandating the availability of funds for specific project features, but require the non-Federal Sponsor to provide certification of sufficient funding for the entire project. Further, mitigation components are considered a feature of the entire project. The non-Federal Sponsor is responsible for OMRR&R of all project features in accordance with the OMRR&R manual that the Corps provides upon completion of the project.

Programmatic Recommendation 6: Further detailed planning of project features (e.g., Design Documentation Report, Engineering Documentation Report, Plans and Specifications, or other similar documents) should be coordinated with the USFWS, NMFS, LaDWF, USEPA, and LaDNR. The USFWS shall be provided an opportunity to review and submit recommendations on all the work addressed in those reports.

CEMVN Programmatic Response 6: Concur.

Programmatic Recommendation 7: The CEMVN should avoid impacts to public lands, if feasible. If not feasible, the CEMVN should establish and continue coordination with agencies managing public lands that may be impacted by a project feature until construction of that feature is complete and prior to any subsequent maintenance. Points of contacts for the agencies overseeing public lands potentially impacted by project features are: Kenneth Litzenberger, Project Leader for the USFWS' Southeast National Wildlife Refuges, and Jack Bohannan (985) 822-2000, Refuge Manager for the Bayou Sauvage National Wildlife

Refuge (NWR), Office of State Parks contact Mr. John Lavin at 1-888-677-1400, National Park Service (NPS) contact Superintendent David Luchsinger, (504) 589-3882, extension 137 (david_luchsinger@nps.gov), or Chief of Resource Management David Muth (504) 589-3882, extension 128 (david_muth@nps.gov) and for the 404(c) area contact the previously mentioned NPS personnel and Ms. Barbara Keeler (214) 665-6698 with the USEPA.

CEMVN Programmatic Response 7: Concur.

Programmatic Recommendation 8: If applicable, a General Plan should be developed by the CEMVN, the USFWS, and the managing natural resource agency in accordance with Section 3(b) of the USFWS CAR for mitigation lands.

CEMVN Programmatic Response 8: Concur, to the extent allowed by law.

Programmatic Recommendation 9: If mitigation lands are purchased for inclusion within a NWR, those lands must meet certain requirements; a summary of some of those requirements is provided in appendix A (to the draft USFWS CAR). Other land-managing natural resource agencies may have similar requirements that must be met prior to accepting mitigation lands; therefore, if they are proposed as a manager of a mitigation site, they should be contacted early in the planning phase regarding such requirements.

CEMVN Programmatic Response 9: Concur.

Programmatic Recommendation 10: If a proposed action feature is changed significantly or is not implemented within one year of the date of the Endangered Species Act consultation letter, the USFWS recommended that the Corps reinitiate coordination to ensure that the proposed action would not adversely affect any federally listed threatened or endangered species or their habitat.

CEMVN Programmatic Response 10: Concur.

Programmatic Recommendation 11: In general, larger and more numerous openings in a protection levee better maintain estuarine-dependent fishery migration. Therefore, as many openings as practicable, in number, size, and diversity of locations should be incorporated into project levees.

CEMVN Programmatic Response 11: This recommendation will be considered in the design of the project to the greatest extent practicable. Modeling indicated that three openings (gates) are necessary to maintain velocities similar to historic conditions.

Programmatic Recommendation 12: Flood protection water control structures in any watercourse should maintain pre-project cross-sections in width and depth to the maximum extent practicable, especially structures located in tidal passes.

CEMVN Programmatic Response 12: Although the pre-project cross-sectional area for flow (5,250 sq ft) will be reduced to 3,510 sq ft with the proposed structure, the structure will be designed to maintain approximately the historic velocities through this area, and to minimize turbulence.

Programmatic Recommendation 13: Flood protection water control structures should remain completely open except during storm events. Management of those structures should be developed in coordination with the USFWS, NMFS, LaDWF, and LaDNR.

CEMVN Programmatic Response 13: Concur. The structure would remain open except during storm events, high flow events, and maintenance activities. Management plans for the structures would be developed with the non-Federal sponsor in coordination with the USFWS, NMFS, LaDWF, and LaDNR.

Programmatic Recommendation 14: Any HSDRRS water control structure sited in canals, bayous, or a navigation channel which does not maintain the pre-project cross-section should be designed and operated with multiple openings within the structure. This should include openings near both sides of the channel as well as an opening in the center of the channel that extends to the bottom.

CEMVN Programmatic Response 14: The gate design includes three openings that span the majority of the channel.

Programmatic Recommendation 15: The number and siting of openings in HSDRRS levees should be optimized to minimize the migratory distance from the opening to enclosed wetland habitats.

CEMVN Programmatic Response 15: Not applicable. With the exception of the construction of the new sector gate within the IHNC, no new barriers to wetlands would be constructed.

Programmatic Recommendation 16: HSDRRS structures within a waterway should include shoreline baffles and/or ramps (e.g., rock rubble, articulated concrete mat) that slope up to the structure invert to enhance organism passage. Various ramp designs should be considered.

CEMVN Programmatic Response 16: This recommendation will be considered in the design of the project to the greatest extent practicable.

Programmatic Recommendation 17: To the maximum extent practicable, structures should be designed and/or selected and installed such that average flow velocities during peak flood or ebb tides do not exceed 2.6 fps. However, this may not necessarily be applicable to tidal passes or other similar major exchange points.

CEMVN Programmatic Response 17: The IHNC is a major exchange point in which velocities of ebb tides already exceed 2.6 fps. The structure will be designed to maintain approximately the historic velocities through this area.

Programmatic Recommendation 18: To the maximum extent practicable, culverts (round or box) should be designed, selected, and installed such that the invert elevation is equal to the existing water depth. The size of the culverts selected should maintain sufficient flow to prevent siltation

CEMVN Programmatic Response 18: Acknowledged.

Programmatic Recommendation 19: Culverts should be installed in construction access roads unless otherwise recommended by the natural resource agencies. At a minimum, there should be one 24-inch culvert placed every 500 ft and one at natural stream crossings. If the depth of water crossings allow, larger-sized culverts should be used. Culvert spacing should be optimized on a case-by-case basis. A culvert may be necessary if the road is less than 500 ft long and an area would hydrologically be isolated without that culvert.

CEMVN Programmatic Response 19: Not applicable.

Programmatic Recommendation 20: Water control structures should be designed to allow rapid opening in the absence of an offsite power source after a storm passes and water levels return to normal.

CEMVN Programmatic Response 20: Concur. The gates are designed to allow rapid opening in absence of an offsite power source.

Programmatic Recommendation 21: Levee alignments and water control structure alternatives should be selected to avoid the need for fishery organisms to pass through multiple structures (i.e., structures behind structures) to access an area.

CEMVN Programmatic Response 21: Concur.

Programmatic Recommendation 22: Operational plans for water control structures should be developed to maximize the cross-sectional area open for as long as possible. Operations to maximize freshwater retention or redirect freshwater flows could be considered if hydraulic modeling demonstrates that is possible and such actions are recommended by the natural resource agencies.

CEMVN Programmatic Response 22: See CEMVN Response to Recommendation 13.

Programmatic Recommendation 23: The CEMVN shall fully compensate for any unavoidable losses of wetland habitat or non-wet bottomland hardwoods caused by project features.

CEMVN Programmatic Response 23: Concur.

Programmatic Recommendation 24: Acquisition, habitat development, maintenance and management of mitigation lands should be allocated as first-cost expenses of the project, and the local project-sponsor should be responsible for operational costs. If the local project-sponsor is unable to fulfill the financial mitigation requirements for operation, then the CEMVN shall provide the necessary funding to ensure mitigation obligations are met on behalf of the public interest.

CEMVN Programmatic Response 24: Concur.

Programmatic Recommendation 25: Any proposed change in mitigation features or plans should be coordinated in advance with the USFWS, NMFS, LaDWF, USEPA, and LaDNR.

CEMVN Programmatic Response 25: Not applicable, no mitigation would be required for the proposed action.

Programmatic Recommendation 26: A report documenting the status of mitigation implementation and maintenance should be prepared every three years by the managing agency and provided to the CEMVN, USFWS, NMFS, USEPA, LaDNR, and LaDWF. That report should also describe future management activities, and identify any proposed changes to the existing management plan.

CEMVN Programmatic Response 26: Concur.

A draft CAR for IER #11 Tier 2 Pontchartrain was provided by the USFWS on 23 October 2009. The draft CAR concluded that the USFWS does not object to the construction of the proposed project provided that fish and wildlife conservation recommendations are implemented

concurrently with project implementation. The USFWS project-specific recommendations for the IER #11 Tier 2 Pontchartrain proposed action are listed below. Each recommendation is followed by the CEMVN response.

Recommendation 1: Generally, flood protection barriers and associated structures should be situated so that destruction and enclosure of emergent wetlands are avoided or minimized, to the greatest extent possible.

CEMVN Response 1: Not applicable; wetland habitat does not exist in the vicinity of the proposed action.

Recommendation 2: The project's first Project Cooperation Agreement (or similar document) should include language that specifies the responsibility of the local-cost sharer to provide operational, monitoring, and maintenance funds for mitigation features, as well as shoreline protection features.

CEMVN Response 2: See CEMVN Programmatic Response 5.

Recommendation 3: Further detailed planning and design of project features (e.g., Design Documentation Report, Engineering Documentation Report, Plans and Specifications, or other similar documents) should be coordinated with the Service, NMFS, LaDWF, USEPA, and LaDNR. The Service shall be provided an opportunity to review and submit recommendations on the all work addressed in those reports.

CEMVN Response 3: Concur. The Service will be provided such an opportunity.

Recommendation 4: If a proposed project feature is changed significantly or is not implemented within one year of the date of our 2 February 2009 (incorrectly dated 30 January 2007), Endangered Species Act consultation letter, we recommend that the Corps reinitiate coordination with each office (i.e., NMFS in St. Petersburg, Florida, and the Service's Lafayette, Louisiana, Field Office) to ensure that the proposed project would not adversely affect any Federally listed threatened or endangered species or their habitat.

CEMVN Response 4: Concur.

Recommendation 5: Operation and maintenance plans should inform the local sponsor of the potential for federally listed threatened and endangered species to occur near the proposed structures and the need be aware of their presence during operation of those structures. We recommend that the Corps' include in the operation and maintenance plan provided to the local sponsor a measure that will inform them of the need to coordinate with the Service and NMFS every year and when operational plans are revised, as those revisions may affect federally listed threatened and endangered species.

CEMVN Response 5: Concur.

Recommendation 6: To ensure manatees are not entrained within the flood protection structures or harmed during the closure of the structures, Standard Manatee Protection Measures should be included in the Corp's construction contracts as well as the operation and maintenance plans developed for the local sponsor.

CEMVN Response 6: Concur.

Recommendation 7: Flood protection water control structures in any watercourse should maintain pre-project cross section in width and depth to the maximum extent practicable,

especially structures located in tidal passes.

CEMVN Response 7: Acknowledged. See CEMVN Programmatic Response 12.

Recommendation 8: Flood protection water control structures should remain completely open except during storm events and should be operated to allow for maximum flow. The development of the operation and maintenance plans should be closely coordinated with the natural resource agencies to ensure maintenance events are scheduled to minimize impacts to aquatic resources.

CEMVN Response 8: Acknowledged. Apart from possible closure for adverse flow conditions, the Seabrook structure will be closed in a storm event or for maintenance and operation conditions. Exact details on frequency of such events and duration are currently being established but preliminary estimates provided in section 1.6, Data Gaps.

Recommendation 9: To the maximum extent practicable, monthly maintenance activities should coincide with closure events intended to reduce velocities for the maritime industry. In the event this is not feasible, closures should be timed during the two low periods of the tidal range during a month to minimize impacts to fisheries migration and flow.

CEMVN Response 9: Acknowledged.

Recommendation 10: Structures should include shoreline baffles and/or ramps (e.g., rock rubble, articulated concrete mat) that slope up to the structure invert to enhance organism passage. Various ramp designs should be considered.

CEMVN Response 10: This recommendation will be considered in the design of the project to the greatest extent practicable.

Recommendation 11: To the maximum extent practicable, structures should be designed such that average flow velocities during peak flood or ebb tides do not exceed 2.6 fps. This may not necessarily be applicable to tidal passes or other similar major exchange points.

CEMVN Response 11: The IHNC is a major exchange point in which velocities of ebb tides already exceed 2.6 fps. The structure will be designed to maintain approximately the historic velocities through this area.

Recommendation 12: Water control structures should be designed to allow rapid opening in the absence of an offsite power source after a storm passes and water levels return to normal.

CEMVN Response 12: Concur. The gates are designed to allow rapid opening in absence of an offsite power source.

Recommendation 13: Operation and maintenance plans should be developed to maximize the cross-sectional area open for as long as possible and should be coordinated with the natural resource agencies. Operations to maximize freshwater retention or redirect freshwater flows could be considered if hydraulic modeling demonstrates that is possible and such actions are recommended by the natural resource agencies.

CEMVN Response 13: Management plans for the structures will be developed with the non-federal sponsor in coordination with USFWS, NMFS, LaDWF, and LaDNR.

Recommendation 14: Shoreline protection features should be constructed as proposed to maintain the shoreline integrity and minimize shoreline erosion.

CEMVN Response 14: Concur.

7.0 MITIGATION

Mitigation for unavoidable impacts to the human and natural environment described in this and other IERs will be addressed in separate mitigation IERs. The CEMVN has partnered with Federal and state resource agencies to form an interagency mitigation team that is working to assess and verify these impacts, and to look for potential mitigation sites in the appropriate hydrologic basin. This effort is occurring concurrently with the IER planning process in an effort to complete mitigation work and construct mitigation projects expeditiously. As with the planning process of all other IERs, the public will have the opportunity to give input about the proposed work. These mitigation IERs will, as described in section 1.4 of this IER, be available for a 30-day public review and comment period.

Quantitative analysis utilizing existing methodologies for water resource planning has identified the acreages and habitat type for the direct or indirect impacts of implementing the proposed action. The proposed action was selected because it was designed to minimize impacts to wetlands and as such, no wetlands would be impacted by the construction of a sector gate, dual vertical lift gates, or T-wall tie-ins in. Approximately 7 acres of open water and benthic substrate in the IHNC main channel would be permanently lost to the floodgate structures and associated scour hole fill and riprap. Although the IHNC is a man-made shipping channel, it currently serves as a major conduit between the Gulf of Mexico and Lake Pontchartrain for many species managed by the MSA, and is considered EFH. Significant alterations to this conduit could cause positive and negative impacts to EFH including breeding, transport/migration, and growth to maturity.

A comprehensive mitigation IER or IERs will be prepared documenting and compiling these unavoidable impacts and those for all other proposed actions within the HSDRRS that are being analyzed through other IERs. Mitigation planning is being carried out for groups of IERs, rather than within each IER, so that large mitigation efforts could be taken rather than several smaller efforts, increasing the relative economic and ecological benefits of the mitigation effort.

This forthcoming mitigation IER would implement compensatory mitigation as early as possible. All mitigation activities would be consistent with standards and policies established in appropriate Federal and state laws and USACE policies and regulations.

8.0 COMPLIANCE WITH ENVIRONMENTAL LAWS AND REGULATIONS

Construction of the proposed action would not commence until the proposed action achieves environmental compliance with all applicable laws and regulations, as described below.

Environmental compliance for the proposed action will be achieved upon coordination of this IER with appropriate agencies, organizations, and individuals for their review and comments. This includes USFWS and NMFS confirmation that the proposed action would not be likely to adversely affect any endangered or threatened species, or completion of ESA section 7 consultation (appendix E); LaDNR concurrence with the determination that the proposed action

is consistent, to the maximum extent practicable, with the LaCRP (appendix E); receipt of a Water Quality Certificate from the State of Louisiana (appendix E); public review of the Section 404(b)(1) Public Notice and signature of the Section 404(b)(1) Evaluation; coordination with the Louisiana SHPO (appendix E); receipt and acceptance or resolution of all USFWS Coordination Act recommendations (appendix E); receipt and acceptance or resolution of all LaDEQ comments on the air quality impact analysis documented in the IER; and receipt and acceptance or resolution of all EFH recommendations.

9.0 CONCLUSIONS

9.1 FINAL DECISION

The proposed action selected for IER #11 Tier 2 Pontchartrain would be a new flood control feature consisting of a sector gate and dual vertical lift gates for flow augmentation just south of the Seabrook Bridge, and T-wall floodwalls to tie the gates into the existing HSDRRS. All floodgates would be built to elevation of approximately + 16.0 to +18.0 ft NAVD88 and the sector gate would have a 95-foot-wide navigation opening, which is the width of the existing navigational channel and concrete dolphins. The two vertical lift gates would be non-navigable and have a width of no greater than 60 ft. Approximately 1,500 ft of T-walls would be built on existing levees and as tie-ins to the existing LPV 105 and LPV 104 HSDRRS to the east and west of the IHNC, to El +16.0 ft NAVD88. The floodwall on the east side of the channel would include a 20-ft-wide vehicle gate with a sill at existing ground elevation to provide access to Jourdan Road. The CEMVN has assessed the environmental impacts of the proposed action and has determined that the proposed action would have the following impacts:

- **Hydrology** – Significant temporary impacts during construction due to the complete closure of the IHNC for approximately 6 months to 12 months. Alterations in tidal range to the south of the proposed action are anticipated to be greater than to the north due to filling of the existing scour hole. With the implementation of the proposed action, water surface elevations would continue to decrease and velocities are expected to increase during March and September conditions according to ADH modeling.
- **Water Quality** –Temporary impacts to DO and turbidity during construction. Significant temporary impacts to salinity during construction and minimal permanent impacts (0.1 ppt to 0.3 ppt decrease) above those caused by the closure of the MRGO and Borgne Barrier. Possible permanent positive impacts to DO and turbidity due to the filling of the scour hole.
- **Wetlands** – No direct impacts are expected due to that fact that no wetlands occur in the project vicinity.
- **Aquatic Resources and Fisheries** – Significant temporary impacts including decreased larval recruitment and altered DO levels that could potentially result in fish kills may result from the complete closure of the IHNC for approximately 6 months to 12 months. Minimal, temporary impacts from construction noise and increased turbidity. Permanent loss of approximately 7 acres of low-quality open water and benthic habitat, including deep water habitat used by large predatory species. Possible cumulative impacts to larval fish recruitment due to the MRGO closure structure, Borgne Barrier, and the GIWW gate.
- **Essential Fish Habitat** – Temporary impacts to EFH in the vicinity of the project area during construction, and up to 7 acres of open water and waterbottoms in the IHNC

would be permanently lost to the new structure and associated ROW. Loss of deep-water habitat but possible beneficial impacts related to improved DO concentrations in the scour hole. Permanent impacts due to changes in hydrology (salinity, DO, and velocity) and possible cumulative impacts to larval fish recruitment due to the MRGO closure structure, Borgne Barrier, and the GIWW gate.

- **Wildlife** – Temporary displacement impacts to wildlife within the vicinity of the project area during construction.
- **Threatened and Endangered Species** – USFWS concurrence on 2 February 2009 with CEMVN finding of not likely to adversely affect the West Indian manatee, provided that standard manatee protection measures would be followed. NMFS concurrence on 31 August 2009 with the finding of not likely to adversely affect the Gulf sturgeon or its designated critical habitat, or Kemp's Ridley, loggerhead, and green sea turtles, provided that standard measures to protect these turtles would be followed.
- **Upland Resources** – No natural uplands in the project area. Temporary impacts during construction to approximately 10 acres of man-made, non-wet upland. Permanent loss of approximately 7 upland acres would have minimal impacts.
- **Cultural Resources** – No direct adverse impacts to cultural resources would be expected, but beneficial indirect and cumulative impacts (from reduced flood risk and storm damage) to the New Orleans Metropolitan Area would be experienced.
- **Recreational Resources** – Temporary construction-related impacts on fish habitat and navigation would reduce recreational opportunities. The MRGO closure at La Loutre, the Borgne Barrier, and the proposed action would cumulatively result in decreased recruitment of recreational fishery species due to the permanent alterations in flow (transport) and salinity.
- **Aesthetic (Visual) Resources** – Localized and minor impacts.
- **Air Quality** – Temporary impacts during construction.
- **Noise** – Temporary impacts to receptors within 1,000 ft of the project area during construction.
- **Transportation** – Waterborne transportation and worker/truck traffic resulting from the project would temporarily impact traffic on local waterways and roads within the vicinity of the project area. Industries currently using the IHNC to connect to Lake Pontchartrain would be impacted due to the complete closure for approximately 6 months to 12 months.
- **Socioeconomic Resources** – Beneficial impacts on population, land use, and employment due to heightened flood risk reduction and construction-generated employment. Temporary significant impacts to businesses operating in the IHNC which use the Seabrook passage to gain access to Lake Pontchartrain during the 12 month closure.
- **Environmental Justice** – Adverse human health and environmental effects are not expected to disproportionately impact minority and/or low income communities. Direct, temporary impacts from project construction activities would occur, but would be limited to within 1-mile of the project area and would equally impact non-minority/non-low populations as well.

9.2 PREPARED BY

The point of contact for this IER is Joan M. Exnicios, USACE, New Orleans District. Table 18 lists the preparers of relevant sections of this report. Ms. Exnicios can be reached at the U.S. Army Corps of Engineers, New Orleans District; P.O. Box 60267; New Orleans, Louisiana 70160-0267.

Table 18.
IER #11 Tier 2 Pontchartrain Preparation Team

IER Section	Team Member
Environmental Manager	Laura Lee Wilkinson, USACE
Environmental Team Leader	Gib Owen, USACE
Technical Coordinator	Lee Walker, CEMVN – USACE Contractor Randall Kraciun, USACE
Project Manager	Roberta Hurley, Earth Tech
Project Manager/QA-QC	Kim Fitzgibbons, PBS&J
Proposed Action/Alternatives	Evelyn Rogers, P.E., Earth Tech Erika Schreiber, Earth Tech
Legal Review	Rita Trotter, CEMVN-Office of Counsel
Environmental Setting	Susan Theodosiou, PBS&J
Hydrology/Water Quality/Wetlands	Jason Gillespie, HDR
Aquatic Resources and Fisheries/EFH	Marisa Weber, PBS&J
Upland Resources/Threatened and Endangered Species/Wildlife	Stephen Dillard, Earth Tech Zoe Knesl, Earth Tech
Socioeconomics/Navigation/Recreation	Cory Wilkinson, AICP, HDR Andrea Cook, HDR
Air Quality/Noise	Meredith Herndon, Earth Tech
Transportation	Tony Collins, Earth Tech
Environmental Justice	Jerica Richardson, USACE
Cultural Resources	Michael Swanda, USACE
Aesthetics	Susan Provenzano, AICP, Earth Tech
Selection Rationale	Evelyn Rogers, P.E., Earth Tech
Cumulative Impacts/Consultation/Mitigation/Compliance/Conclusions	Zoe Knesl, Earth Tech Erika Schreiber, Earth Tech
Hazardous, Toxic, and Radioactive Waste	Erika Schreiber, Earth Tech Dr. Christopher Brown, USACE Dr. Haekyung Kim, USACE Robert Brooks, USACE
Administrative Support	Bonnie Freeman, Earth Tech
Technical Editor	Jennifer Darville, USACE
Independent Technical Review	Tim George, USACE

9.3 LITERATURE CITED

Abadie, S.W., C.G. Brantley, S. Mickal, and S. Shively. 2000. Distribution of the Manatee (*Trichechus manatus*) In the Lake Pontchartrain Estuarine System. Basics of the Basin Research Symposium.

Alpert, B. 2007. "Congress overrides Bush water bill veto" *The Times-Picayune*, 8 November 2007. Accessed from http://blog.nola.com/times-picayune/2007/11/congress_overrides_bush_veto_o.html.

America's Wetland. 2009. Bayou Birds, America's Wetland Birding Trail on Louisiana's Great Gulf Coast: Orleans Loop. Department of Culture, Recreation, and Tourism. Accessed from <http://www.fermatainc.com/la/documents/AWLoop7.pdf>. on 8 September 2009.

Baltz, D.M., C.F. Rakocinski, and J.W. Fleeger. 1993. Microhabitat use by marsh edge fishes in a Louisiana estuary. *Environmental Biology of Fishes* 36:109-126.

Baltz, D.M. and R.F. Jones. 2003. Temporal and spatial patterns of microhabitat use by fish and decapod crustaceans in a Louisiana Estuary. *Transactions of the American Fisheries Society* 132:662-678.

Barry, K. P., A. M. Gorgone, and B. Mase. 2008. "Lake Pontchartrain, Louisiana, Bottlenose Dolphin Survey Summary, 28 April 2008 – 10 May 2008." Southeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Protected Resources and Biodiversity Division. PRBD-08/09-01. October.

Benson, N.G. 1982. Life history requirements of selected finfish and shellfish in Mississippi Sound and adjacent areas. U.S. Fish and Wildlife Service Biol. Rept. FWS/OBS-81-51.

Boesch, D.F., M.N. Josselyn, A.J. Mehta, J.T. Morris, W.K. Nuttle, C.A. Simenstad, and D.J.P. Swift. 1994. Scientific Assessment of Coastal Wetland Loss, Restoration and Management in Louisiana. *Journal of Coastal Research*, No. 20: 15-41.

City of New Orleans (CNO). 2006a. Pontilly Neighborhood Planning District 6 Rebuilding Plan. Updated 31 October 2006. Accessed 29 December 2008 from <http://www.nolanrp.com/final.php>.

---. 2006b. Pines Village Neighborhood Planning District 9 Rebuilding Plan. Updated 31 October 2006. Accessed 29 December 2008 from <http://www.nolanrp.com/final.php>.

---. 2007. City of New Orleans, Mayor's Office of Communications. Press Release. Company Restores NORD's Wesley Barrow Stadium. 10 January 2007. Accessed 5 January 2009 from <http://www.cityofno.com/pg-1-66-press-releases.aspx?pressid=3742>.

---. 2008a. City of New Orleans, Mayor's Office of Communications. Press Release. 13 June 2008. Accessed 24 December 2008 from <http://www.cityofno.com/pg-1-66-press-releases.aspx?pressid=4869>.

---. 2008b. New Orleans City Planning Commission Master Plan/Comprehensive Zoning Ordinance initiative. Planning District Six: Meeting 1. 11 November 2008. Accessed 31 December 2008 from www.nolamasterplan.org.

---. 2008c. New Orleans City Planning Commission Master Plan/Comprehensive Zoning Ordinance initiative. Planning Districts 9, 10, 11: Meeting 1. 12 November 2008. Accessed 31 December 2008 from www.nolamasterplan.org.

City of New Orleans Geographical Information System (CNOGIS). 2007. City of New Orleans Geographic Information Center portal site. Accessed 24 December 2008 from <http://gisweb.cityofno.com/cnogis/>.

Clark, R.D., J.D. Christensen, M.E. Monaco, P.A. Caldwell, G.A. Matthews, and T.J. Minello. 2004. A habitat-use model to determine essential fish habitat for juvenile brown shrimp (*Farfantepenaeus aztecus*) in Galveston Bay, Texas. *Fishery Bulletin* 102:264-277.

Coalition to Restore Coastal Louisiana (CRCL). 2000. No time to lose: Facing the future of Louisiana and the crisis of coastal land loss. Baton Rouge, Louisiana.

Conant, R. and J. T. Collins. 1998. A Field Guide to Reptiles and Amphibians of Eastern and Central North America, third edition, expanded. New York: Houghton Mifflin Company.

Darnell, R.M. 1961. Trophic spectrum of an estuarine community based on studies of Lake Pontchartrain, Louisiana. *Ecology* 42 (3): 553-568.

Davis, F. 2007. Frank Davis Fishing Pier Officially Open. Web log of Frank Davis. 23 March, 2007. Accessed 24 December 2008 from http://www.beloblog.com/WWLTV_Blogs/frankdavis/.

DeGregorio, J. 2008. Changing with the times. Jen DeGregorio, Business writer, NOLA.com. Saturday 12 January 2008. Accessed 5 January 2009 from http://www.nola.com/news/index.ssf/2008/01/changing_with_the_times.html.

Ditty, J. G., G.G. Zieske, and R.F. Shaw. 1988. Seasonality and depth distribution of larval fishes in the northern Gulf of Mexico above 26°00'N. *Fishery Bulletin*, U.S. 86(4):811-823.

Dortch, M.S. and S.K. Martin. 2008. Estimation of Bottom Water Dissolved Oxygen in the Mississippi River Gulf Outlet and Gulf Intracoastal Waterway Resulting from Proposed Structures. U.S. Army Corps of Engineers, Engineer Research and Development Center. Vicksburg, Mississippi.

Duffy, K.C. 1989. Macrofaunal Community Structure in the Introduced and Native Submerged Aquatic Macrophyte Beds of the Lake Pontchartrain Estuary. Chapter 4: Juvenile Blue Crab Habitat use in Submerged Vegetation in the Lake Pontchartrain Estuary. Dissertation, Louisiana State University Department of Oceanography and Coastal Sciences, 58-86 pp.

Dunn, J.L. and J. Alderfer. 2006. National Geographic Field Guide to the Birds of North America, fifth edition. Washington, D.C. National Geographic.

Environmental Systems Research Institute, Inc. (ESRI). 2008. Business Analyst Online: Census 2000 Summary Profile, Census 2000 Detailed Race Profile, 2008/2013 Demographic and Income Profile.

Etherington, L.L. and D.B. Eggleston. 2000. Large-Scale Blue Crab Recruitment: Linking Post-Larval Transport, Post-Settlement Planktonic Dispersal, and Multiple Nursery Habitats. *Marine Ecology Progress Series* 204:179-198.

Fannaly, M.T. 1979. Macroplankton movement through the tidal passes of Lake Pontchartrain. Chapter 15 in J. Stone, ed., Environmental Analysis of Lake Pontchartrain, Louisiana its surrounding wetlands and selected land uses. U.S. Army corps of Engineers, New Orleans District, New Orleans, Louisiana 70160.

Federal Emergency Management Agency (FEMA). 2006. Section 106 Notices for Louisiana; Notice of Proposed Expansion of New Orleans Historic Districts. Accessed from <http://www.crt.state.la.us/culturalassets/FEMA106/readnotice.asp?NoticeID=8> on 8 September.

Federal Highway Administration (FHWA). 2006. "Highway Construction Noise Handbook." Final Report. FHWA, U.S. Department of Transportation. August 2006. Accessed 20 September 2007 from <http://www.fhwa.dot.gov/environment/noise/handbook/index.htm>.

Felley, J.D. 1992. Medium – Low-Gradient Streams of the Gulf Coastal Plain. Chapter 6 in Biodiversity of the Southeastern United States: Aquatic Communities, eds. C. T. Hackney, S. M. Adams, and W. H. Martin. New York: John Wiley & Sons.

Gentilly Civic Improvement Association (GCIA). 2008. GCIA website. Accessed 31 December 2008 from www.gcia.us.

Goldenberg. 2008. Proposed Community Garden Work Sites, New Orleans 2008. Accessed 24 December 2008 from http://www.dnmc.org/wp-content/uploads/files/work_site_descriptions.pdf.

Greater New Orleans Community Data Center (GNO CDC). 2008a. Greater New Orleans Community Data Center. Pontchartrain Park Neighborhood Snapshot. Accessed 24 December 2008 from <http://www.gnocdc.org/orleans/6/31/snapshot.html>.

---. 2008b. "Using U.S. Postal Service Delivery Statistics to Track the Repopulation of New Orleans and the Metropolitan Area." Accessed April 2008 from <http://gnocdc.org>.

---. 2008c. The New Orleans Index. Tracking Recovery of New Orleans and the Metro Area. Metropolitan Policy Program at Brookings and the Greater New Orleans Community Data Center. August 2008. Accessed 31 December 2008 from <http://gnocdc.org>.

Guillory, V. 1997. Long -Term Trends in Blue Crab Recruitment and Abundance Proc. Louisiana Acad. Sci. 60:36-42.

Guillory, V. and W. S. Perret. 1998. History, management, status, and trends in the Louisiana blue crab fishery. Journal of Shellfish Research 17(2):395-403.

Gulf of Mexico Fisheries Management Council (GMFMC). 2004. Draft Final Environmental Impact Statement for the Generic Essential Fish Habitat Amendment to the Following Fishery Management Plans of the Gulf of Mexico (GOM): Shrimp Fishery of the Gulf of Mexico; Red Drum Fishery of the Gulf of Mexico; Reef Fish Fishery of the Gulf of Mexico; Stone Crab Fishery of the Gulf of Mexico; Coral and Coral Reef Fishery of the Gulf of Mexico; Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic; Coastal Migratory Pelagic Resources of the Gulf of Mexico and South Atlantic. Gulf of Mexico Fishery Management Council, Tampa, Florida.

Gulf States Marine Fisheries Commission (GSMFC). 2009. Marine Recreational Fishery Catch and Effort Estimates. <http://www.gsmfc.org/>. Last Accessed February 2009.

Hammerschmidt, P., T. Wagner, and G. Lewis. 1998. Status and trends in Texas blue crab (*Callinectes sapidus*) fishery. *Journal of Shellfish Research* 17(2): 405-412.

Hare, J.A., S. Thorrold, H. Walsh, C. Reiss, A. Valle-Levinson, and C. Jones. 2005. Biophysical mechanisms of larval fish ingress into Chesapeake Bay. *Marine Ecology Progress Series* Vol. 303: 295-310.

Harris, J.E. 2003. "Distribution of Gulf of Mexico sturgeon (*Acipenser oxyrinchus desotoi*) in relation to environmental parameters and the distribution of benthic invertebrates in the Suwannee River Estuary, Florida." Master's Thesis, University of Florida, Gainesville, Florida, USA.

Hastings, M.C. and A.N. Popper. 2005. Affect of Sound on Fish. California Department of Transportation. January.

Heller, N. and L. Hannah. 2009. Phase 1 Cultural Resources Survey and Inventory Performed for Lake Pontchartrain and Vicinity Project, Pontchartrain 2 Portion of Individual Environmental Report Area 11 (IER #11): Orleans Parish, Louisiana. Report prepared by R. Christopher Goodwin and Associates, Inc., New Orleans. Submitted to the U.S. Army Corps of Engineers, New Orleans District.

Hoese, H. D. and R.H. Moore. 1998. Fishes of the Gulf of Mexico. Texas A&M University Press. College Station, Texas.

Insurance Information Institute (III). 2007. "Hurricane Katrina and Insurance: Two Years Later \$40.6 Billion in Insurance Claim Dollar Aid Recovery" press release. Accessed from <http://www.iii.org/media/updates/press.775235/>.

Jones, R.F., D.M Baltz, and R.L. Allen. 2002. Patterns of resource use by fishes and macroinvertebrates in Barataria Bay, Louisiana. *Marine Ecology Progress Series* 237: 271-289.

Keister, J.E., Houde, E.D. and D.L. Breitburg. 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay *Marine Ecology Progress Series* Vol. 205:43-59, 2000.

Lassuy, D.R. 1983a. Species profiles: life histories and environmental requirements (Gulf of Mexico): Atlantic croaker. U.S. Fish and Wildlife Service Biological Report FWS/OBS 82(11.3). 12 pp.

---. 1983b. Species Profiles: Life histories and environmental requirements. Gulf of Mexico -- Gulf menhaden. U.S. Fish and Wildlife Service, Division of Biological Services, FWS/OBS-82/11. 13 pp.

---. 1983c. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): Brown shrimp. U.S. Fish and Wildlife Service, Division of Biological Services, FWS/OBS-82/11.1. 15 pp.

Leak, J.C. and E.D. Houde. 1987. Cohort growth and survival of bay anchovy *Anchoa mitchilli* larvae in Biscayne Bay, Florida. *Marine Ecology – Progress Series*, Vol. 37:109-122.

Louisiana Coastal Wetlands Conservation and Restoration Task Force (LCWCRTF) and Wetlands Conservation and Restoration Authority (WCRA). 1998. *Coast 2050: Toward a Sustainable Coastal Louisiana*. Louisiana Department of Natural Resources. Baton Rouge, Louisiana. 1998.

----. 1999. *Coast 2050: Toward a Sustainable Coastal Louisiana, The Appendices. Appendix C – Region 1 Supplemental Information*. Louisiana Department of Natural Resources. Baton Rouge, Louisiana. 1999.

Louisiana Department of Environmental Quality (LaDEQ). 2006. 2006 Louisiana Water Quality Inventory Integrated Report Fulfilling Requirements of the Federal Clean Water Act, Sections 305(b) and 303(d). Accessed from <http://www.deq.louisiana.gov/portal/tabid/2692/Default.aspx>.

Louisiana Department of Health and Hospitals (LaDHH). 2008. Fish Advisory Reports. Office of Environmental Health. Accessed 29 December 2008 from <http://www.dhh.louisiana.gov/offices/page.asp?ID=205&Detail=6726>.

Louisiana Department of Transportation and Development (LaDOTD). 2009a. “New Orleans Highway Functional Classification Urbanized Area Map.” A map published by LaDOTD, Office of Planning and Programming. Accessed 22 September 2009 from <http://www.dotd.louisiana.gov/>.

----. 2009b. “LaDOTD Estimated Annual Average Daily Traffic Sites.” Accessed at <http://www.dotd.la.gov/highways/tatv/> on 31 August 2009.

Louisiana Department of Wildlife and Fisheries (LaDWF) 2001. U.S. Minerals Management Service, 200109, Gulf-Wide Information System, Environmental Sensitivity Index Datasets, Geographic NAD83, LADWF (2001): U.S. Minerals Management Service, New Orleans, Louisiana.

----. 2005a. “Manatee.” Accessed August 2007 from <http://www.wlf.louisiana.gov/experience/threatened/manatee.cfm>.

----. 2005b. The Economic Benefits of Fisheries, Wildlife and Boating Resources in the State of Louisiana. Prepared by Southwick Associates, Inc., June 2, 2005. Accessed at <http://www.wlf.louisiana.gov/pdfs/education/Economic%20Benefits%20of%20FishWLBoatingResources2003.pdf> on 8 September.

----. 2008. Louisiana Department of Wildlife and Fisheries. Fishing Maps. Accessed June 2008 from: <http://www.wlf.state.la.us/fishing/maps/>.

----. 2009a. Personal communication with Patrick Banks and Brian Lezina. 4 February 2009.

----. 2009b. Personal communication between Clarence Luquet and Susan Theodosiou (PBS&J). 21 August 2009.

Lyncker, L. 2008. Abundance and Distribution of Early Life Stage Blue Crabs (*Callinectes sapidus*) in Lake Pontchartrain, Louisiana. M.S. Thesis, University of New Orleans.

Martin, S.K, Savant, G., and D.C. McVan. 2009a. Lake Borgne Surge Barrier Study, ERDC-CHL, U.S. Army Corps of Engineers.

Martin S.K., T.O. McAlpin, and D.C. McVan. 2009b. Floodgate Analysis of the Mississippi River Gulf Outlet and Gulf Intracoastal Waterway. Coastal and Hydraulics Laboratory. U.S. Army Engineer Research and Development Center. Vicksburg, Mississippi.

Materials Management Group, Inc. 2006a. Final Phase I Environmental Site Assessment Report, Chef Menteur-Bayou Dupre Corridor Option 2. U.S. Army Corps of Engineers, DACW29-03-D-0014 Task Order #0024. New Orleans, Louisiana.

---. 2006b. Final Phase I Environmental Site Assessment Report, Michoud Canal-Bayou Bienvenue Canal Corridor Option 1. U.S. Army Corps of Engineers, DACW29-03-D-0014 Task Order #0024. New Orleans, Louisiana.

---. 2006c. Final Phase I Environmental Site Assessment Report, Seabrook Site. U.S. Army Corps of Engineers, DACW29-03-D-0014 Task Order #0024. New Orleans, Louisiana.

---. 2007. Phase II Environmental Site Assessment Report, Proposed Closure Structures – Seabrook, GIWW-MRGO, Michoud Slip. U.S. Army Corps of Engineers, DACW29-03-D-0014 Task Order #0037. New Orleans, Louisiana.

Montagna, P.A., S.A. Holt, and K.H. Dunton. 1998. Characterization of Anthropogenic and Natural Disturbance on Vegetated and Unvegetated Bay Bottom Habitats in the Corpus Christi Bay National Estuary Program Study Area. Final Project Report. Corpus Christi National Estuary Program, Corpus Christi, Texas.

Montz, G.N. 1978. The Submerged Vegetation of Lake Pontchartrain, Louisiana. US Army Corps of Engineers, New Orleans District, Environmental Quality Section.

Morton, T. 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (mid-Atlantic): bay anchovy. U.S. Fish and Wildlife Service Biological Report 82(11.97). 13 pp.

Muncy, R.J. 1984. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): white shrimp. U.S. Fish and Wildlife Service Biological Services Program FWS/OBS 82(11.20). 19 pp.

National Marine Fisheries Service (NMFS). 2006. Recommendations for the Contents of Biological Assessments and Biological Evaluations. Protected Resources Division, St. Petersburg, Florida. January.

---. 2008. Essential Fish Habitat: A Marine Fish Habitat Conservation Mandate for Federal Agencies, Gulf of Mexico Region. Habitat Conservation Division, St. Petersburg, Florida. August, 2008.

---. 2009. Letter from R. E. Crabtree, Regional Administrator, Southeast Regional Office, NOAA National Marine Fisheries Service, St. Petersburg, Florida, to R. E. Boe, New Orleans District Corps of Engineers, New Orleans, Louisiana, regarding concurrence with determinations on effects to federally listed species from projects in IERs 3 and 11 Tier 2 Pontchartrain. August 31.

---. 2010. NMFS Galveston Laboratory. “Lake Pontchartrain and Lake Borgne Estuary.” Accessed 19 January 2010 from <http://galveston.ssp.nmfs.gov/research/fisheryecology/EFH/Relative/maps/Louisiana/Potb.org/pontgsca.PDF>.

National Oceanic and Atmospheric Administration (NOAA). 1987. Technical Report NWS 38. Hurricane Climatology for the Atlantic and Gulf Coasts of the United States. U.S. Government Printing Office, Washington, DC.

- . 2006. Commercial Landing of Fish and Shellfish by U.S. Fishing Craft, 2006. Accessed 16 May, 2008 from http://www.st.nmfs.noaa.gov/st1/fus/fus06/02_commercial_2006.pdf.
- . 2007. Office of Science and Technology. Annual Commercial Landings Statistics. Accessed from http://www.st.nmfs.gov/st1/commercial/_landings/_annual_landings.html.
- . 2008. US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments – 2007. G. Waring, E. Josephson, C. P. Fairfield-Walsh, and K. Maze-Foley, eds. NOAA Technical Memorandum NMFS-NE-205. January. Accessed from <http://nefsc.noaa.gov/nefsc/publications.tm/tm205/tm205.pdf>.

Nelson, D.M., M.E. Monaco, C.D. Williams, T.E. Czapla, M.E. Pattillo, L. Coston-Clements, L.R. Settle, and E.A. Irlandi. 1992. Distribution and abundance of fishes and invertebrates in Gulf of Mexico estuaries, Volume I: data summaries. ELMR Rep. No. 10. NOAA/NOS Strategic Environmental Assessments Division, Rockville, MD. 273 pp.

New Orleans City Business 2007. "Port of New Orleans board OKs \$1.9M in projects, repairs." 26 October 2007. Accessed 2 January 2009 from http://findarticles.com/p/articles/mi_qn4200/is_/ai_n21074842.

New Orleans Neighborhood Rebuilding Plan (NOLANRP). 2006. Pontchartrain Park, District 6. Neighborhood Presentation June 2006. Accessed 24 December 2008 from http://www.nolanrp.com/neighborhood_info.php?district=6&forum=8.0&neighborhood=Pontchartrain%20Park.

New World Research, Inc. 1983. Cultural Resources Survey of Terrestrial and Off-Shore Locations, Lake Pontchartrain and Vicinity Hurricane Protection Project, Louisiana. Report on File, Louisiana Division of Archaeology, Baton Rouge.

O'Connell, M.T., R.C. Cashner, C.S. Schieble. 2004. Fish Assemblage stability over fifty years on the Lake Pontchartrain Estuary; Comparisons among habitats using canonical correspondence analysis. *Estuaries*: 27 (5): 807-817

Pattillo, M.E., T.E. Czapla, D.M. Nelson, and M.E. Monaco. 1997. Distribution and Abundance of Fishes and Invertebrates in Gulf of Mexico Estuaries Volume II: Data Summaries. ELMR Rep. No. 11. NOAA/NOS Strategic Environmental Assessments Division, Rockville, MD.

Pearson, J. C. 1929. Natural history and conservation of redfish and other commercial sciaenids on the Texas coast. *Bulletin of the U.S. Bureau of Fisheries* 44:129-214.

Perry, H.M., J. Warren, C. Trigg, and T. Van Devender. 1998. The Blue Crab Fishery of Mississippi. *Journal of Shellfish Research*, 17(2):425-433.

Peters, K.M., and R.H. McMichael, Jr. 1987. Early life history of juvenile red rum, *Sciaenops ocellatus*, in Tampa Bay, Florida. *Estuaries* 10:92-107.

Peterson, G.W. and R.E. Turner. 1994. The value of salt marsh edge vs interior as habitat for fish and decopod crustaceans in Louisiana tidal marsh. *Estuaries* 17:235-262.

Peterson, M.S. 2003. A Conceptual View of Environment-Habitat-Production Linkages in Tidal River Estuaries. *Reviews in Fisheries Science* 11(4):291-313.

Pile, A.J., R.N. Lipcius, J. van Montfrans, R.J. Orth, 1996. Density-Dependent Settler-Recruit-Juvenile Relationships in Blue Crabs. *Ecological Monographs*, 66(3):277-300.

Pontilly. 2008. Gentilly – Pontchartrain Park Neighborhood Association. Pontchartrain Park Neighborhood Snapshot. Accessed 24 December 2008 from <http://www.pontilly.com/PontchartrainPark/tabid/54/Default.aspx>.

Porrier, M. 2009. Personal communication between Michael Porrier (UNO) and Susan Theodosiou (PBS&J). 31 July 2009.

Port of New Orleans. 2008. Citizen Resources - Bridge Closures and Curfews. Accessed 31 December 2008 from http://www.portno.com/pno_pages/citizen_bridge_closures.asp.

---. 2009. "Port of New Orleans Overview." Accessed 25 February, 2009 from http://www.portno.com/pno_pages/about_overview.html.

Pontchartrain Park Neighborhood Association (PPNA). 2008. Website. Accessed 24 December 2008 from: <http://www.pontchartrainpark.org/>.

Rabalais, N.N., F.R. Burditt, Jr., L.D. Coen, B.E. Cole, C. Eleuterius, K.L. Heck, Jr., T.A. McTigue, S.G. Morgan, H.M. Perry, F.M. Truesdale, R.K. Zimmerfaust, and R.J. Zimmerman. 1995. Settlement of *Callinectes Sapidus* Megalopae on Artificial Collectors in Four Gulf of Mexico Estuaries. *Bulletin of Marine Science*, 57(3):855-876.

Rakocinski, C.F., D.M. Baltz, and J.W. Fleeger. 1992. Correspondence between environmental gradients and the community structure of marsh-edge fishes in a Louisiana estuary. *Marine Ecology Progress Series* 80:135-148.

Ray, G. L. 2007. "Characterization of Benthic Invertebrates of the Southern Shoreline of Lake Pontchartrain, New Orleans, Louisiana: A Report to the U.S. Army Engineer District, New Orleans." U.S. Army Engineer Research and Development Center, Vicksburg, MS. November.

Reagan, R.E. 1985. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): Red drum. U.S. Fish and Wildlife Service, 82/11.1. U.S. Army Corps of Engineers, TR EL-82-4:1-15.

Regional Planning Commission (RPC). 2006. Regional Planning Commission. 2005 New Orleans Metropolitan Bicycle and Pedestrian Plan. September 2006. Accessed 31 December 2008 from <http://www.norpc.org>.

---. 2007. Louisiana's Enterprise Zone Program. Map set 2007. Accessed 31 December 2008 from: http://www.norpc.org/projects_programs/econ_development/econ_dev_ezms.html.

Robinette, H.R. 1983. Species profiles: life histories and environmental requirements o f coastal fishes and invertebrates (Gulf of Mexico) – bay anchovy and striped anchovy. L1.S. Fish and Wildlife Service, Division of Biological Services, FWS/OBS-82/11.14. U. S. Army Corps o f Engineers, TR EL-82-4. 15 pp.

Schedler, Larry. 2008. Greater New Orleans Multi-Family Report. Madderra & Gazaot, Larry G. Schedler & Associates Inc, and The MultiFamily Advisory Group, LLC. Fall 2008. Accessed 2 January 2009 from: <http://www.larryschedler.com/>.

---. 2009. Greater New Orleans Multi-Family Report. Madderra & Gazaot, Larry G. Schedler & Associates Inc, and The MultiFamily Advisory Group, LLC. Summer 2009. Accessed 21 August 2009 from: <http://www.larryschedler.com/>.

Schultz, E. T., K. M. M. Lwiza, M. C. Fencil, J. M. Martin. 2003. Mechanisms promoting upriver transport of larvae of two fish species in the Hudson River estuary. *Marine Ecology Progress Series* 251: 263-277.

Shaw, R. F., B. D. Rogers, J. H. Cowan Jr., W. H. Herke. 1982. Ocean-Estuary Coupling of Ichthyoplankton and Nekton in the Northern Gulf of Mexico.

Sikora, W.B. and B. Kjerfve. 1985. Factors influencing the salinity regime of Lake Pontchartrain, Louisiana, a shallow coastal lagoon: Analysis of a Long-term Data Set. *Estuaries* 8 (2a): 170-180.

Smith, D.L. 2008. Reconnaissance study of fish passage impacts resulting from structures in the MRGO, IHNC and GIWW- Letter Report. U.S. Army Corps of Engineers, Engineer Research and Development Center. Vicksburg, Mississippi. pp. 25.

St. Charles Herald Guide. 2008. 5 secrets to catching fish at Seabrook. Staff Report. 21 August 2008. Accessed 24 December 2008 from http://www.heraldguide.com/details_archive.php?id=4537.

Stanley, J.G. and M.A. Sellers. 1986. Species Profile: Life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico) - American oyster. U.S. Fish and Wildlife Service Biological Report 82(11.64). U.S. Army Corps of Engineers, TR EL-82-4.

Stunz, G.W., T.J. Minello, and P.S. Levin. 2002a. A comparison of early juvenile red drum densities among various habitat types in Galveston Bay, Texas. *Estuaries* 25(1):76-85.

---. 2002b. Growth of newly settled red drum, *Sciaenops ocellatus* in different estuarine habitat types. *Marine Ecology Progress series* 238:227-236.

Sutter, F.C. and T.D. McIlwain. 1987. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico) - sand seatrout and silver seatrout. U.S. Fish and Wildlife Service. Biol. Rep. 82(11.72). U.S. Army Corps of Engineers, TREL 82-4.

Swenson, E. M. and W. S. Chuang. 1983. Tidal and subtidal water volume exchange in an estuarine system. *Estuarine, Coastal, and Shelf Science* 16:229-240.

Tate, J. N., Carrillo, A.R., Berger, R.C. and Thibodeaux, B. J. (2002). "Salinity Changes in Pontchartrain Basin Estuary, Louisiana, Resulting from Mississippi River-Gulf Outlet Partial Closure Plans with Width Reduction , " Technical Report CHL-TR-02-12, U.S. Army Engineering Research and Development Center , Vicksburg, MS.

Transportation Research Board (TRB). 2000. Highway Capacity Manual 2000, third edition. National Research Council, Washington, D.C.

University of New Orleans (UNO). 2006. Gentilly Neighborhood Survey. College of Urban and Public Affairs. May 2006. Published in presentation: Gentilly: Building on Diversity. New Orleans Neighborhoods Rebuilding Plan. Accessed 29 December 2008 from <http://www.nolanrp.com/final.php>.

---. 2008a. The University of New Orleans, College of Business Administration, Division of Business and Economic Research. Lakefront, New Orleans, LA 70148. *Metropolitan Report*. Volume 19, Number 2. August 2008.

---. 2008b. The University of New Orleans, College of Business Administration, Division of Business and Economic Research. Lakefront, New Orleans, LA 70148. *Metropolitan Report*. Volume 19, Number 3. December 2008.

U.S. Army Corps of Engineers (USACE) and State of Louisiana. 2004a. Louisiana Coastal Area (LCA), Louisiana Ecosystem Restoration Study. Final, Volume 2: Programmatic Environmental Impact Statement. November.

---. 2004b. Louisiana Coastal Area (LCA), Louisiana Ecosystem Restoration Study, Final Volume 1: LCA Study – Main Report, New Orleans District.

USACE. 1967. Lake Pontchartrain, Louisiana and Vicinity, Design Memorandum No. 1, Hydrology and Hydraulic Analysis, Part II – Barrier, New Orleans District, Louisiana.

---. 1970. Lake Pontchartrain, Louisiana and Vicinity and Mississippi River-Gulf Outlet, Seabrook Lock Design Memorandum No.1, General. Prepared by the Buffalo District for the New Orleans District. April.

---. 1974. Final Environmental Impact Statement, Lake Pontchartrain, Louisiana, and Vicinity Hurricane Protection Project, Statement of Findings.

---. 1984. Lake Pontchartrain, Louisiana, and Vicinity Hurricane Protection Project Reevaluation Study. New Orleans District. July.

---. 1995. Committee on Tidal Hydraulics, Bonnet Carré Freshwater Diversion, Lake Pontchartrain, Lake Borgne, Biloxi Marshes and the IHNC, an evaluation by the Committee on Tidal Hydraulics. USACE-Waterways Experiment Station, Vicksburg, Mississippi.

---. 1997. Mississippi River Gulf Outlet, New Lock and Connecting Channels Evaluation Report. March.

---. 1998. "Caernarvon Freshwater Diversion Project; Mississippi Delta Region, LA" Factsheet. New Orleans District. March 1998. Page last updated January 2003. Available at <http://www.mvn.usace.army.mil/prj/caernarvon/caernarvon.htm>.

- . 2004. Lake Borgne-MRGO Shoreline Protection Project (PO-32) Environmental Assessment. December 16.
- . 2005. "Standard Manatee Conditions for In-Water Work." Jacksonville District, Florida. July. Accessed October 2007 from <http://www.saj.usace.army.mil/regulatory/what/species/manatee.htm>.
- . 2006a. "Louisiana Coastal Protection and Restoration, Preliminary Technical Report to Congress, Enclosure C: Louisiana Economy and 2005 Hurricane Damage." June 2006. Accessed from <http://lacpr.usace.army.mil>.
- . 2006b. Mississippi River Gulf Outlet: Deep-Draft De-Authorization Interim Report to Congress. December. Accessed 2 November 2007 from http://www.mvn.usace.army.mil/pao/RELEASES/ MRGO_Report_Congress_061214_Final.pdf.
- . 2006c. Draft Biological Assessment: Impacts of USACE Navigational Projects on the Gulf Sturgeon in Louisiana. Mississippi Valley Division, New Orleans District.
- . 2007a. Final PIIESA Report, Proposed Closure Structures – Seabrook, GIWW-MRGO, Michoud Slip, Phase II Environmental Site Assessment, New Orleans, Louisiana. Prepared by Materials Management Group, Inc. 12 December.
- . 2007b. Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System. Final Report of the Interagency Performance Evaluation Task Force. Volume III – The Hurricane Protection System. August 22.
- . 2007c. Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System. Final Report of the Interagency Performance Evaluation Task Force. Volume VII – The Consequences. March 26.
- . 2007d. Integrated Final Report to Congress and Legislative Environmental Impact Statement for the Mississippi River-Gulf Outlet Deep-Draft De-Authorization Study, Main Report. New Orleans District. November.
- . 2008a. Final Individual Environmental Report #11 – Tier 1 - Improved Protection on the Inner Harbor Navigation Canal, Orleans and St. Bernard Parishes, Louisiana. March.
- . 2008b. U.S. Army Corps of Engineers – New Orleans District, Engineering Analysis Report – Seabrook Floodgate – Phase II, 100 percent Submittal. Prepared by Arcadis, Bioengineering Group, and HTNB. 10 October.
- . 2008c. Final Individual Environmental Report #11 – Tier 2 Borgne - Improved Protection on the Inner Harbor Navigation Canal, Orleans and St. Bernard Parishes, Louisiana. October.
- . 2008d. Supplemental Environmental Impact Statement for the Inner Harbor Navigation Canal Lock Replacement Project, October 2008. Appendix O, IHNC Lock Replacement Study2008 Updated Economic Analysis.
- . 2009a. Technical Letter Report Engineering Alternatives to Provide Seabrook Gate Velocity Mitigation, 80% Submittal. New Orleans, LA. 24 April.
- . 2009b. Technical Letter Report Engineering Alternatives to Provide Seabrook Gate Velocity Mitigation, 95% Submittal. New Orleans, LA. 5 June.

- . 2009c. Final Seabrook Fish Larval Transport Study. ERDC/CHL TR-08-X. March.
- . 2009d. Estimation of Dissolved Oxygen Concentrations of Two New Scenarios for Seabrook Conditions. ERDC/CHL TR-08-X. September.
- . 2009e. Final Seabrook and Borgne Alignment Construction Sequence Hydrodynamic Study. ERDC/CHL TR-08-X. July.
- . 2009f. Fact Sheet: MRGO Ecosystem Restoration Plan Feasibility Study. USACE New Orleans District. Accessed at http://www.mrgo.gov/MRGO_restoration_study.aspx on 13 July 2009.

U.S. Census Bureau (USCB). 2000 U.S. Census, Summary File 1 (SF1) and Summary File 3 (SF3). Accessed at <http://factfinder.census.gov> on 31 October 2007.

U.S. Department of Agriculture, Soil Conservation Service. 1989. Soil Survey of Orleans Parish, Louisiana. June.

U.S. Environmental Protection Agency (USEPA). 1974. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. Report 550/9-47-004.

- . 2008. "Surf Your Watershed Data." Accessed from http://cfpub.epa.gov/surf/huc.cfm?huc_code=08090203.

U.S. Fish and Wildlife Service (USFWS). 1999. South Florida Multi-Species Recovery Plan. Southeast Region, Atlanta, Georgia.

- . 2001. Florida Manatee Recovery Plan (*Trichechus manatus latirostris*), third revision. FWS Southeast Region. October 30.
- . 2007a. West Indian Manatee (*Trichechus manatus*) 5-Year Review: Summary and Evaluation. FWS Southeast Region. April.
- . 2007b. Species Information, Threatened and Endangered Species System (TESS), Species Profiles. Accessed August 2007 from http://ecos.fws.gov/tess_public/StartTESS.do.
- . 2009. Letter from J.F. Boggs, Field Supervisor, Louisiana Field Office, Fish and Wildlife Service, Lafayette, Louisiana to Colonel M. McCormick, Hurricane Protection Office, U.S. Army Corps of Engineers, New Orleans, Louisiana, regarding concurrence with determinations on effects to federally listed species from projects in IERs 5-11. February 2.

USFWS and Gulf States Marine Fisheries Commission (GSMFC). 1995. Gulf Sturgeon Recovery Plan. Atlanta, Georgia.

USFWS and National Oceanic and Atmospheric Administration (NOAA). 2003. "Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Gulf Sturgeon." Federal Register. Vol. 68, No. 53, pp. 13370-13418. Washington, D.C. 19 March 2003.

U.S. Geological Survey (USGS). 2002a. "Tropical Cyclones of the Louisiana Coast." Accessed 13 December, 2007 from <http://pubs.usgs.gov/of/2002/of02-206/phy-environment/cyclone1980-99.html>.

---. 2002b. Environmental Atlas of the Lake Pontchartrain Basin – Inner Harbor Navigation Canal Environmental Issues – Water Quality. Available at <http://pubs.usgs.gov/of/2002/of02-206/env-issues/harbor-canal.html>. Accessed, July 2009.

---. 2002c. Environmental Atlas of the Lake Pontchartrain Basin. Biological Resources – Submersed Aquatic Vegetation, Spillway, Hurricane, and Drought Effects on SAV (Grassbeds). May. Available online at <http://pubs.usgs.gov/of/2002/of02-206/biology/sav.html>.

---. 2008. Geologic Framework and Processes of the Lake Pontchartrain Basin. Accessed from <http://coastal.er.usgs.gov/pontchartrain/wetland.html>.

---. 2009. USGS Monitoring activities for the Mississippi River Gulf Outlet pre-barrier construction. USGS Louisiana Water Science Center, Baton Rouge, Louisiana. July.

Waterborne Commerce Statistics Center (WCSC). 2006. 2006 Waterborne Commerce of the United States (WCUS) Waterways and Harbors. Accessed 31 December 2008 from: <http://www.iwr.usace.army.mil/ndc/wcsc/wcsc.htm>.

WDSU. 2008. Group Trying To Redevelop Pontchartrain Park. 20 October 2008. Accessed 29 December 2008 from <http://www.wdsu.com/news/17765521/detail.html>.

Webb, D. 2009. Lake Borgne Navigation Study. ERDC-CHL, US Army Corps of Engineers.

Weber, M.R. 2004. A modeling approach to integrate watershed mapping and growth of nekton in the lower Pascagoula River, Mississippi, using Atlantic croaker, *Micropogonias undulatus* (Linneaus). M.S. Thesis. The University of Southern Mississippi, Hattiesburg, Mississippi.

Welch, J. M., R. B. Forward Jr, P. A. Howd. 1999. Behavioral responses of blue crab *Callinectes sapidus* postlarvae to turbulence: implications for selective tidal stream transport. Marine Ecology Progress Series 179: 135-143.

Westerink, Joannes, B. Ebersole, and H. Winer. 2006. Note on the Influence of the Mississippi River Gulf Outlet on Hurricane Induced Storm Surge in New Orleans and Vicinity. U.S. Army Corps of Engineers, Louisiana.

Whitaker, J.O. 1998. The Audubon Society Field Guide to North American Mammals, revised edition. New York: Alfred A. Knopf.

Wigley, T.B. and R.A. Lancia. 1998. Wildlife Communities. Chapter 9 in Southern Forested Wetlands: Ecology and Management, eds. M.G. Messina and W.H. Conner. Boca Raton, Florida: Lewis Publishers.

Wilson, A., Maygarden B., and M. Damour. 2006. Cultural Resource Investigation for Floodgate Protection and Levee Construction, Inner Harbor Navigation Canal and Mississippi River Gulf Outlet, Orleans and St. Bernard Parishes. Earth Search, Inc. Submitted to U.S. Army Corps of Engineers, New Orleans District (Draft Report).

Zillow. 2009. Pontchartrain Park Home Values. Zillow.com.

Accessed 5 January 2009 from <http://www.zillow.com/real-estate/LA-New-Orleans/Pontchartrain-Park-home-value>.

APPENDIX A

LIST OF ABBREVIATIONS AND ACRONYMS

AAHU	average annual habitat unit
AAI	all appropriate inquiry
ACB	articulated concrete blocks
ADH	Adaptive Hydraulics
AEP	Alternative Evaluation Process
AICP	American Institute of Certified Planners
AST	above-ground storage tank
ASTM	American Society for Testing and Materials
B.C.	Before Christ
BLH	bottomland hardwood
BMP	best management practices
BO	biological opinion
BOD	biological oxygen demand
°C	degree Celsius
CAA	Clean Air Act
CAR	Coordination Act Report
CED	Comprehensive Environmental Document
CEMVN	Corps of Engineers, Mississippi Valley Division, New Orleans District
CEQ	Council on Environmental Quality
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFDC	Caernarvon Freshwater Diversion Canal
CFR	Code of Federal Regulations
CIAP	Coastal Impact Assistance Program
cm	centimeter
cm/sec	centimeter per second
CNO	City of New Orleans
CNOGIS	City of New Orleans Geographic Information System
CO	carbon monoxide
COD	chemical oxygen demand
CPT	cone penetrometer test
CRCL	Coalition to Restore Coastal Louisiana
CSTR	continuously-stirred tank reaction
CWPPRA	Coastal Wetlands Planning, Protection, and Restoration Act
cy	cubic yard
dB	Decibel
dBA	A-weighted decibel
DDT	dichlorodiphenyltrichloroethane
DNL	day-night average sound level
DO	dissolved oxygen
EA	Environmental Assessment
EBSTP	East Bank Sewer Treatment Plant
EFH	essential fish habitat

EIS	Environmental Impact Statement
EJ	environmental justice
ER	Engineering Regulation
ERDC	Engineering Research and Development Center
ESA	Environmental Site Assessment
ESRI	Environmental Systems Research Institute, Inc.
°F	degree Fahrenheit
FEMA	Federal Emergency Management Agency
FHWA	Federal Highway Administration
FMC	Fishery Management Council
FMP	Fishery Management Plan
FR	Federal Register
ft	feet
FTE	full-time equivalents
fps	ft per second
GIWW	Gulf Intracoastal Waterway
GMFMC	Gulf of Mexico Fishery Management Council
GNOCDC	Greater New Orleans Community Data Center
GNOEC	Greater New Orleans Expressway Commission
GSMFC	Gulf States Marine Fisheries Commission
HPD	Harbor Police Department
HPS	Hurricane Protection System
HSDRRS	Hurricane and Storm Damage Risk Reduction System
HTRW	hazardous, toxic, and radioactive waste
I – 10	Interstate 10
IER	Individual Environmental Report
IERS	Individual Environmental Report Supplemental
IHNC	Inner Harbor Navigation Canal
III	Insurance Information Institute
IPET	Interagency Performance Evaluation Task Force
LaCPR	Louisiana Coastal Protection and Restoration
LaDHH	Louisiana Department of Health and Hospitals
LaDOTD	Louisiana Department of Transportation and Development
LCA	Louisiana Coastal Area
LaCRP	Louisiana Coastal Resource Program
LCWCRTF	Louisiana Coastal Wetlands Conservation and Restoration Task Force
LaDEQ	Louisiana Department of Environmental Quality
LaDNR	Louisiana Department of Natural Resources
LaDWF	Louisiana Department of Wildlife and Fisheries
LF	linear feet
LOS	level-of-service
LPV	Lake Pontchartrain and Vicinity
MDS	Multi- Dimension Sediment
mg/L	milligram per liter
mm	millimeter
mph	miles per hour

MRGO	Mississippi River Gulf Outlet
MSA	Magnuson-Stevens Fishery Conservation and Management Act
n/a	information not available
NAAQS	National Ambient Air Quality Standards
NAVD88	North American Vertical Datum of 1988
NEPA	National Environmental Policy Act
NGVD29	National Geodetic Vertical Datum of 1929
NMFS	National Marine Fisheries Service
No.	number
NOAA	National Oceanic and Atmospheric Administration
NOLANRP	New Orleans Neighborhood Rebuilding Plan
NORA	New Orleans Redevelopment Authority
NOV	New Orleans to Venice
NPS	National Park Service
NRCS	Natural Resources Conservation Service
NRHD	New Orleans Register Historic District
NRHP	National Register of Historic Places
NO ₂	nitrogen dioxide
NOBID	New Orleans Business and Industrial District
NTU	nephelometric turbidity unit
NWR	National Wildlife Refuge
O ₃	ozone
OCPR	Office of Coastal Protection and Restoration
OCS	outer continental shelf
OMRR&R	operation, maintenance, repair, replacement, and rehabilitation
PA	Programmatic Agreement
PAH	polycyclic aromatic hydrocarbon
Pb	lead
PBS&J	Post, Buckley, Schuh & Jernigan, Inc.
PCB	polychlorinated biphenyl
PDT	Project Delivery Team
P.E.	Professional Engineer
PL	Public Law
PLC	programmable logic controller
PM	particulate matter
PPL	Priority Project List
ppm	parts per million
PPNA	Pontchartrain Park Neighborhood Association
PTM	particle tracking modeling
ppt	parts per thousand
RCG	R. Christopher Goodwin and Associates, Inc.
RCRA	Resource Conservation and Recovery Act
REC	recognized environmental condition
RECAP	Risk Evaluation/Corrective Action Program
ROW	right-of-way
RPC	Regional Planning Commission

RV	recreational vehicle
SAV	submerged aquatic vegetation
SHPO	State Historic Preservation Office
SO ₂	sulfur dioxide
sq ft	square feet
SWPPP	Stormwater Pollution Prevention Plan
TBD	to be determined
TCLP	toxicity characteristic leaching procedure
TPH	total petroleum hydrocarbon
TRB	Transportation Research Board
TRM	turf reinforcement mattress
UNO	University of New Orleans
U.S.	United States
USACE	U.S. Army Corps of Engineers
USC	United States Code
USCG	U.S. Coast Guard
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
WBV	West Bank and Vicinity
WCRA	Wetlands Conservation and Restoration Authority
WCSC	Waterborne Commerce Statistics Center
WQC	water quality certification
WRDA	Water Resources Development Act

APPENDIX B
MODELING REPORTS

- **Seabrook Fish Larval Transport Study, ERDC/CHL TR-08-X**
- **Lake Borgne Surge Barrier Study, ERDC/CHL TR-08-X, (pending external review)**
- **Seabrook and Borgne Alignment Construction Sequence Hydrodynamic Study, ERDC/CHL TR-08-X**
- **Estimation of Dissolved Oxygen Concentrations of Two New Scenarios for Seabrook Conditions, ERDC/CHL TR-08-X**

To access these studies electronically, go to <http://www.nolaenvironmental.gov>.

To request a hardcopy, contact Laura Lee Wilkinson at 504-862-1212.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

APPENDIX C

PUBLIC COMMENT AND RESPONSES

**Lake Pontchartrain Properties, LLC
Pontchartrain Landing RV Park
6001 France Road, New Orleans, LA 70126
504.286.8157**

Jan 6, 2010

January 6, 2010
Joan M. Exnicios
Chief, Environmental Planning
Compliance Branch
Colonel, U.S. Army Corps of Engineers
P.O. Box 60267
New Orleans, LA 70160-0267

Re: Comments on IER#11-Tier 2 Pontchartain

:

This letter is being written to provide comments on the above captioned IER. I am the Managing Partner of Lake Pontchartrain Properties, LLC dba Pontchartrain Landing RV Park (the "Company"). The Company is the holder of long term lease of 30+-acres of improved and unimproved land owned by the Port of New Orleans on west bank of the canal all on the south side of the Seabrook Bridge adjacent to the proposed work site.

We are in possession of the comments on this project which have been submitted to you by the Port of New Orleans in its letter dated January 5, 2009. We wish to make it clear that we support that letter and the positions taken in it in every respect except to the extent stated below.

We wish to take this opportunity, however, to give you the perspective of a local business which will be effectively destroyed if this project is constructed on the south (IHNC) side of the Seabrook Bridge. This perspective is two pronged: probable environmental harm no matter which alternative is selected and the probable demise of our business if the south side alternative is selected.

As to the first issue, all of the alternatives for construction will require that the construction be supported by the absolute need for laydown areas for materials and for

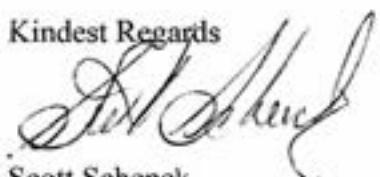
the production of concrete. The project could never be efficiently and economically constructed unless these areas are provided to the contractor at or contiguous to the proposed construction. Concrete in the volumes required cannot be economically produced and trucked over large distances and the oversized components cannot be effectively constructed unless a nearby inventory is maintained to feed the operation.

There is, therefore, no question a large portion of the bank on our side of the canal will have to be mobilized and used as a laydown area for materials and the production of concrete regardless of the location of the project.

Concrete production means that thousands of tons of sand, aggregate, and cement will have to be imported and stored on site. The production of concrete necessarily and inevitably results in the creation of airborne particulate matter which is dangerous to human and animal life. The concrete production industry is heavily regulated and still the exposure to cementitious materials on such sites has resulted in manifold deaths and disabilities. Only the lawyers get any benefit out of such operations.

Concrete production and the need for laydown areas will produce hundreds if not thousands of trips by barge and truck (where possible) to and from the construction site and its support areas. No responsible evaluation of this project can be made without an extensive **trip analysis** which tells the public just how busy and clogged the canal, roads and property will be as a result of the this project. The EIR at issue is totally deficient in its lack of attention to this most important issue.

In this connection, we stress that this is not an issue which depends on who is selected to do the construction. It is an issue which is inherent in the construction regardless of the means and methods selected. Every contractor will be doing a trip analysis for this work because this cost will be enormous. It would be irresponsible of the Corps not to do its own, well thought out analysis and make this part of the true cost and impact of this project. To do otherwise is to hide the truth.


The EIR, therefore, is fatally deficient in its failure to identify and consider the environmental consequences of concrete production and materials storage contiguous to the project and the realities of the transportation demands for getting material to the site

Our second concern is that the delivery of the materials, the inevitability of massive demands for production and storage on land next to our site and in the water beside our site, coupled with 24/7 construction operations will simply put us out of business.

We run an RV site with plans for expansion which include additional residential use and docks. Not one inch of our space under lease will be usable if this project goes ahead on either side of the bridge. The implementation of this project will, without question, inversely condemns all of our property for its intended use and for any other use except, ironically, as a site suitable to support concrete production or materials handling and storage- short term uses which destroy the long term operations.

For these reasons we are absolutey opposed to this project. More important for your purposes, our plight points out the glaring lack of proper analysis in the EIR of the true environmental impact of the project and its short and long term economic consequences.

Kindest Regards

A handwritten signature in black ink, appearing to read "Scott Schenck".

Scott Schenck
Managing Partner
Lake Pontchartrain Properties, LLC dba
Pontchartrain Landing RV Park

504.722 1368 cell

REPLY TO
ATTENTION OF

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P. O. BOX 60267
NEW ORLEANS, LOUISIANA 70160-0267

Regional Planning and
Environmental Division, South
New Orleans Environmental Branch

Scott Schenck
Managing Partner
Lake Pontchartrain Properties, LLC
Pontchartrain Landing RV Park
6001 France Road
New Orleans, LA 70126

Re: Draft Individual Environmental Report (IER) #11 Tier 2 Pontchartrain Comment Letter

Dear Mr. Schenck:

Thank you for your correspondence of January 6, 2010 providing comments on behalf of the Lake Pontchartrain Properties, LLC, to our December 2009 draft Individual Environmental Report (IER) for IER #11-Tier 2 Pontchartrain, Improved Protection on the Inner Harbor Navigation Canal. The U.S. Army Corps of Engineers, New Orleans District (CEMVN), would like to thank you for your participation in the IER #11 Tier 2 Pontchartrain public review process.

The Commander considered the information provided in the IER document as well as those comments received from the public and from interested agencies. Colonel Lee made his decision based upon what is in the best interest of the people of southeastern Louisiana. The human environmental impacts were considered along with traditional engineering criteria that include risk and reliability, constructability, construction schedule, operation and maintenance, and cost. Public safety is the primary consideration for the Hurricane Storm Damage Risk Reduction System.

CEMVN appreciates your taking the time to submit comments and would like to address the concerns you brought up in your January 6 letter:

Comment #1: All of the alternatives for construction will require that the construction be supported by the absolute need for laydown areas for materials and for the production of concrete at or contiguous to the proposed construction.

Response: As described in the draft IER document in Section 2.3 and shown on Figure 6, all of the alternatives presented require 12 acres for the temporary staging area located generally east of France Road, south of the Bascule Railroad Bridge, and extending into Slip No. 6. The staging area was previously leased from the Port of New

Orleans for equipment storage by Shavers-Whittle Inc. It is currently vacant land largely covered by gravel and concrete. As indicated in Section 2.3, concrete would likely be transported to the site via ready mix concrete trucks and pumped on site rather than produced on site.

Comment #2: The production of concrete necessarily and inevitably results in the creation of airborne particulate matter which is dangerous to human and animal life.

Response: Project-related impacts to air quality are described in detail in Section 3.2.12 of the Draft IER. Impacts are expected to be temporary in nature and controlled using Best Management Practices (BMPs) including application of water and street sweeping. Mass production of concrete and associated high levels of airborne concrete particulate matter are not expected to occur on site.

Comment #3: No responsible evaluation of this project can be made without an extensive trip analysis which tells the public just how busy and clogged the canal, roads, and property will be as a result of this project.

Response: Impacts to transportation and local routes are discussed in Section 3.2.14 of the draft IER. Specific transportation routes for delivery of construction materials have not been determined yet. As noted in the document, the U.S. Army Corps of Engineers is currently completing a system-wide transportation analysis to better quantify impacts. The results of this analysis will be included in the draft Comprehensive Environmental Document.

Comment #4: Delivery of the materials, massive demands for production and storage adjacent to the RV Park property will put the Park out of business.

Response: The impacts analysis in section 3.3 was based in part on personal interviews with your company. No concerns were raised with respect to specific short-term impact during the construction period of the proposed action during this interview. Admittedly, further design details were disclosed in the draft IER in regards to material quantities, material transportation and staging areas that were not available during the interview. However, given the industrial nature of the Inner Harbor Navigation Canal and the distance between your property and the staging area shown in figure 6, CEMVN does not believe that impacts would be so severe as to put your company out of business. Further, the Pontchartrain Landing RV Park is not located within the tentatively identified right-of-way required for this project. Thus, there is no acquisition of land planned at the location of the RV Park. The IER states that “Construction activities would be expected to create temporary noise impacts above 65 dBA to the sensitive receptors within 1,000 ft of the project corridor; however the majority of the noise will result from specific activities such as pile driving, which would not last the entire length of the construction period.” The RV park is not within the 1,000 ft receptor radius.

Again, we would like to thank you for your comments and for taking the time to participate in the IER #11 Tier 2 Pontchartrain public review process. Should you have additional questions please contact Ms. Laura Lee Wilkinson at (504) 862-1212 or at laura.l.wilkinson@usace.army.mil.

Sincerely,

Joan M. Exnickios
Joan M. Exnickios
Chief, New Orleans
Environmental Branch

KINNEY & ELLINGHAUSEN
A PROFESSIONAL LAW CORPORATION
1250 POYDRAS STREET, SUITE 2450
NEW ORLEANS, LOUISIANA 70113-1806

Henry W. Kinney
John W. Ellinghausen

Michael L. DeShazo
Rebecca S. Miller
John D. Miranda

TELEPHONE: (504) 524-0206
FACSIMILE: (504) 524-6216
EMAIL: henryk@kinneylaw.com
john@kinneylaw.com
michael@kinneylaw.com
rebecca@kinneylaw.com
john@kinneylaw.com

January 6, 2010

Via Hand Delivery and E-mail – Joan.M.Exnicios@USACE.Army.Mil

Joan Exnicios
U.S. Army Corps of Engineers
7400 Leake Avenue, Room 363
New Orleans, LA 70118

**Re: Comments of Seabrook Marine and Trinity Yachts in Response to Draft IER
#11- Tier 2 Pontchartrain**

Dear Ms. Exnicios:

Seabrook Marine, LLC ("Seabrook Marine") and Trinity Yachts LLC ("Trinity Yachts") hereby submit their timely comments to the *Draft Individual Environmental Report #11 – Tier 2 Pontchartrain for Improved Protection on the Inner Harbor Navigational Canal* dated December 2009 (draft IER #11, Tier 2) issued by the United States Army Corps of Engineers ("Corps"). While these comments are submitted together, they constitute the individual comments of both entities and should be recognized as such by the Corps when taking into account the comments received on draft IER #11, Tier 2.

Located in the proposed "protected area" of the Inner Harbor Navigational Canal (IHNC) in New Orleans, Trinity Yachts is one of the largest luxury yacht manufacturers in the world, with 250 employees, an annual payroll of \$15 Million, and total expenditures for facility and job-related purchases totaling \$45 Million each year to the benefit of the local economy. Similarly situated within the interior of the IHNC, Seabrook Marine employs no less than 45-50 employees per year, and generates over \$10 Million in economic activity annually. Combined, these comments are made on behalf of businesses employing over 300 employees with a \$50 Million annual economic impact to the community and state economy. While both

Seabrook Marine and Trinity Yachts favor and support the hurricane protection efforts being conducted by the Corps, we note that draft IER #11- Tier 2, fails to examine the devastating impacts that the proposed location of the Seabrook Gate Closure will have on the businesses and operations within the IHNC which will be significantly impacted during and after construction of the Seabrook Gate Complex.

Recognizing the deficiency of the draft IER analysis described in more detail below, both Seabrook Marine and Trinity Yachts strongly advocate and formally request that the Corps choose alternative #5 for the location of the Seabrook Gate Complex, which appears to cause the least disruption to the operations of the businesses, employees and mariners who are dependent upon the IHNC for their livelihood, while still providing the same level of protection as the preferred alternative.

At the outset, we are concerned that the analysis contained in draft IER #11, Tier 2, does not contain sufficient information to inform either the governmental agencies or the public of the socio-economic impacts to the human environment of the proposed major Federal action (or alternatives to the proposed action), which is required under the National Environmental Policy Act (NEPA). The government is required to take a "hard look" and to properly assess the impacts of the proposed action on the human environment, prior to making any final decision on the project location to close access to the IHNC for construction of the Seabrook Gate. Similarly, the Corps must examine data readily available, even though not yet produced, concerning the number and frequency of closures barring access to the IHNC after the gate is constructed, due to both storm events and non-storm related navigational condition closures. The Corps fails to provide any analysis or information regarding the process for closures, although it acknowledges that it will do so in the future, but only after finalization of a "Water Control Plan" after a final decision on the gate has been made. Additionally, there is no data or discussion whatsoever contained in draft IER #11, Tier 2, addressing the potential effect of silt buildup within the IHNC due to the gate location and operation, which would require dredging of the IHNC not currently required to facilitate unimpeded navigational access through the IHNC. It is our position that draft IER #11, Tier 2 must contain analyses of the reasonably foreseeable effects of the proposed location and alternatives such as those described above, without which the document fails to comply with the procedural requirements of NEPA.

Furthermore, on behalf of their respective businesses, employees, and clientele, Seabrook Marine and Trinity Yachts request a public meeting, in accordance with Section 1.0 of draft IER #11-Tier 2, to discuss and have addressed in a public forum our serious concerns regarding the adequacy of the analysis contained in draft IER #11 – Tier 2, as well as the comments submitted by others in response to draft IER #11- Tier 2, including, the comments made at the public meeting, held on December 3, 2009 (which was to discuss draft IER #11, Tier 2, although the draft IER had not yet been released), and all prior meetings held by the Corps to discuss this component of the Corps' overall flood protection project. We also request that you address the comments presented to the Coastal Protection and Restoration Authority meeting,

(CPRA) which Corps officials attended on December 9, 2009, made on behalf of Trinity Yachts, Seabrook Marine, and others, including the Port of New Orleans, who raised concerns over the effects of this project on the businesses within the IJNC, their employees, and the local economy as a whole, which will be adversely affected by this project, but who have not received a detailed statement of how this project will affect them.

In support of the general concerns listed above regarding the adequacy of the analysis contained in draft IER #11, Tier 2, Seabrook Marine and Trinity Yachts provide the following specific comments to the draft:

1.) 3.3 Socioeconomic Resources.

Draft IER # 11 – Tier 2 (page 160), acknowledges that “Seabrook Marine would be severely impacted,” but a more accurate description of the impact on Seabrook Marine is that it will be forced to close and will go out of business due to the closure of access to Lake Pontchartrain while the Seabrook Gate is being constructed. There is no realistic expectation that the customer base of Seabrook Marine could be replaced and rebuilt after marina tenants are forced to relocate to other facilities in the area. Furthermore, Section 3.3 fails to provide any discussion of potential or planned mitigation to assist Seabrook Marine, Trinity Yachts, the tenants of the Port of New Orleans, or the Port of New Orleans itself, nor does the draft IER discuss the economic impacts, including loss of jobs and loss to the area economy, which would occur from the immediate closure during construction and the diminution of usage and traffic on the IJNC after construction of the Seabrook Gate is completed. In fact, the Corps clarified that the “mitigation” referenced in Section 7.0 (page 200), is limited only to wetlands mitigation, and does not address the socioeconomic impacts of the proposed action or its alternatives. In order for draft to be accurate, it must state that “The preferred alternative will cause the closure of Seabrook Marine and the loss of 45-50 jobs employed by this entity. It will have drastic, detrimental economic impacts on Seabrook Marine, Trinity Yachts, the tenants of the Port of New Orleans within the IJNC, and the Port of New Orleans itself.”

2.) 1.6 Data Gaps and Uncertainty.

Draft IER # 11- Tier 2 (page 7), states that “This environmental impact analysis is based on preliminary designs and best professional judgment by the technical experts regarding the proposed actions and alternatives.” This acknowledgment by the Corps that it will proceed with construction of this major project based on preliminary analysis and estimates, and without sufficient basis to justify the assumptions and conclusions contained in the draft IER is cause for alarm and disconcerting to those individuals and entities who will be directly and disproportionately affected by this project.

Draft IER #11- Tier 2 (page 8), raises the issue of "unfavorable navigational conditions" described as "'normal conditions'...not classified as a tropical event. A preliminary number for the frequency of these unfavorable conditions was estimated to be in the order of 10 times per year. These unfavorable conditions could be mitigated by closure of the Seabrook gate which is amongst others, an option that is being studied...Criteria for closing the Seabrook Gate Complex are still being analyzed and final details will be described in a future Water Control Plan." Draft IER #11-Tier 2 (page 9) goes on to state that "Once again, exact details on frequency of such events and duration are currently being established."

We express concern over the basis for the estimated number of unfavorable navigational conditions not related to tropical events that will cause the Seabrook gate to be closed, and further express our concern over the fact that no criteria or final details for the closing of the Seabrook Gate Complex are contained in draft IER #11 - Tier 2. The draft IER is deficient and fails to provide sufficient information regarding the criteria for closure or the number of occurrences in which closures might occur. As a result, neither the Corps nor the public can ascertain what effects this will have on the IHNC and individuals and businesses affected who are dependent upon navigation through the IHNC, which without this project would remain unimpeded.

Draft IER #11 - Tier 2 (page 9) also estimates, from the "historical record," that "the frequency of closure for storm surge would be in the order of once per year, but does not provide specifics or even possible criteria of what triggers within the "Water Control Plan" would require closure from storm events or unfavorable navigation conditions. In fact, draft IER #11 - Tier 2 acknowledges this deficiency in the following statement on page 9:

"In order to determine the operating conditions of the Seabrook barrier, a study will be performed by USACE in which the ADAPT model will be run to simulate hydraulic conditions throughout the IHNC system (in its final configuration) for the period of a year. Based upon current velocity exceedance curves the percentage of time that flow thresholds are exceeded would be determined...Closure criteria and system constraints will be documented in the Water Control Plan, which will be finished once the structures go into operation and are turned over to the local sponsor."

Postponing the planned study, and failing to conduct the appropriate analysis or to establish the triggers, or even a range of triggers for closure of the gates until after they are completed and their operation is turned over to the local sponsor, constitute an improper "segmentation" of the project's reasonably foreseeable impacts under NEPA regulations. NEPA requires that agencies and the public be informed of the Water Control Plan, and the triggers for closure related to both storm events and non-storm

"high flow events" affecting navigation, before a final decision is made on the location of the Seabrook gate structure.

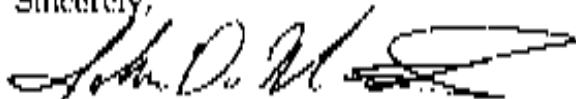
3.) 2.3 Proposed Action.

Draft IER # 11 – Tier 2 (page 13), states the following: "The USACE carefully reviewed the option to provide a navigable 'bypass' through the cofferdam structure, but determined that regardless of the construction sequence, a bypass would be infeasible due to the potential for high flow rates, which raised public safety concerns associated with navigating directly through an active construction area in a high current situation." This conclusive statement is without basis or rationale in the draft IER, and dismisses a potential mitigation measure which would greatly minimize the effects on the businesses and tenants of the Port of New Orleans located within the IHNC. Seabrook Marine will not survive the prolonged closure of access to the gate while construction of the gate proceeds via the cofferdam. Allowing access via a bypass would protect Seabrook Marine, and to a lesser extent, Trinity Yachts from the avoidable consequences of construction of the cofferdam at the location of the proposed action.

Draft IER # 11 – Tier 2 (page 19), again acknowledges the incomplete nature of the draft IER, by stating that "Specific conditions (i.e., high velocities through the navigable gate on the GIWW) could arise that would require the Seabrook floodgates to be closed at times other than during a storm event...up to approximately 10 times a year to help control/reduce velocities through the gates on the GIWW. However, the operational scenario will be determined at a later date in cooperation with the local sponsor, as described in Section 1.6." As highlighted in prior comments, the NEPA document must provide sufficient information to the public of the impacts and consequences of the effects of the gate, including the frequency of the closures. Without this information, neither the agency nor the public can be properly informed of the impacts of the project, and the draft IER fails to meet the requirements of NEPA and its implementing regulations.

Draft IER # 11 – Tier 2 (page 21), estimates that "Construction activities (for the proposed action) would be expected to last for approximately 36 months," but the document contains no explanation or justification for this estimated schedule of construction. The duration of the closure of access to the IHNC from Lake Pontchartrain while construction takes place is a major component of the project analysis affecting all tenants of the Port of New Orleans located in the protected area of the IHNC.

Conclusion


In order to comply with NEPA, Federal agencies are required to provide detailed statements of major Federal actions significantly affecting the human environment. While recognizing the importance of the hurricane protection plan to the City of New Orleans and the State as a whole, we nevertheless recognize the government's obligation to properly document the significant impacts of a federal project such that both the agency taking the action and the public will have sufficient information to understand the effects on the environment.

Draft IER #11 - Tier 2, by its very terms, admits of numerous assumptions, estimates, and conclusions without sufficient basis for the public, much less the Corps, to make an informed decision of the impacts of the project. Without understanding or adequately describing the full effects of the project, the Corps cannot properly assess the impacts of the proposed action or alternatives, and does not consider mitigation which might minimize the effects on the environment. Accordingly, Seabrook Marine and Trinity Yachts hereby request that draft IER #11 - Tier 2 be revised to include the full extent of impacts of closure during construction, including a reasonable basis for the construction schedule, that the draft be further revised to include and discuss the Water Control Plan which will govern the triggers and frequency of closures of the gates accessing the IHNC, and that the draft include sufficient analysis concerning the silt conditions following gate construction and operation and the necessity to conduct dredging operations in the future to allow the unimpeded access of navigation through the IHNC.

Seabrook Marine and Trinity Yachts submit these comments for review and request a written response by the Corps, and further request that a public meeting be held to address all comments received in response to draft IER #11 - Tier 2. Furthermore, Seabrook Marine and Trinity Yachts request that these comments be deemed substantive in nature and that an Addendum to this IER be prepared and published for an additional 30 day comment period. In the alternative, we request that the comment period be expanded by an additional 30 days, if for no other reason than to allow greater participation from the public in the process, since a large portion of the original 30-day comment period spanned across the Christmas and New Year's holidays limiting the availability of some public officials, and also limiting the participation of some individuals who wished to comment, but were unable to do so.

In closing, Seabrook Marine and Trinity Yachts wish to again express their support on the record for the selection of Alternative #5 or any construction on the Lake side of the Seabrook Bridge, should the Corps choose to finalize the draft IER and proceed without correcting the procedural deficiencies referenced herein.

Sincerely,

J. DANIEL MIRANDA

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P. O. BOX 60267
NEW ORLEANS, LOUISIANA 70160-0267

REPLY TO
ATTENTION OF

Regional Planning and
Environmental Division, South
New Orleans Environmental Branch

John Miranda
Kinney & Ellinghausen
1250 Poydras Street, Suite 2450
New Orleans, Louisiana 70113-1806

Re: Draft Individual Environmental Report (IER) #11 Tier 2 Pontchartrain Comment Letter

Dear Mr. Miranda:

Thank you for your correspondence of January 6, 2010 providing comments on behalf of the Seabrook Marine, LLC (“Seabrook Marine”) and Trinity Yachts, LLC (“Trinity Yachts”), to our December 2009 draft Individual Environmental Report (IER) for IER #11-Tier 2 Pontchartrain, Improved Protection on the Inner Harbor Navigation Canal.

The Commander considered the information provided in the IER document as well as those comments received from the public and from interested agencies. Colonel Lee made his decision based upon what is in the best interest of the people of southeastern Louisiana. The human environmental impacts were considered along with traditional engineering criteria that include risk and reliability, constructability, construction schedule, operation and maintenance, and cost. Public safety is the primary consideration for the Hurricane Storm Damage Risk Reduction System.

After a careful consideration of your comments, we are providing the following responses.

Comment #1: IER fails to examine the impacts to the businesses and operations within the IHNC during and after construction of the Seabrook gate complex.

Response: Impacts to businesses and operations are discussed in Section 3.3, Socioeconomic Resources, including specific discussions for each primary business potentially impacted. Interviews were conducted with the business owners to assist in the assessment of potential temporary and long-term impacts. The IER recognizes that impacts would result from closure of the IHNC during construction activities. As recommended by U.S. Coast Guard during personal interviews regarding socioeconomic impacts of this project, discussed in Section 1.5 Public Concerns, and as stated in Section 2.3, “[t]he USACE carefully reviewed the option to provide a navigable ‘bypass’ through the cofferdam structure, but determined that

regardless of the construction sequence, a bypass would be infeasible due to the potential for high flow rates, which raised public safety concerns associated with navigating directly through an active construction area in a high current situation.” It is recognized and documented in the IER (Section 3.3, Socioeconomics) that “Seabrook Marine would be severely impacted under the proposed action during construction due to the disruption of navigation through Seabrook pass”. Some of the impact could be offset by boaters using an alternate route, such as through the Rigolets. Additionally, it is recognized and documented in Section 3.3, Socioeconomics that “even following construction, the proposed action would have detrimental impacts on Seabrook Marine” due to loss of business from boaters using the dry storage during construction and lag time to rebuild the customer base.

The conclusions included in the IER were based upon interviews with representatives of Seabrook Marine. According to meeting notes, the operators of Seabrook Marine would face significant adverse impacts under Alternative 1. The severe disruption to a significant portion of the operations of Seabrook Marine resulting from the construction of Alternative 1 was accurately conveyed in the IER as a product from the interviews. In response to your comments, the text in the Final IER was revised to include “Impacts could include closure of Seabrook Marine, and the loss of 45-50 jobs.” The meeting notes do not include references to the potential insolvency of Seabrook Marine. Since access to the lake accounts for one-third or less of the revenues for Seabrook Marine, additional supporting financial information would need to be shared and analyzed to support a conclusion that Seabrook Marine would permanently discontinue operations at the current location.

Numerous interviews with operators near the proposed construction site were conducted as part of the IER. The nature and scope of these operations, including the number of employees, when available, were described. The severity of the impacts anticipated by these operators was specifically identified in the IER, as described during these interviews, supported by the notes taken for record. Severe impacts were anticipated for those operators for whom business operators significantly depended upon access to Lake Pontchartrain from the IHNC. According to the interview notes, temporary or permanent shut-down of operations were not specifically communicated by tenants. However, the conclusion that impacts would be severe does cover both of these contingencies.

Comment #2: Seabrook Marine and Trinity Yachts strongly advocate selection of Alternative #5 for location of gate.

Response: As indicated in the IER in Section 5.0, Selection Rationale, “the USACE established the Alternative Evaluation Process (AEP), a logical, systematic process for recommending a proposed action alternative”, and “the proposed action (alternative #1) was selected to balance the necessity for better reduction of risk to life and property from hurricane and storm related flooding with engineering costs, feasibility, practicality, and impacts to the human and natural environment”.

Section 5.0, Selection Rationale also includes additional summary comparisons between each alternative.

Comment #3: Concern that the IER does not contain sufficient information to inform the public or agencies of the potential socioeconomic impacts from the proposed action.

Response: Given the current uncertainties with respect to the duration and seasonal timing of construction-related closure of Lake Pontchartrain to the IHNC, the IER has disclosed in sufficient detail the scale of severe and adverse socioeconomic impacts to individual local operators, as required by NEPA. The decision to conduct interviews with individual operators that are expected to be directly affected reflects the commitment to identifying and disclosing specific impacts to tenants rather than to generalize about them as an industry within the IHNC corridor. Impacts that are specific to each operator were included in the IER which represents a level of detail that is greater than presented in most environmental compliance documents.

Comment #4: Document fails to provide analysis or process concerning the number and frequency of gate closures due to storm events and non-storm related navigational condition closures (this topic was mentioned multiple times in comment letter).

Response: Anticipated gate closures due to storm and non-storm event closures are discussed in Section 1.6, Data Gaps and Uncertainty, including “Approximate Frequency and Duration of Gate Closure Events” presented in Table 2. The Water Control Plan will include the parameters and logistics for closure, but will not designate specifically how many times per year the gate would be closed. As documented in the Final IER, a reasonable, conservative estimate for non-storm related closures of 10 times per year was used for analyses purposes. The impacts of these closures to relevant resources are discussed throughout the IER, particularly in Section 3.0, Affected Environment and Environmental Consequences, and Section 4.0 Cumulative Impacts. If the Water Control Plan provides closure triggers that differ significantly from those predicted in this section, a Supplemental IER would be developed to disclose the impacts of any greater frequency or duration of closure.

Comment #5: No data or discussion regarding silt buildup in the IHNC.

Response: Silt built up in the IHNC has not been considered as a significant impact resulting from the construction of the barriers which will be the new perimeter of the IHNC basin. The base for this assumption lies in the low record of maintenance dredging activities within the IHNC and GIWW area despite the favorable hydrodynamic conditions. Parts of the channels were (prior to construction of the La Loutre rock closure or any of the barriers) characterized by very low current velocities (see Tate *et al.* 2009). Examples are the southern part of the IHNC, the part of the GIWW between the Michoud Canal and the confluence with the MRGO and the Michoud Canal itself.

Only 2 maintenance dredging events were conducted within the IHNC / GIWW area bounded by the IHNC Lock, Seabrook, and the IHNC surge barrier east of the Michoud Canal from the late-1940's to the present. Both events were in the southern part of the IHNC, between the confluence with the GIWW and the IHNC lock. Note that in the vicinity of the IHNC basin periodic maintenance was required no closer than 6 miles east of the Michoud Canal out towards the Rigolets. The most recent event was in May-June 2007, in which the CEMVN removed approximately 21,000 cubic yards of dredged material from the IHNC Lock tailbay between the Claiborne and Florida Ave bridges. The shoaling was attributed to Hurricane Katrina surge. The event prior to the latest was in June-August 1975, in which the Dock Board removed approximately 584,000 cubic yards of shoal material from the IHNC Lock tailbay.

Two other facts further underline the low maintenance requirements of the channels of the IHNC/GIWW. First of all, the River and Harbor Act of 24 July 1946 authorized construction of the GIWW between Lake Borgne and New Orleans via a land cut through the marsh (section of the GIWW that runs from the IHNC east towards Michoud); and an alternate route through the Rigolets and Lake Pontchartrain to the IHNC (old GIWW route from the IHNC north to Seabrook). There are no recorded maintenance events along either route since their initial construction, or since the MRGO was constructed between 1959 and 1968. Secondly project completion reports from periodic Michoud Canal maintenance events (every 10 to 12 years) indicated that shoal material was present in the canal and not the GIWW. In fact, material from the canal was placed in deep areas of the GIWW.

It is recognized that with the proposed project(s) in place the hydrodynamics of the IHNC/GIWW will change substantially (see Tate *et al.* 2009). However the likelihood of significant sediment deposition which would impede navigation due to the proposed action(s) is assumed to be small. As indicated above, maintenance dredging was sporadic for the stretches in IHNC and GIWW which are characterized by low tidal current action and thus very favorable for sediment deposition. Hence it is assumed that silt build up will be small in the changed hydrodynamic situation after the construction of the barriers.

Comment #6: Request a public meeting be held to discuss concerns, written comments be provided, and an additional 30-day review period for Draft IER.

Response: A public meeting was held to discuss comments received on the Draft IER January 27, 2010. USACE has prepared written response letters to each entity that submitted comments on the Draft IER, and all response letters are included in the Final IER. An additional 30-day public review for the draft IER is not warranted, as comment letters were received by public and private stakeholders that have been engaged in the development of this IER and the comment period was extended through the date of the requested additional public meeting.

Comment #7: Seabrook Marine would be forced to close and would go out of business due to the closure of access to Lake Pontchartrain during construction.

Response: As described under *Response to Comment #1* above, impacts to businesses and operations are discussed in Section 3.3, Socioeconomic Resources, including specific discussions for each primary business potentially impacted. Interviews were conducted with the business owners to assist in the assessment of potential temporary and long-term impacts.

Comment #8: No discussion of potential or planned mitigation to assist businesses within the IHNC.

Response: Any impacts, such as lost revenues and business, to Port properties or tenants located outside of the Right of Way are considered the result of a temporary inconvenience. The Corps does not have the authority or appropriations to compensate for these types of impacts.

Comment #9: Concern that project will proceed based on preliminary analyses and estimates, and without sufficient basis to justify assumptions and conclusions contained in the IER.

Response: One of the fundamental provisions of NEPA is that the alternatives analyses and environmental consequences analyses be documented and presented to the public and decision-maker before a decision is made. Final engineering design and associated details will be developed at such a point that the commitment of resources to do the final design is appropriate. As CEQ regulation 1502.24 states, “agencies shall insure the professional integrity, including scientific integrity, of the discussions and analyses in environmental impact statements.” Section 1.6 indicates that best professional judgment by technical experts was used and is sufficient to meet the requirements of NEPA.

Comment #10: Postponing the planned Water Control Plan and failing to conduct an appropriate analysis of potential closures constitute segmentation under NEPA.

Response: While NEPA prohibits “segmentation” of a large Federal project into segments to avoid full disclosure of adverse environmental and/or social impacts, there was no segmentation of project details or project impacts under this IER. As described under *Response to Comment #4* above, anticipated gate closures due to storm and non-storm event closures are discussed in Section 1.6 including “Approximate Frequency and Duration of Gate Closure Events” presented in Table 2. The Water Control Plan will include the parameters and logistics for closure, but will not designate specifically how many times per year the gate would be closed. As documented in the Final IER, a reasonable, conservative estimate for non-storm related closures of 10 times per year was used for analyses purposes. The impacts of these closures to relevant resources are discussed throughout the IER, particularly in Section 3.0, Affected Environment and Environmental

Consequences, and Section 4.0 Cumulative Impacts. If the Water Control Plan provides closure triggers that differ significantly from those predicted in this section, a Supplemental IER would be developed to disclose the impacts of any greater frequency or duration of closure.

Comment #11: The conclusion that a navigable bypass through the cofferdam structure would be infeasible is without basis or rationale in the IER.

Response: USACE discussed the potential of keeping the channel partially open during construction with the U.S. Coast Guard, and the Coast Guard expressed concern about hazard to navigation during construction. As discussed in Section 1.5, Public Concerns, the U.S. Coast Guard (USCG) commented on the existing hazardous conditions in the mouth of the IHNC during tidal fluctuations. The U.S. Coast Guard did not believe it would be prudent to allow any navigational access around the construction site, at least while the coffer dam is in place. The tidal flux around the coffer dam would create eddies and currents that would create a low pressure condition against the wall of the coffer dam opposite the flow direction. This pocket of low pressure would tend to pull a vessel into it and hold it in place against the back side of the coffer dam. Swirling currents would then tend to roll the vessel on its side. For these reasons, the Coast Guard would require full physical closure of the pass during construction, at least for the duration of the coffer dam emplacement because of the hazard to navigation.

Comment #12: Document does not include justification for projected 36-month schedule.

Response: The Technical Letter Report (TLR) for Engineering Alternatives to Provide Seabrook Gate Velocity Mitigation prepared for USACE was used as a basis to provide the estimated construction duration for the proposed action. This report is part of the Administrative Record for this project. The schedule is based on a work week of six 10-hour days, and weather days were accounted for in the construction schedule based on local averages. The TLR provided an estimate of 26.5 months, but indicated that the construction schedule would be further refined by the project design team in cooperation with the contractor. Based on this refinement, an estimate of 36 months was determined to be more reasonable and was used for analyses purposes in the IER.

Again, we would like to thank you for your comments and for taking the time to participate in the IER #11 Tier 2 Pontchartrain public review process. Should you have additional questions please contact Ms. Laura Lee Wilkinson at (504) 862-1212 or at laura.l.wilkinson@usace.army.mil.

Sincerely,

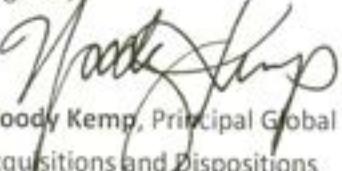
Joan M. Egnatios
Joan M. Egnatios
Chief, New Orleans
Environmental Branch

HALLIBURTON

REAL ESTATE SERVICES • 10200 Bellaire Boulevard • Houston, TX 77072-5206

Lionel A. Zapata, P.E.
Sr. Project Manager
USACE HPO/IHNC

Ref: IER 11 Tier 2 Pontchartrain Report


Mr. Zapatta,

Halliburton's present Baroid Grinding Plant at 8000 Jourdan Road, New Orleans, Louisiana has been in operation for more than 50 years. Regardless of that fact we understand the need for this project and are in full support of improved flood protection for the local community and for the people of New Orleans.

As a publicly held company, Halliburton has an obligation to its customers, employees and share holders to make decisions which will insure that we can provide the most reliable service possible. We have evaluated all of the information available at this time from the Corps of Engineers and from the recently published IER 11 Tier 2 Pontchartrain Report. Based on all of this information we feel that Halliburton's only alternative is to relocate its present operation from the existing Port of New Orleans leased property. The upcoming construction and/or operation of the flood gate system appears very likely to cause disruption to Halliburton's operations and services at the existing site, and unfortunately Halliburton cannot accept such a risk to its critical operations. Exiting the current site is the only way Halliburton can be sure that it will have the continued ability to serve its customers and meet its contractual obligations. Our timing for vacating the site will be based on the progress of this project and our ability to make an alternative site available and operational.

We would hope that the Corps understands our decision and we ask that you keep us informed of the on going progress of this project and how we might apply for compensation to offset the cost incurred due to the untimely loss of this location to our company.

Regards,

Woody Kemp, Principal Global Manager
Acquisitions and Dispositions
Real Estate Services
Halliburton Energy Services, Inc.

Cc: Clay Miller

Cc: Joan Exnicous

REPLY TO
ATTENTION OF

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P. O. BOX 60267
NEW ORLEANS, LOUISIANA 70160-0267

Regional Planning and
Environmental Division, South
New Orleans Environmental Branch

Woody Kemp, Principal Global Manager
Acquisitions and Dispositions
Real Estate Services
Halliburton Energy Services, Inc.
10200 Bellaire Blvd
Houston, TX 77072-5206

Re: Draft Individual Environmental Report (IER) #11 Tier 2 Pontchartrain Comment Letter

Dear Mr. Kemp:

This letter is in response to your letter on behalf of Halliburton's Baroid Grinding Plant and received during the IER #11 Tier 2 Pontchartrain public review process. The US Army Corps of Engineers, New Orleans District (CEMVN), would like to thank you for your participation in the IER #11 Tier 2 Pontchartrain public review process.

The Commander considered the information provided in the IER document as well as those comments received from the public and from interested agencies. Colonel Lee made his decision based upon what is in the best interest of the people of southeastern Louisiana. The human environmental impacts were considered along with traditional engineering criteria that include risk and reliability, constructability, construction schedule, operation and maintenance, and cost. Public safety is the primary consideration for the Hurricane Storm Damage Risk Reduction System.

Again, we would like to thank you for your comments and for taking the time to participate in the IER #11 Tier 2 Pontchartrain public review process. Should you have additional questions please contact Ms. Laura Lee Wilkinson at (504) 862-1212 or at laura.l.wilkinson@usace.army.mil.

Sincerely,

Joan M. Exnicios
Chief, New Orleans
Environmental Branch

THIS PAGE WAS INTENTIONALLY LEFT BLANK

APPENDIX D

MEMBERS OF INTERAGENCY ENVIRONMENTAL TEAM

Kyle Balkum	Louisiana Dept. of Wildlife and Fisheries
Brian Marcks	Louisiana Department of Natural Resources
Catherine Breaux	U.S. Fish and Wildlife Service
David Castellanos	U.S. Fish and Wildlife Service
Frank Cole	Louisiana Department of Natural Resources
John Ettinger	U.S. Environmental Protection Agency
Jeff Harris	Louisiana Department of Natural Resources
Richard Hartman	NOAA National Marine Fisheries Service
Christina Hunnicutt	U.S. Geological Survey
Barbara Keeler	U.S. Environmental Protection Agency
Kirk Kilgen	Louisiana Department of Natural Resources
Tim Killeen	Louisiana Department of Natural Resources
Brian Lezina	Louisiana Department of Wildlife and Fisheries
David Muth	U.S. National Park Service
Jamie Phillippe	Louisiana Department of Environmental Quality
Manuel Ruiz	Louisiana Department of Wildlife and Fisheries
Reneé Sanders	Louisiana Department of Natural Resources
Angela Trahan	U.S. Fish and Wildlife Service
David Walther	U.S. Fish and Wildlife Service
Patrick Williams	NOAA National Marine Fisheries Service

THIS PAGE WAS INTENTIONALLY LEFT BLANK

APPENDIX E
INTERAGENCY CORRESPONDENCE

United States Department of the Interior

FISH AND WILDLIFE SERVICE

646 Cajundome Blvd.

Suite 400

Lafayette, Louisiana 70506

January 30, 2007

Colonel Michael McCormick
Hurricane Protection Office (HPO)
U.S. Army Corps of Engineers
Post Office Box 60267
New Orleans, Louisiana 70160-0267

RECEIVED BY
USACE CEMVN
2 FEBRUARY 2009

Dear Colonel McCormick:

Please reference the December 31, 2008, letter from Mr. Gib Owen, Acting Chief of the Environmental Planning and Compliance Branch, requesting our concurrence with determinations regarding impacts to threatened or endangered species and their critical habitat made by U.S. Army Corps of Engineers' (Corps) for work proposed in Individual Environmental Reports (IER) 5-11 in Orleans, Jefferson, and St. Bernard Parishes. Those projects would involve improvements to levees, floodwalls, floodgates, and construction of new barriers, closure structures, navigable gates and/or permanent pump stations in the New Orleans East Bank, New Orleans East and Chalmette Loop sub basins. These improvements are necessary to provide 100-year level flood protection for the New Orleans Metropolitan area. The U.S. Fish and Wildlife Service (Service) has reviewed the information provided, and offers the following comments in accordance with the Endangered Species Act (ESA) of 1973 (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.), Bald and Golden Eagle Protection Act (BGEPA) (54 Stat. 250, as amended, 16 U.S.C. 668a-d), Migratory Bird Treaty Act (MBTA) (40 Stat. 755, as amended; 16 U.S.C. 703 et seq.), and the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661 et seq.).

The projects included in IERs 5-11 span a large geographic area and have unique components, but the number of potentially impacted threatened or endangered species is small; therefore, the IERs will be grouped according to potentially affected species.

Federally listed as an endangered species, West Indian manatees (*Trichechus manatus*) occasionally enter Lakes Pontchartrain and Maurepas, and associated coastal waters and streams during the summer months (i.e., June through September). Manatee occurrences appear to be increasing, and they have been regularly reported in the Amite, Blind, Tchefuncte, and Tickfaw Rivers, and in canals within the adjacent coastal marshes of Louisiana. They have also been occasionally observed elsewhere along the Louisiana Gulf coast. The manatee has declined in numbers due to collisions with boats and barges, entrapment in flood control structures, poaching, habitat loss, and pollution. Cold weather and outbreaks of red tide may also adversely affect these animals.

Some or all of the proposed project features, including alternatives, of IERs 5, 6, 7, 8, and 11 (especially the dredging of access channels for IERs 6 and 7), could potentially impact the

manatee. The Corps has incorporated the following protective measures into its construction contracts; therefore, the Service concurs with your determination that construction of the proposed project features is not likely to adversely affect the manatee.

All contract personnel associated with the project should be informed of the potential presence of manatees and the need to avoid collisions with manatees, which are protected under the Marine Mammal Protection Act of 1972 and the Endangered Species Act of 1973. All construction personnel are responsible for observing water-related activities for the presence of manatee(s). Temporary signs should be posted prior to and during all construction/dredging activities to remind personnel to be observant for manatees during active construction/dredging operations or within vessel movement zones (i.e., work area), and at least one sign should be placed where it is visible to the vessel operator. Siltation barriers, if used, should be made of material in which manatees could not become entangled, and should be properly secured and monitored. If a manatee is sighted within 100 yards of the active work zone, special operating conditions should be implemented, including: no operation of moving equipment within 50 feet of a manatee; all vessels should operate at no wake/idle speeds within 100 yards of the work area; and siltation barriers, if used, should be re-secured and monitored. Once the manatee has left the 100-yard buffer zone around the work area on its own accord, special operating conditions are no longer necessary, but careful observations would be resumed. Any manatee sighting should be immediately reported to the Service's Lafayette, Louisiana Field Office (337/291-3100) and the Louisiana Department of Wildlife and Fisheries, Natural Heritage Program (225/765-2821).

The Gulf sturgeon (*Acipenser oxyrinchus desotoi*), federally listed as a threatened species, is an anadromous fish that occurs in many rivers, streams, and estuarine waters along the northern Gulf coast between the Mississippi River and the Suwanee River, Florida. In Louisiana, Gulf sturgeon have been reported at Rigolets Pass, rivers and lakes of the Lake Pontchartrain basin, and adjacent estuarine areas. Spawning occurs in coastal rivers between late winter and early spring (i.e., March to May). Adults and sub-adults may be found in those rivers and streams until November, and in estuarine or marine waters during the remainder of the year. Sturgeon less than two years old appear to remain in riverine habitats and estuarine areas throughout the year, rather than migrate to marine waters. Habitat alterations such as those caused by water control structures that limit and prevent spawning, poor water quality, and over-fishing have negatively affected this species.

On March 19, 2003, the Service and the National Marine Fisheries Service (NMFS) published a final rule in the Federal Register (Volume 68, No. 53) designating critical habitat for the Gulf sturgeon in Louisiana, Mississippi, Alabama, and Florida. Portions of the Pearl and Bogue Chitto Rivers, Lake Pontchartrain east of the Lake Pontchartrain Causeway, all of Little Lake, The Rigolets, Lake St. Catherine, and Lake Borgne within Louisiana were included in that designation. The primary constituent elements essential for the conservation of Gulf sturgeon are those habitat components that support feeding, resting, sheltering, reproduction, migration, and physical features necessary for maintaining the natural processes that support those habitat components.

In that critical habitat designation, responsibility for consultation with specific Federal agencies was also identified for the Service and for the NMFS. For estuarine and marine waters in disturbance. The Service concurs that construction of the proposed project features is not likely to adversely affect the brown pelican.

Louisiana, the NMFS is responsible for consultations regarding impacts to the sturgeon and its critical habitat with all Federal agencies, except the Department of Transportation, the Environmental Protection Agency, the U.S. Coast Guard, and the Federal Emergency Management Agency, which consult with the Service. Therefore, please contact Dr. Stephania Bolden (727/824-5312) in St. Petersburg, Florida, for information concerning that species and its critical habitat. Should the proposed project directly or indirectly affect the Gulf sturgeon or its critical habitat in Louisiana, further consultation with that office will be necessary.

The project-area forested wetlands may provide nesting habitat for the bald eagle (*Haliaeetus leucocephalus*), which has officially been removed from the List of Endangered and Threatened Species as of August 8, 2007, however the bald eagle continues to be protected under the MBTA and the BGEPA. Bald eagles nest in Louisiana from October through mid-May. Eagles typically nest in mature trees (e.g., bald cypress, sycamore, willow, etc.) near fresh to intermediate marshes or open water in the southeastern parishes. Major threats to this species include habitat alteration, human disturbance, and environmental contaminants.

The Service developed the National Bald Eagle Management (NBEM) Guidelines to provide landowners, land managers, and others with information and recommendations regarding how to minimize potential project impacts to bald eagles, particularly where such impacts may constitute "disturbance," which is prohibited by the BGEPA. A copy of the NBEM Guidelines is available at:

<http://www.fws.gov/migratorybirds/issues/BaldEagle/NationalBaldEagleManagementGuidelines.pdf>. Those guidelines recommend: (1) maintaining a specified distance between the activity and the nest (buffer area); (2) maintaining natural areas (preferably forested) between the activity and nest trees (landscape buffers); and (3) avoiding certain activities during the breeding season. On-site personnel should be informed of the possible presence of nesting bald eagles within the project boundary, and should identify, avoid, and immediately report any such nests to this office. The construction of the proposed project features for IER 10, Reach LPV 148, may potentially impact the bald eagle. If the Corps determines that construction activities will be located at or closer than 660 feet from a nest tree, the Service recommends that the Corps conduct an on-line evaluation at: <http://www.fws.gov/southeast/es/baldeagle>. Following completion of the evaluation, that website will provide a determination of whether additional consultation is necessary. A copy of that determination should be provided to this office. The Division of Migratory Birds for the Southeast Region of the Service (phone: 404/679-7051, e-mail: SEmigratorybirds@fws.gov) has the lead role in conducting such consultations. Should you need further assistance interpreting the guidelines or performing an on-line project evaluation, please contact our office.

Federally listed as an endangered species, brown pelicans (*Pelecanus occidentalis*) are not currently known to nest in the project vicinity. Brown pelicans feed along the Louisiana coast in shallow estuarine waters, using sand spits and offshore sand bars as rest and roost areas. Major threats to this species include chemical pollutants, colony site erosion, disease, and human disturbance. The Service concurs that construction of the proposed project features is not likely to adversely affect the brown pelican.

IERS 6, 7, 8, 9, and 10 are located where colonial nesting waterbirds may be present. LDWF currently maintains a database of these colonies locations. That database is updated primarily by monitoring the colony sites that were previously surveyed during the 1980s. Until a new, comprehensive coast-wide survey is conducted to determine the location of newly-established nesting colonies, we recommend that a qualified biologist inspect the proposed work sites for the presence of undocumented nesting colonies during the nesting season (e.g. February through September depending on the species). If colonies exist, work should not be conducted within 1,000 feet of the colony during the nesting season.

Portions of IER 6 and 7 are located within or may require access through the Service's Bayou Sauvage National Wildlife Refuge. The National Wildlife Refuge System Improvement Act of 1997 authorized that no new or expanded use of a refuge may be allowed unless it is first determined to be compatible. A compatibility determination is a written determination signed and dated by the Refuge Manager and Regional Refuge Chief, signifying that a proposed or existing use of a national wildlife refuge is a compatible use or is not a compatible use. A compatible use is defined as a proposed or existing wildlife-dependent recreational use or any other use of a national wildlife refuge that, based on sound professional judgment, will not materially interfere with or detract from the fulfillment of the National Wildlife Refuge System mission or the purposes of the national wildlife refuge. A compatibility determination is only required when the Service has jurisdiction over the use. For example, proposed uses that deal exclusively with air space, navigable waters or overly refuges where another Federal agency has primary jurisdiction over the area, would not be subject to compatibility.

Federal agencies proposing a project that includes features on a national wildlife refuge are encouraged to contact the Refuge Manager early in the planning process. The Refuge Manager will work with the project proponent to determine if the proposed project constitutes a "refuge use" subject to a compatibility determination. If the proposed project requires a compatibility determination, a concise description of the project (refuge use) including who, what, where, when, how, and why will be needed to prepare the compatibility determination. In order to determine the anticipated impacts of use, the project proponent may be required to provide sufficient data and information sources to document any short-term, long-term, direct, indirect or cumulative impacts on refuge resources. Compatibility determinations will include a public review and comment before issuing a final determination.

All construction or maintenance activities (e.g., surveys, land clearing, etc.) on a National Wildlife Refuge (NWR) will require the Corps to obtain a Special Use Permit from the Refuge Manager; furthermore, all activities on that NWR must be coordinated with the Refuge Manager. Therefore, we recommend that the Corps request issuance of a Special Use Permit well in advance of conducting any work on the refuge. Please contact Kenneth Litzenberger, Project Leader for the Service's Southeast National Wildlife Refuges and Jack Bohannan Refuge Manager for the Bayou Sauvage National Wildlife Refuge at (985) 822-2000, for further information on compatibility of flood control features, and for assistance in obtaining a Special Use Permit. Close coordination by both the Corps and its contractor must be maintained with the Refuge Manager to ensure that construction and maintenance activities are carried out in accordance with provisions of any Special Use Permit issued by the NWR.

Based on our review, the Service concurs with your determinations that the construction of the proposed project features in IERs 5-11 is not likely to adversely affect the brown pelican, and because of manatee protective measures included in the Corps' construction contracts, the Service also concurs that the construction of the proposed project features in IERs 5-11 is not likely to adversely affect the manatee. The Service recommends that the Corps contact NMFS regarding impacts to the Gulf sturgeon and its critical habitat and implement the above mentioned survey and protection measure to protect colonial nesting birds. The Service is also willing to assist the Corps evaluate the potential impacts to the bald eagle under the NBEM Guidelines.

We appreciate the opportunity to review the proposed 100 Year Hurricane Protection Projects for IERs 5-11. If you need further assistance or have questions regarding this letter, please contact David Walther (337/291-3122) of this office.

Sincerely,

James F. Boggs
Field Supervisor
Louisiana Field Office

cc: NOAA, St. Petersburg, FL
Laura Lee Wilkinson, CEMVN, New Orleans, LA
LDWF, Natural Heritage, Baton Rouge, LA

Choctaw Nation of Oklahoma

P.O. Box 1210 • Durant, OK 74702-1210 • (580) 924-8280

Gregory E. Pyle
Chief

Gary Batton
Assistant Chief

February 19, 2009

Elizabeth Wiggins
Dept. of the Army
New Orleans Dist. Corp of Engineers
P.O. Box 60267
New Orleans, Louisiana 70160-0267

Dear Elizabeth Wiggins:

We have reviewed the following proposed project (s) as to its effect regarding religious and/or cultural significance to historic properties that may be affected by an undertaking of the projects area of potential effect.

Project Description: Inner Harbor Navigation Canal, Report #11-Tier 2

Project Location: Pontchartrain, Orleans and St. Bernard Parishes, Louisiana

Comments: After further review of the above-mentioned project (s), to the best of our knowledge, it will have no adverse effect on any historic properties in the project's area of potential effect. However, should construction expose buried archaeological or building materials such as chipped stone, tools, pottery, bone, historic crockery, glass or metal items, or should it uncover evidence of buried historic building materials such as rock foundations, brick, or hand-poured concrete, this office should be contacted immediately @ 1-800-522-6170 ext. 2137.

Sincerely,

Terry D. Cole
Tribal Historic Preservation Officer
Choctaw Nation of Oklahoma

By: Caren A. Johnson
Caren A. Johnson
Administrative Assistant

CAJ: vr

MITCHELL J. LANDRIEU
LIEUTENANT GOVERNOR

State of Louisiana
OFFICE OF THE LIEUTENANT GOVERNOR
DEPARTMENT OF CULTURE, RECREATION & TOURISM
OFFICE OF CULTURAL DEVELOPMENT
DIVISION OF ARCHAEOLOGY

PAM BREAUX
SECRETARY

SCOTT HUTCHESON
ASSISTANT SECRETARY

February 20, 2009

Ms. Elizabeth Wiggins
Chief, Environmental Planning and Compliance Branch
Department of the Army
New Orleans District, Corps of Engineers
P.O. Box 60267
New Orleans, Louisiana 70160-0276

Re: Management Summary
LA Division of Archaeology Report No. 22-3104-1
Phase I Cultural Resources Survey and Inventory
Performed for Lake Pontchartrain and Vicinity Project
Pontchartrain 2 Portion of Individual Environmental
Report Area 11 (IER#11): Orleans Parish, Louisiana
R. Christopher Goodwin & Associates, Inc.

Dear Ms. Wiggins:

We acknowledge the receipt of your letter dated February 6, 2009, and two copies of the above- referenced draft report. We have completed our review and offer the following comments.

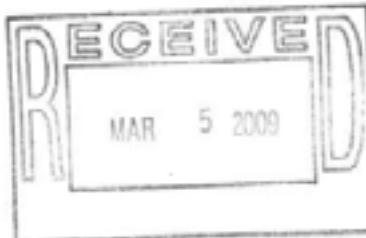
The management summary is well written and concise. We concur, based on the report findings, that the proposed undertaking within Pontchartrain 2 area (IER#11) will have no affect on historic properties.

Please review the enclosed technical comments and photocopied pages with comments/corrections noted. We look forward to receiving two copies of the final report with comments addressed, as appropriate. All site and site update forms will need to be finalized prior to the acceptance of the final report. If you should have any questions, please contact Stacie Palmer in the Division of Archaeology by email at spalmer@crt.state.la.us or by phone at (225) 342-5737.

Sincerely,

Scott Hutchesson
State Historic Preservation Officer

SH:SP:s


Enclosure: as stated

ALABAMA-COUSHATTA TRIBE OF TEXAS

571 State Park Rd 56 • Livingston, Texas 77351 • (936) 563-1100

March 3, 2009

Michael Swanda
U.S. Army Corps of Engineers
New Orleans District
P.O. Box 60267
New Orleans, LA 70160-0267

Dear Mr. Swanda:

On behalf of Chief Oscola Clayton Sylestine and the Alabama-Coushatta Tribe, our appreciation is expressed on your agency's efforts to consult us regarding Tier 2 of Individual Environmental Report #11 for Orleans Parish.

Our Tribe maintains ancestral associations within the state of Louisiana despite the absence of written records to completely identify Tribal activities, villages, trails, or grave sites. It is our objective to ensure any significances of Native American ancestry including the Alabama-Coushatta Tribe are administered with the utmost regard.

Upon review of the February 6, 2009 documents submitted to our Tribe, no impacts to religious, cultural, or historical assets of the Alabama-Coushatta Tribe of Texas should occur in conjunction with this proposal. Furthermore, we have no concerns regarding the Seabrook Railroad Bridge or historical districts within this region. In light of the absence of cultural resources to identify migratory routes utilized by ancestral Tribal members in the area, we concur with the "no adverse affect" recommendation.

In the event of inadvertent discovery of human remains and/or archaeological artifacts, activity in proximity to the location must cease and appropriate authorities, including this office, notified without delay. Should you require additional assistance, please do not hesitate to contact us.

Respectfully submitted,

A handwritten signature in black ink, appearing to read "B.J. Celestine".

Bryant J. Celestine
Historic Preservation Officer

UNITED STATES DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
NATIONAL MARINE FISHERIES SERVICE

Southeast Regional Office
263 13th Avenue South
St. Petersburg, Florida 33701-5505
(727) 824-5312, FAX 824-5309
<http://sero.nmfs.noaa.gov>

AUG 31 2009

F/SER31:KS

Mr. Richard E. Boe
New Orleans District Corps of Engineers
P.O. Box 60267
New Orleans, Louisiana 70160-0267

Re: IERs 3 and 11 Tier 2

Dear Mr. Boe:

This responds to your letter dated June 23, 2009, requesting section 7 consultation pursuant to the Endangered Species Act (ESA) for the Army Corps of Engineers' (COE) Individual Environmental Reports (IER) 3 and 11 Tier 2. The reports evaluate the COE's proposal to upgrade the existing hurricane protection system to protect communities and infrastructure in Orleans Parish, Louisiana, from 100-year level storms. The proposed projects modify previously authorized activities under IERs 3 and 11 Tier 2 by adding additional foreshore protection features along the southern shoreline of Lake Pontchartrain, detour lanes for the Lake Pontchartrain Causeway, and a storm surge protection structure at the Inner Harbor Navigation Canal (IHNC) near New Orleans, Louisiana. You requested concurrence from the National Marine Fisheries Service (NMFS) with your determination the projects are not likely to adversely affect the threatened Gulf sturgeon and its designated critical habitat. NMFS' determinations regarding the effects of the proposed action are based on the description of the action in this and all related consultation documents. You are reminded that any changes to the proposed action may negate the findings of the present and completed consultations and may require reinitiation of consultation with NMFS.

Alternative Arrangements for NEPA and Incremental ESA Analysis

The hurricane protection projects proposed in IERs 3 and 11 Tier 2 are components of the COE's comprehensive plan to upgrade existing structures in the Greater New Orleans Hurricane and Storm Damage Risk Reduction System, which was authorized and funded under Public Law 109-234, Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane Recovery (2006). The 17 projects included in the proposed comprehensive plan will upgrade the existing hurricane protection system, damaged and weakened by Hurricanes Katrina and Rita in 2005, to reduce the threats to communities and infrastructure from 100-year level storms. On March 13, 2007, the COE implemented Alternative Arrangements under the provisions of the Council on Environmental Quality Regulations for Implementing the National Environmental Policy Act (NEPA; 40 CFR 1506.11) to expedite complete environmental

analysis for the proposed comprehensive plan. The Alternative Arrangements allow decisions on individual components of the overall proposed action so that the process can be completed more quickly than under the traditional NEPA process. The COE deemed the Alternative Arrangements necessary to reduce the risk of flooding and to restore public confidence in the hurricane protection system so that economic recovery of the area could proceed. When sufficient information is available from each of the IERs analyzing the proposed individual projects making up the comprehensive plan, the COE will produce a draft Comprehensive Environmental Document (CED). The CED will incorporate the IERs by reference and address the work completed, as well as the remaining work to be completed, on a system-wide scale and include a final mitigation plan. The COE has committed to NMFS that if individual and/or cumulative effects to listed species or designated critical habitat not previously addressed in IERs that have undergone consultation are subsequently identified in the CED, the COE will reinitiate consultation with NMFS.

The Endangered Species Act has been interpreted by courts, including the Supreme Court of the United States, as requiring comprehensive consultation on the entire scope of a proposed project or plan. Incremental consultation on separate stages or phases of a project is allowable only where the project is implemented under statutes that authorize staged decision-making, including staged environmental reviews and the potential for modification or cancellation of subsequent stages.

The regulations implementing the ESA include provisions at 50 CFR 402.14(k) for consulting on projects in incremental steps that are based on the caselaw discussed above. Section 402.14(k) provides that:

Incremental steps. When the action is authorized by a statute that allows the agency to take incremental steps toward the completion of the action, the Service shall, if requested by the Federal agency, issue a biological opinion on the incremental step being considered, including its views on the entire action. Upon the issuance of such a biological opinion, the Federal agency may proceed with or authorize the incremental steps of the action if:

- (1) The biological opinion does not conclude that the incremental step would violate section 7(a)(2);
- (2) The Federal agency continues consultation with respect to the entire action and obtains biological opinions, as required, for each incremental step;
- (3) The Federal agency fulfills its continuing obligation to obtain sufficient data upon which to base the final biological opinion on the entire action;
- (4) The incremental step does not violate section 7(d) of the Act concerning irreversible or irretrievable commitment of resources; and
- (5) There is a reasonable likelihood that the entire action will not violate section 7(a)(2) of the Act.

In accordance with these provisions, the consultation on each incremental step must be in the context of the entire action (i.e., the effects of all previous steps should be considered in the evaluation of the effects of the current step). NMFS has previously completed consultations on

IERs 2, 3, 5, 6, 7, and 11. Therefore, this consultation will consider the effects of those projects in the evaluation of the effects of the currently proposed actions, modified IERs 3 and 11 Tier 2, on listed species and critical habitat under NMFS purview.

Previously Authorized IER Projects

Section 7 consultation was completed on IER 2 on June 6, 2008. The project consists of replacing existing floodwalls with new T-walls, constructing a breakwater, and dredging a channel for equipment access in the western portion of Lake Pontchartrain in Jefferson and St. Charles Parishes, Louisiana. NMFS determined project activities are not likely to adversely affect Gulf sturgeon or listed sea turtles (Kemp's ridley, green, or loggerhead) potentially found in the project area. The project is not located in designated Gulf sturgeon critical habitat and has not yet been constructed.

Consultation for IER 3 was completed on May 28, 2008; consultation on modifications to the project was completed on November 6, 2008. The project, as modified, consists of the construction of a cement breakwater, the addition of rock riprap to existing foreshore protection along the shoreline, and dredging for equipment access in Lake Pontchartrain in Jefferson Parish, Louisiana. NMFS determined project activities are not likely to adversely affect Gulf sturgeon or listed sea turtles (Kemp's ridley, green, or loggerhead) potentially found in the project area. In addition, NMFS determined that IER 3 was not likely to adversely affect designated Gulf sturgeon critical habitat in Unit 8. Water quality impacts related to dredging and stockpiling of dredged material are expected to be insignificant because they will be temporary and minimized by the use of silt curtains. Potential effects to sediment quality resulting from dredging and stockpiling of dredged material will also be insignificant. While dredging may temporarily uncover a layer of finer-grained sediment, the original material will be placed back in the channel and sediment quality will be returned to pre-project conditions. Prey abundance will be temporarily affected by the dredging of 9 acres of waterbottom and the placement of dredged material on 20 acres of waterbottom. However, the project area encompasses only a small portion of the 403,200 acres of available habitat in Lake Pontchartrain supporting Gulf sturgeon prey items. Stockpiled material will be placed back into the dredged channels upon project completion and returned to pre-project contours. Benthic invertebrates utilized by Gulf sturgeon are expected to recolonize the dredged area rapidly, as they have been found to recolonize within one year when sediment composition and depth remain consistent. The permanent loss of 9 acres of habitat (due to the construction of the breakwater, riprap, and foreshore protection) on prey abundance is also expected to be insignificant. Gulf sturgeon prey are expected to be found in sandy substrate, while the substrate found at the site of the breakwater is mainly hard bottom. Further, Gulf sturgeon are expected to be found in deeper waters (2 to 4 meters) than those at the site of the proposed foreshore protection (less than 1 meter). The project has not yet been constructed.

Consultation on IER 11 was completed on August 12, 2008. The project consists of construction of storm surge protection structures (flood control gates and concrete floodwalls) and dredging for equipment access between the IHNC and Lake Borgne in Orleans and St. Bernard Parishes, Louisiana. NMFS determined project activities are not likely to adversely affect Gulf sturgeon or listed sea turtles (Kemp's ridley, green, or loggerhead) potentially found in the project area. Although not located in designated Gulf sturgeon critical habitat, the project is hydrologically

connected to designated critical habitat in Unit 8. Based on modeling reports and analyses provided by the COE, the project will not significantly affect hydroperiod, salinity, ability for benthic communities to be established and maintained, water velocity, dissolved oxygen, siltation, or accessibility; therefore, NMFS determined the project was not likely to adversely affect designated Gulf sturgeon critical habitat. This project is currently under construction.

Consultation for IERs 6 and 7 was completed on March 13, 2009. The projects include the placement of rock on the existing foreshore protection to raise its elevation on several sections of the levee system on Lake Pontchartrain near New Orleans, Louisiana. The elevation of 11 miles of existing foreshore protection will be raised to 14 feet NAVD88 by placing additional rock on the structure. To access the foreshore protection for rock placement, a bucket dredge will be used to excavate. Approximately 44 acres of waterbottom will be dredged and 134 acres of waterbottom will be temporarily covered by the stockpiled dredged material, resulting in temporary impacts to 178 acres of benthic habitat through burying and physical disruption of potential prey. Permanent impacts will result from the placement of rock on the existing foreshore protection, which will extend into the water and permanently cover an additional 14 acres of waterbottom. Water depths in the area where the rock will be placed are less than 1 meter deep. NMFS concluded that sea turtles and Gulf sturgeon are not likely to be adversely affected by the proposed projects. NMFS also determined that the temporary loss of 178 acres of benthic habitat due to dredging and stockpiling of dredged material, and the permanent loss of 14 acres of habitat due to placement of rock on the existing foreshore protection is not likely to adversely affect Gulf sturgeon critical habitat. Water depths at the project sites are less than 1 meter and these areas experience high wave energy. Gulf sturgeon are suction feeders; due to their feeding morphology, they are usually found at deeper depths (2 to 4 meters), where lower wave energy at the substrate, compared to the shallower swash zone, interferes less with feeding. IERs 6 and 7 have not yet been constructed.

Formal consultation for IER 5 was completed on April 17, 2009. The proposed action includes the installation of a 104- by 600-foot breakwater in front of the 17th Street canal pump station and a 116- by 700-foot breakwater at the Orleans Avenue canal pump station. Breakwaters will be constructed out of rock and concrete, and materials will be placed from land by crane where pumping station outfall canals meet Lake Pontchartrain. No dredging is required. NMFS concluded that listed sea turtles and Gulf sturgeon are not likely to be adversely affected by the proposed project. Construction will result in the permanent loss of 3.3 acres of designated critical habitat for Gulf sturgeon due to breakwater construction. NMFS analyzed the project's effects on the primary constituent elements of Gulf sturgeon critical habitat. Prey abundance will be adversely affected by the project, but not to the extent that it would reduce the critical habitat's ability to support Gulf sturgeon conservation.

Currently Proposed Projects

The project proposed under IER 3 is located at 30.0211°N, 90.1450°W (WGS84) in Jefferson Parish, Louisiana. The original project proposal involved the placement of rock on the existing foreshore protection to raise its elevation on five sections of the levee system on Lake Pontchartrain near New Orleans, Louisiana. Recent nearshore bathymetric data in Lake Pontchartrain show that the water depths are greater than what was initially used to develop the 100-year lakefront levee elevations. Because levee design is constrained by project location and

soil substrate conditions, the project has been modified to add wave attenuation structures on the lakeside of the levees to meet the wave overtopping rate criteria. Wave attenuation structures consisting of earthen berms with graded rock will be added to Reaches 1-3 of the project area. Reaches 4 and 5 will not require wave attenuation structures, but will require additional rock foreshore protection beyond what was originally proposed. The foreshore protection structures originally proposed for IER 3 would permanently cover 26 acres of waterbottoms in Lake Pontchartrain, 4 acres of which were located in Gulf sturgeon critical habitat. The wave attenuation structures and additional foreshore protection proposed in this modification to IER 3 will result in 57 acres of additional permanent impacts to Lake Pontchartrain, 4 acres of which (associated with the additional foreshore protection proposed for Reach 5) will occur in Gulf sturgeon critical habitat. Water depth in the area where the foreshore protection will be constructed is less than 1 meter.

Placement of rock on foreshore protection proposed in IER 3 will require the dredging of barge access channels in Lake Pontchartrain. Bottom substrates in the project area consist of a 7-foot layer of silty sand, underlain by a 4-foot layer of soft clay. Dredging would occur entirely within the 7-foot silty sand layer. A bucket dredge will be used to create access channels between 250 and 350 feet long. Dredged material will be stockpiled adjacent to the access channels in an area 100 feet wide and will be returned to the channel upon project completion. In addition, construction activities on the Lake Pontchartrain Causeway will require the construction of detour lanes. A bucket dredge will be used to create 500- x 100-foot access channels on both sides of the Lake Pontchartrain Causeway for equipment barge access. Dredged material will be stockpiled adjacent to the access channels in an area 1000- by 125-feet wide and will be returned to the channel upon project completion. Silt curtains will be used to contain stockpiled dredged material until it is placed back in the access channels. Dredging access channels and stockpiling of dredged material originally proposed in IER 3 would temporarily affect 116 acres of waterbottoms in Lake Pontchartrain, 29 acres of which are located in Gulf sturgeon critical habitat. The additional access channel dredging and stockpiling of dredged material proposed in this modification to IER 3 will temporarily affect 203.5 acres of waterbottoms, 5.2 acres of which are located in Gulf sturgeon critical habitat.

The project proposed under IER 11 Tier 2 is centered at 30.0064°N, 89.9146°W (WGS84) in Orleans and St. Bernard Parishes. The proposed action consists of the installation of a steel sector gate and two vertical lift gates in the IHNC. Floodwalls would connect the gates to earthen levees on the banks of the IHNC. A 350- by 1,050-foot, 86-foot-deep scour hole in the footprint of the proposed sector and lift gates will be filled with sand. Levees, floodwalls, and the channel may also be armored to prevent erosion and additional scouring. A cofferdam will be put in place during construction and will block water flow from the IHNC into Lake Pontchartrain for a period of 6 to 12 months. Gulf sturgeon have never been observed in the IHNC. The primary pathway between Lake Pontchartrain, Mississippi Sound, and the riverine portions of Gulf sturgeon critical habitat is through Lake Borgne and The Rigolets. While Gulf sturgeon could potentially enter the IHNC, this location is a less suitable access point for Gulf sturgeon to enter and exit Lake Pontchartrain, as it is an artificial canal in a heavily industrialized area and represents a much lengthier, circuitous route between critical habitat areas. As a precautionary measure, before the cofferdam is dewatered for construction activities to

commence, the area will be surveyed for the presence of Gulf sturgeon. If any sturgeon are observed, the COE will reinitiate consultation with NMFS on the appropriate means for relocating Gulf sturgeon to a safe location away from the project area. Once construction is completed and the cofferdam removed, unrestricted flow between the IHNC and Lake Pontchartrain will be restored. Although not located in designated Gulf sturgeon critical habitat, the project is hydrologically connected to designated critical habitat in Unit 8.

Effects to Species and Designated Critical Habitat from Previous and Currently Proposed IER Projects

As discussed in a previous section of the document, in accordance with the provisions of the ESA at 50 CFR 402.14(k), section 7 consultation on each incremental step of a phased/staged action must be in the context of the entire action (i.e., the effects of all previous steps should be considered in the evaluation of the effects of the current step). NMFS has previously completed consultations on IERs 2, 3, 5, 6, 7, and 11. Therefore, this consultation will consider the effects of those projects in the evaluation of the effects of the currently proposed actions, IERs 3 and 11 Tier 2, on listed species and critical habitat under NMFS purview.

In addition to Gulf sturgeon, three listed species of sea turtles may occur at the project sites: the endangered Kemp's ridley, the threatened/endangered¹ green, and the threatened loggerhead. The currently proposed IER 3, as well as IERs 5, 6, and 7, are located within designated Gulf sturgeon critical habitat Unit 8. Although not located in critical habitat, IER 11 Tier 2 is hydrologically connected to Unit 8. The primary constituent elements (PCEs) essential for the conservation of Gulf sturgeon present in Unit 8 include: abundant prey items; water quality and sediment quality necessary for normal behavior, growth, and viability of all life stages; and, safe and unobstructed migratory pathways necessary for passage within and between riverine, estuarine, and marine habitats. Of these PCEs, NMFS believes water quality, sediment quality, and prey abundance may be affected.

NMFS has analyzed the routes of potential effects from the proposed projects in IERs 2, 3, 6, 7, and 11 and concluded that listed sea turtles and Gulf sturgeon are not likely to be adversely affected from the suite of activities proposed. The risk of injury to listed species from dredging activities associated with IERs 3, 6, and 7 will be discountable based on the type of dredges being used. There are no reported takes of sea turtles or Gulf sturgeon by a bucket dredge. In addition, dredging will occur within a May to September dredging window for IERs 6 and 7. Gulf sturgeon are not likely to be present during dredging activities for IERs 6 and 7 because they primarily utilize Lake Pontchartrain for winter foraging and dredging will only occur in the summer. Further, the likelihood of sea turtles and Gulf sturgeon being struck by the transit and anchoring of equipment and vessels at the project site is discountable due to these species' mobility. The likelihood of effects to Gulf sturgeon and sea turtles from dredging and the transit and anchoring of equipment and vessels were also determined to be discountable in the consultations on IERs 2 and 11 Tier 2 due to these species' mobility, the type of dredges being used, and/or the lack of species' presence in dredging sites located in marsh or in heavily

¹Green turtles are listed as threatened, except for breeding populations in Florida and the Pacific Coast of Mexico, which are listed as endangered.

controlled artificial waterways of low habitat value.

NMFS considers the temporary loss of 203.5 acres of benthic habitat due to dredging and stockpiling of dredged material, and the permanent loss of 57 acres of habitat due to the construction of foreshore protection and wave attenuation structures, proposed in IER 3 as having insignificant effects on sea turtles and Gulf sturgeon. The project area encompasses only a small portion of the 403,200-acre lake and there is similar habitat in the vicinity such that impacts to foraging success, reproduction, resting, or other activities that might occur in the area are expected to be minor and insignificant. The area likely provides poor quality habitat for listed species under NMFS' purview. The bottom substrate does not support submerged aquatic vegetation and is likely a poor source of other forage resources for sea turtle species. Due to the shallow water depth and high-energy wave environment where the rock will be placed, the project area provides poor foraging habitat for Gulf sturgeon, as well. Water depths at the site are less than 1 meter. Gulf sturgeon are usually found at deeper depths (2 to 4 meters), where lower wave energy at the substrate, compared to the shallower swash zone, interferes less with feeding.

We evaluated the potential impacts on listed species from the additive loss of a total of 653.8 acres of habitat (546.8 temporarily, 107 permanently) from implementing IERs 2, 3, 6, 7 and 11. If all impacts occurred in areas utilized by species under NMFS' purview, then only 0.16 percent of the available habitat in Lake Pontchartrain would be temporarily or permanently lost. There is sufficient available habitat in the vicinity such that impacts to foraging success, reproduction, resting, or other behaviors are expected to be minor and insignificant. However, all of the permanent impacts and a portion of the temporary impacts will occur in areas that are not utilized by listed species under NMFS' purview because: (1) they consist of marsh, peat substrate, or hardbottom that do not support prey species or other foraging resources for sturgeon and sea turtles; (2) the sites have high wave energy that interferes with feeding; and, (3) they are much shallower (less than 1 meter) than depths preferred by sturgeon and sea turtles. Project activities in IER 11 will not impact habitat in Lake Pontchartrain, but may cause sea turtles and Gulf sturgeon to temporarily avoid the project site due to construction noise. Also, the operation of flood control structures could potentially hinder access by sea turtles and sturgeon to Lake Pontchartrain, but the structures will remain open at all times with the exception of major storms or hurricanes and many other access points to the lake will remain available to these species.

NMFS and the United States Fish and Wildlife Service jointly designated Gulf sturgeon critical habitat on April 18, 2003 (50 CFR 226.214). NMFS believes the suite of project activities in IERs 3, 6, 7, and 11 Tier 2² may affect but are not likely to adversely affect Gulf sturgeon critical habitat in Unit 8. While construction of the breakwaters in IER 5 will diminish prey abundance locally, it will not reduce the critical habitat's ability to support Gulf sturgeon conservation. Water quality PCE impacts related to dredging and stockpiling of dredged material in IERs 3, 6, and 7 are expected to be insignificant because they will be temporary and minimized by the use of silt curtains. Potential effects to the sediment quality PCE resulting from dredging and stockpiling of dredged material will also be insignificant. Sediment substrates remaining in access channels after dredging associated with IERs 3, 6, and 7 are expected to be the same as the

²Project activities in IER 2 are not located in designated critical habitat.

pre-project sediments. The original material will be placed back in the channels after project construction and sediment quality will be returned to pre-project conditions. Further, the placement of inert, non-toxic rock in these projects will not affect water quality or sediment quality. Prey abundance will be temporarily affected by the dredging of 55.7 acres of waterbottom and the placement of dredged material on 156.5 acres of waterbottom associated with IERs 3, 6, and 7. The total temporary loss of Gulf sturgeon critical habitat from activities in IERs 3, 6, and 7 of 212.2 acres will be insignificant. This represents only a small portion (0.05 percent) of the available habitat in Lake Pontchartrain supporting Gulf sturgeon prey items. Further, stockpiled material will be placed back into the dredged channels upon project completion and returned to pre-project contours. Benthic invertebrates utilized by Gulf sturgeon are expected to recolonize the dredged area rapidly, as they have been found to recolonize within one year when sediment composition and depth remain consistent. The permanent loss of 30.3 acres of designated critical habitat will result from the construction of foreshore protection and breakwaters associated with IERs 3, 5, 6, and 7. The adverse affects to prey abundance from the construction of breakwaters on 3.3 acres of waterbottom associated with IER 5 was evaluated in a formal consultation. NMFS determined the project's effects will not reduce the critical habitat's ability to support Gulf sturgeon conservation. The total permanent loss of prey associated with construction activities in IERs 3, 6, and 7 affecting 27 acres will be insignificant and will not have adverse cumulative effects when combined with the activities in IER 5. Water depths at the project sites are less than 1 meter and these areas experience high wave energy. Gulf sturgeon are suction feeders; due to their feeding morphology, they are usually found at deeper depths (2 to 4 meters), where lower wave energy at the substrate, compared to the shallower swash zone, interferes less with feeding. Although not located in designated Gulf sturgeon critical habitat, project activities in IER 11 are hydrologically connected to designated critical habitat in Unit 8. Based on modeling reports and analyses provided by the COE, the project will not significantly affect hydroperiod, salinity, the ability for benthic communities to be established and maintained, water velocity, dissolved oxygen, siltation, or accessibility; therefore, NMFS determined the project was not likely to adversely affect designated Gulf sturgeon critical habitat.

Analysis of Compliance with 50 CFR 402.14(k)

As discussed above, NMFS has determined that the incremental step of implementing IERs 3 and 11 Tier 2 will not violate section 7(a)(2) of the ESA, as required in 50 CFR 402.12(k)(1). The COE has complied with 50 CFR 402.14(k) paragraphs (2) and (3) by consulting with NMFS on all newly proposed IERs that may affect species or critical habitat under NMFS' purview, and through ongoing information collection, reinitiated consultation when projects were modified and new or unanticipated effects of previous actions became apparent. Based on information provided by the COE, the current consultation is the last consultation for projects proposed as part of the Greater New Orleans Hurricane and Storm Damage Risk Reduction System and contains a complete assessment of the impacts of all projects on listed species and critical habitat under NMFS' purview. Because no further consultations will occur, there will be no irreversible or irretrievable commitment of resources that would foreclose the implementation of reasonable and prudent alternatives, as prohibited by paragraph (4) of 50 CFR 402.14(k) of the ESA. After reviewing the effects of IERs 3 and 11 Tier 2 in conjunction with the effects associated with the other IER projects evaluated to date as part of the Greater New Orleans Hurricane and Storm Damage Risk Reduction System, we conclude that there are no additive effects of the overall

projects that rise above the level of effects considered for each of the individual component projects. As required by 50 CFR 402.14(k) paragraph (5), we conclude that the entire action will not violate section 7(a)(2) of the ESA. Therefore, based on available information to date, we conclude that consultations on the IER projects under the Alternative Arrangements comply with all the provisions contained in 50 CFR 402.14(k) for consultations on incremental actions.

This concludes your consultation responsibilities under the ESA for species under NMFS' purview unless additional information on IER projects under the comprehensive plan to upgrade the Greater New Orleans Hurricane and Storm Damage Risk Reduction System becomes available. Consultation must also be reinitiated if a take occurs or new information reveals effects of the action not previously considered, or the identified action is subsequently modified in a manner that causes an effect to the listed species or critical habitat in a manner or to an extent not previously considered, or if a new species is listed or critical habitat designated that may be affected by the identified action. We have enclosed additional information on other statutory requirements that may apply to this action, and on NMFS' Public Consultation Tracking System (PCTS) to allow you to track the status of ESA consultations.

Thank you for your continued cooperation in the conservation of threatened and endangered species under NMFS' purview. If you have any questions on this consultation or PCTS, please contact Kelly Shotts at (727) 824-5312, or by e-mail at kelly.shotts@noaa.gov.

Sincerely,

Roy E. Crabtree, Ph.D.
Regional Administrator

Enclosure

cc: F/SER43, Hartman/Williams

File: 1514-22 F.1. LA

Ref: I/SER/2009/03605

PCTS Access and Additional Considerations for ESA Section 7 Consultations
(Revised 7-15-2009)

Public Consultation Tracking System (PCTS) Guidance: PCTS is an online query system at <https://pcts.nmfs.noaa.gov/> that allows federal agencies and U.S. Army Corps of Engineers' (COE) permit applicants and their consultants to ascertain the status of NMFS' Endangered Species Act (ESA) and Essential Fish Habitat (EFH) consultations, conducted pursuant to ESA section 7, and Magnuson-Stevens Fishery Conservation and Management Act's (MSA) sections 305(b)(2) and 305(b)(4), respectively. Federal agencies are required to enter an agency-specific username and password to query the Federal Agency Site. The COE "Permit Site" (no password needed) allows COE permit applicants and consultants to check on the current status of Clean Water Act section 404 permit actions for which NMFS has conducted, or is in the process of conducting, an ESA or EFH consultation with the COE.

For COE-permitted projects, click on "Enter Corps Permit Site." From the "Choose Agency Subdivision (Required)" list, pick the appropriate COE district. At "Enter Agency Permit Number" type in the COE district identifier, hyphen, year, hyphen, number. The COE is in the processing of converting its permit application database to PCTS-compatible "ORM." An example permit number is: SAJ-2005-000001234-IPS-1. For the Jacksonville District, which has already converted to ORM, permit application numbers should be entered as SAJ (hyphen), followed by 4-digit year (hyphen), followed by permit application numeric identifier with no preceding zeros. For example: SAJ-2005-123; SAJ-2005-1234; SAJ-2005-12345.

For inquiries regarding applications processed by COE districts that have not yet made the conversion to ORM (e.g., Mobile District), enter the 9-digit numeric identifier, or convert the existing COE-assigned application number to 9 numeric digits by deleting all letters, hyphens, and commas; converting the year to 4-digit format (e.g., -04 to 2004); and adding additional zeros in front of the numeric identifier to make a total of 9 numeric digits. For example: AL05-982-F converts to 200500982; MS05-04401-A converts to 200504401. PCTS questions should be directed to Eric Hawk at Eric.Hawk@noaa.gov. Requests for username and password should be directed to PCTS.Usersupport@noaa.gov.

EFH Recommendations: In addition to its protected species/critical habitat consultation requirements with NMFS' Protected Resources Division pursuant to section 7 of the ESA, prior to proceeding with the proposed action the action agency must also consult with NMFS' Habitat Conservation Division (HCD) pursuant to the MSA requirements for EFH consultation (16 U.S.C. 1855 (b)(2) and 50 CFR 600.905-.930, subpart K). The action agency should also ensure that the applicant understands the ESA and EFH processes; that ESA and EFH consultations are separate, distinct, and guided by different statutes, goals, and time lines for responding to the action agency; and that the action agency will (and the applicant may) receive separate consultation correspondence on NMFS letterhead from HCD regarding their concerns and/or finalizing EFH consultation.

Marine Mammal Protection Act (MMPA) Recommendations: The ESA section 7 process does not authorize incidental takes of listed or non-listed marine mammals. If such takes may occur an incidental take authorization under MMPA section 101 (a)(5) is necessary. Please contact NMFS' Permits, Conservation, and Education Division at (301) 713-2322 for more information regarding MMPA permitting procedures.

United States Department of the Interior

FISH AND WILDLIFE SERVICE
646 Cajundome Blvd.
Suite 400
Lafayette, Louisiana 70506

October 23, 2009

Colonel Robert Sinkler
Commander
Hurricane Protection Office
U.S. Army Corps of Engineers
Post Office Box 60267
New Orleans, Louisiana 70160-0267

Dear Colonel Sinkler:

Please reference the Individual Environmental Report (IER) 11, Tier 2 Pontchartrain, for the Improved Protection on the Inner Harbor Navigation Canal (IHNC), Orleans and St. Bernard Parishes, Louisiana. That IER is being prepared under the approval of the Council on Environmental Quality (CEQ) that will partially fulfill the U.S. Army Corps of Engineers (Corps) compliance with the National Environmental Policy Act (NEPA) of 1969 (83 Stat. 852, as amended; 42 U.S.C. 4321- 4347). IERs are a CEQ approved alternative arrangement for compliance with NEPA that would allow expedited implementation of improved hurricane protection measures. Work proposed in IERs would be conducted under the authority of Public Law 109-234, Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane Recovery, 2006 (Supplemental 4) and Public Law 110-28, U.S. Troop Readiness, Veterans' Care, Katrina Recovery, and Iraq Accountability Appropriations Act, 2007 (5th Supplemental). Those laws authorized the Corps to upgrade two existing hurricane protection projects [i.e., Westbank and Vicinity of New Orleans (WBV) and Lake Pontchartrain and Vicinity (LPV)] in the Greater New Orleans area in southeast Louisiana. This draft report contains a description of resources in the project area and provides planning objectives and recommendations to minimize project impacts on those resources.

The proposed project was authorized by Supplemental 4 which instructed the Corps to proceed with engineering, design, and modification (and construction where necessary) of the LPV and the WBV Hurricane Protection Projects so those projects would provide 100-year hurricane protection. Procedurally, project construction has been authorized in the absence of the report of the Secretary of the Interior that is required by Section 2(b) of the Fish and Wildlife Coordination

Act (FWCA) (48 Stat. 401, as amended; 16 U.S.C. 661 et seq.). In this case, the authorization process has precluded the normal procedures for fully complying with the FWCA. The FWCA requires that our Section 2(b) report be made an integral part of any report supporting further project authorization or administrative approval. Therefore, to fulfill the coordination and reporting requirements of the FWCA, the Service will be providing post-authorization 2(b) reports for each IER.

This draft report incorporates and supplements our FWCA Reports that addressed impacts and mitigation features for the WBV of New Orleans (dated November 10, 1986, August 22, 1994, November 15, 1996, and June 20, 2005) and the LPV (dated July 25, 1984 and January 17, 1992) Hurricane Protection projects, the November 26, 2007, Draft Programmatic FWCA Report that addresses the hurricane protection improvements authorized in Supplemental 4, and the October 9, 2008, Final FWCA Report and September 18, 2009, Draft Supplemental FWCA Report that addressed the Tier 2, Borgne storm surge protection barrier.

However, this report does not constitute the report of the Secretary of the Interior as required by Section 2(b) of the FWCA. Furthermore, additional comments are provided in accordance with provisions of the Endangered Species Act (ESA) of 1973 (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.). This report has been provided to the Louisiana Department of Wildlife and Fisheries (LDWF) and the National Marine Fisheries Service (NMFS); their comments will be incorporated into our final report.

DESCRIPTION OF THE STUDY AREA

The IER 11 study area includes the Orleans East Bank, New Orleans East, and Chalmette Loop sub-basins along the east bank of the Mississippi River in Orleans and St. Bernard Parishes, Louisiana. Lake Pontchartrain borders the study area to the north. Reaches 148 and 147, and portions of Reach 146 of the LPV Hurricane Protection Levee (i.e., subsections of IER 10) that parallel the Mississippi River Gulf Outlet (MRGO) make up the study area's southern boundary. The eastern boundary extends along the eastern edge of Lake Borgne. The study area for Tier 2 Pontchartrain incorporates the section of the IHNC from the intersection of the de-authorized MRGO and the Gulf Intracoastal Waterway (GIWW) and to the west, and includes the IHNC lock complex to the south and the intersection of the IHNC and Lake Pontchartrain to the north.

Two areas have been selected as the preferred location for the storm surge protection barrier to protect the IHNC from storm surges coming from Lakes Pontchartrain and Borgne. The Borgne 1 location alternative, which would reduce storm surge from Lake Borgne and surrounding areas, extends from west of the Parish Road Bridge on the GIWW to east of the Michoud Canal on the GIWW and south of Bayou Bienvenue on the MRGO, and includes a portion of the emergent marsh area referred to as the "golden triangle." The other preferred location alternative is the Pontchartrain 2 barrier location alternative which extends from the Seabrook Bridge to 2,500 feet south of that bridge on the IHNC (Figure 1). The Pontchartrain 2 barrier location alternative would protect the IHNC against storm surge coming from Lake Pontchartrain. The Tier 2, Pontchartrain IER evaluates five alternative designs and alignments within the Pontchartrain 2

location alternative; this report focuses on that alternative location alignment.

Figure 1. Lake Pontchartrain and Vicinity (LPV), IHNC, Tier 2 Pontchartrain study area, Orleans and St. Bernard Parishes, Louisiana (IER 11).

FISH AND WILDLIFE RESOURCES

Habitat types in the IER 11 study area include wet and non-wet bottomland hardwood habitat, early successional stage bottomland hardwood habitat (i.e., scrub-shrub), marsh, open water, and developed areas. Open water areas associated with the IHNC, GIWW, MRGO, Bayou Bienvenue, and interspersed open water areas within emergent marsh habitat make up a large portion of the study area. Due to urban development and a forced-drainage system, the hydrology of most of the forested habitat within the levee system has been altered. The forced-drainage system has been in operation for many years, and subsidence is evident throughout the areas enclosed by levees. Urban development and open water associated with the IHNC make up a significant portion of the Pontchartrain 2 barrier location project area. Minimal wetland habitats occur along the shoreline between the existing levee system and the waterway.

Wetlands (forested, marsh, and scrub-shrub) within the study area provide plant detritus to adjacent coastal waters and thereby contribute to the production of commercially and recreationally important fishes and shellfishes. They also provide valuable water quality functions such as reduction of excessive dissolved nutrient levels, filtering of waterborne contaminants, and removal of suspended sediment. In addition, coastal wetlands buffer storm surges reducing their damaging effect to man-made infrastructure within the coastal area. Factors that will strongly influence future fish and wildlife resource conditions outside of the protection levees include freshwater and sediment input and loss of coastal wetlands. Regardless

of which of the above factors ultimately has the greatest influence, emergent wetlands within, and adjacent to, the project area will probably experience losses due to subsidence, erosion, and relative sea-level rise.

The Service has provided FWCA Reports for the authorized hurricane protection projects. Those reports contain a through discussion of the significant fish and wildlife resources (including those habitats) that occur within the study area. For brevity, that discussion is incorporated by reference herein but the following information is provided to update the previously mentioned reports and provide IER specific information and recommendations.

The following is provided in accordance with the ESA of 1973, as amended. On December 6, 2007, the Service concurred with the Corps' determination that the proposed hurricane protection improvement project along the IHNC is not likely to adversely affect federally listed threatened and endangered species within our jurisdiction, including the pallid sturgeon (*Scaphirhynchus albus*), brown pelican (*Pelecanus occidentalis*), West Indian manatee (*Trichechus manatus*), and piping plover (*Charadrius melodus*), or its designated critical habitat. That concurrence was based on information provided to the Service in a November 7, 2007, letter which included the incorporation of the standard manatee protective measures into the Corps' construction contracts.

Your September 23, 2009, letter requested the Service's updated concurrence with the Corps' determination that project features associated with the proposed Pontchartrain 2 barrier system are not likely to adversely affect the West Indian manatee and the brown pelican. West Indian manatees, federally listed as an endangered species, occasionally enter Lakes Pontchartrain and Maurepas, and associated coastal waters and streams during the summer months (i.e., June through September). Manatee occurrences and their distribution appear to be increasing, as they have been regularly reported in the Amite, Blind, Tchefuncte, and Tickfaw Rivers, and in canals within the adjacent coastal marshes of Louisiana. They have also been occasionally observed elsewhere along the Louisiana Gulf coast and infrequently observed along the Texas Gulf coast. The manatee has declined in numbers due to collisions with boats and barges, entrapment in flood control structures, poaching, habitat loss, and pollution. Cold weather and outbreaks of red tide may also adversely affect these animals.

All contract personnel associated with project construction and operation should be informed of the potential presence of manatees and the need to avoid collisions with manatees, which are protected under the Marine Mammal Protection Act of 1972 and the Endangered Species Act of 1973. All construction and operation personnel are responsible for observing water-related activities for the presence of manatee(s). Temporary signs should be posted prior to and during all construction/dredging activities to remind personnel to be observant for manatees during active construction/dredging operations or within vessel movement zones (i.e., work area), and at least one sign should be placed where it is visible to the vessel operator. Signs should also be posted within work areas associated with operation of the flood control structures to ensure that operators are aware of the potential presence of manatee during the periodic closure of the structures. Siltation barriers, if used, should be made of material in which manatees could not become entangled, and should be properly secured and monitored. If a manatee is sighted within 100 yards of the active work zone, special operating conditions should be implemented.

including: no operation of moving equipment within 50 feet of a manatee; all vessels should operate at no wake/idle speeds within 100 yards of the work area; and siltation barriers, if used, should be re-secured and monitored. Once the manatee has left the 100-yard buffer zone around the work area on its own accord, special operating conditions are no longer necessary, but careful observations would be resumed. Care should also be taken during the closure of the surge barrier structures to avoid entrapment of individuals. Any manatee sighting should be immediately reported to the Service's Lafayette, Louisiana Field Office (337/291-3100) and the Louisiana Department of Wildlife and Fisheries, Natural Heritage Program (225/765-2821).

The Corps' concurrence request further ensures that the standard manatee protection measures will continue to be included in the Corps' construction contracts. Furthermore, the project area does not support nesting habitat for brown pelicans, and individual brown pelicans feeding and/or loafing in the project area are expected to avoid construction activity areas. The Service, therefore, concurs that the proposed project is not likely to adversely affect neither the West Indian manatee nor the brown pelican. No further endangered species consultation will be required for IER 11, IHNC, Tier 2 Pontchartrain, unless there are changes in the scope or location, or project construction has not been initiated within one year. If construction has not been initiated within one year, follow-up consultation should be accomplished with this office prior to making expenditures for construction.

Potential changes in the status of federally listed threatened and endangered species, and possible additions to the Federal endangered species list are likely to occur. We recommend that the Corps' include in the operation and maintenance plan provided to the local sponsor a measure that will inform them of the need to coordinate with the Service and NMFS every year and when operational plans are revised, as those revisions may affect federally listed threatened and endangered species.

The threatened Gulf sturgeon (*Acipenser oxyrinchus desotoi*), is known to occur in the study area. As you are aware, the National Oceanic and Atmospheric Administration's (NOAA), NMFS in St. Petersburg, Florida is responsible for consultations regarding impacts to the Gulf sturgeon and its critical habitat with the Corps in estuarine habitats, and as we understand the Corps is coordinating with that office.

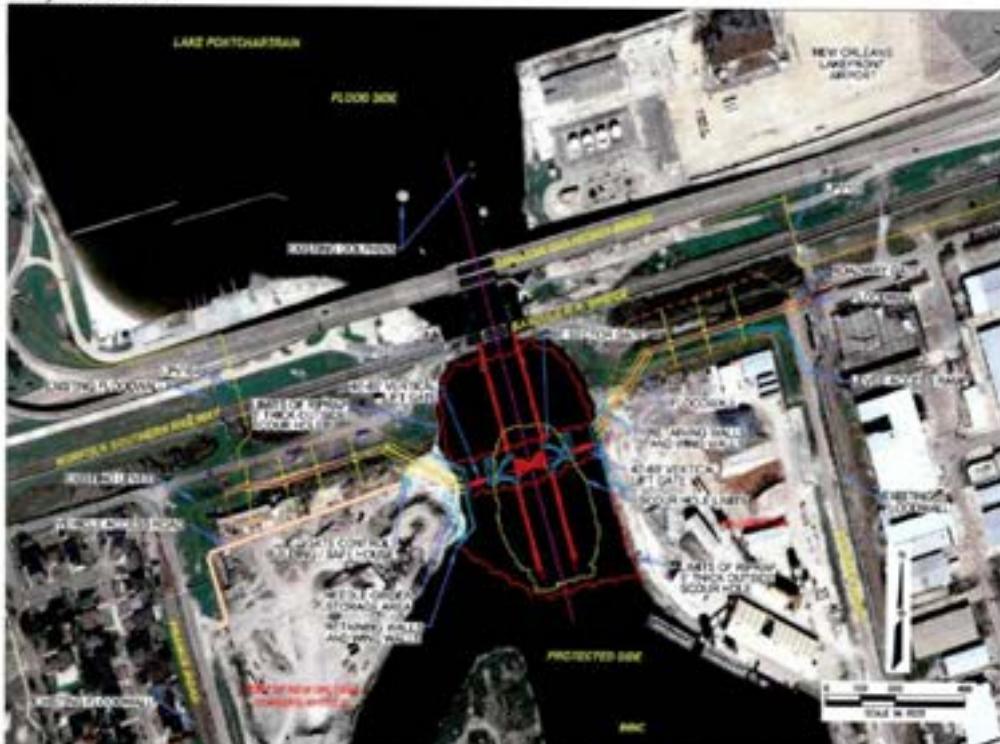
Estuarine emergent wetlands, estuarine water column, and estuarine water bottoms within the project area have been identified as Essential Fish Habitat (EFH) for both postlarval, juvenile and sub-adult stages of brown shrimp, white shrimp, and red drum, as well as the adult stages of those species in the nearshore and offshore reaches. Commercially important estuarine and marine species such as red drum, spotted seatrout, Gulf menhaden, brown shrimp, and white shrimp are found in the project area. EFH requirements vary depending upon species and life stage.

The 1996 amendments to the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act; P.L. 104-297) set forth a new mandate for NOAA's NMFS, regional fishery management councils (FMC), and other federal agencies to identify and protect important marine and anadromous fish habitat. The EFH provisions of the Magnuson-Stevens Act support

Figure 2. IER 11, LPV, IHNC, Tier 2 Pontchartrain Alternative Alignments and Proposed Action.

http://www.nolaenvironmental.gov/sec/projects/usace_jevcc/docs/original/IER11Tier2Pontchartrain090909.pdf

DESCRIPTION OF SELECTED PLAN


The proposed alternative (i.e., Alternative 1, Figure 3) is the Bridgeside Alignment which includes a sector gate located 540 feet south of Seabrook Bridge and approximately 1,475 feet of T-walls built on existing levees. The features of the proposed alternative are as described above.

The proposed alternative alignment would also require filling in the existing south scour hole before commencement of construction of the cofferdam and foundation. The scour hole would be filled with coarse sand to an elevation of -42.0 feet NAVD 88 before the guide wall and supporting piling are driven. Stone riprap would be placed around the support piling to -37.0 feet NAVD 88. The IHNC in the project vicinity ranges from approximately -30 feet to -41 feet in depth outside the scour hole.

During construction, a temporary braced cofferdam would be installed across the channel around the approximate perimeter of the sector and vertical lift gates, closing this portion of the channel to navigation, recreational vessels, and aquatic organism access for the duration of the construction of the sector gate and vertical lift gates (i.e., for a period of approximately 12 months). The Corps determined that a bypass channel would be infeasible due to the potential for high flow rates and public safety concerns associated with navigating directly through an active construction area. Additionally, the construction sequence necessary to provide such

bypass could potentially add approximately eight months to the construction schedule resulting in a cost increase.

Figure 3. IER 11, LPV, IHNC, Tier 2 Pontchartrain Proposed Alternative (i.e., Bridgeside Alignment) Features.

http://www.nolaenvironmental.gov/sec/projects/usace_levee/docs/original/IER11Tier2Pontchartrain090909.pdf

FISH AND WILDLIFE CONCERNS IN THE STUDY AREA

Since 1930, Louisiana has lost over 1,500 square miles of marsh, and is still losing 25-30 square miles each year (LCWCR Task Force and WCR Authority 1998). Erosion, subsidence, and relative sea level rise continue to contribute to Louisiana's coastal land loss. The Lake Pontchartrain Basin is the largest contiguous estuary system along the Gulf Coast and is dominated by Lakes Pontchartrain, Maurepas and Borgne and their associated estuarine marshes and coastal forested wetlands. During the 1970's and 1980s, several studies and reports focused on the declining environmental state of the Lake Pontchartrain Basin caused by a number of factors including urban development, urban and agricultural runoff, poorly treated and untreated sewage, wetland loss, and salt water intrusion associated with the MRGO (Lake Pontchartrain Restoration Working 2009). The MRGO navigation channel was dredged through the Breton Sound Basin in 1963. Saltwater intrusion facilitated by the MRGO killed thousands of acres of freshwater wetland forests within the Lake Pontchartrain Basin and transformed intermediate and brackish marshes into more saline habitats. Wave-induced shoreline erosion associated with vessel traffic along the MRGO has further exacerbated marsh loss in the area.

Lake Pontchartrain itself has also fallen victim to the intrusion of higher saline waters from the MRGO. A 100-square-mile dead zone north of the IHNC in Lake Pontchartrain is the result of higher salinity and episodes of bottom water anoxia and hypoxia (Poirrier et al. 2008 and Day et al. 2008). Within this dead zone, a significant reduction of rangia clams, a filter feeder, has resulted in increased algae blooms, turbidity, and fecal coliforms, and as a result of increased turbidity the area has seen a reduction in submerged aquatic habitat. Historically the high density of rangia clams and clam shell hash has contributed to stabilizing the mud bottom and adjacent shoreline (Spalding et al. 2007). Rangia clams are also a good food source for fish, crabs, and waterfowl, and are the primary food source for scaup on Lake Pontchartrain. In 2006, the scaup population was estimated at 1.2 million on Lake Pontchartrain, a record high estimate in contrast to the year before (i.e., less than 1,000 scaup) which followed the 2005 hurricanes (Checkett 2006). The former highest record estimate was just under 500,000 scaup in 1981. Ducks Unlimited, Inc. biologists hypothesize that the increased numbers of scaup that year are a result of the very high production of Rangia clams (Checkett 2006).

In accordance with the Water Resources Development Act of 2007, approval by the Secretary of the Army and submittal of the June 5, 2008, Chief's Report to Congress by the Assistant Secretary of the Army de-authorized the MRGO channel from mile 60 to the Gulf of Mexico resulting in no further actions to maintain that portion of the MRGO navigation project. That Report authorized the closure of the MRGO with a plug, and in late July 2009 construction and complete closure was complete. The Tier 2, Borgne barrier structure which will reduce storm surges in the IHNC from Lake Borgne also includes an earthen plug on the MRGO further obstructing salt water intrusion through the Seabrook structure into Lake Pontchartrain. These recent actions are expected to further reduce salinity spikes through the IHNC and into the southern reach of Lake Pontchartrain, thus, reducing hypoxia and providing favorable conditions for the restoration of rangia clam habitat within Lake Pontchartrain. As a result it is expected that the benthic dead zone will see an increase in water clarity and quality, improvements to submerged aquatic vegetation and hard bottom reef habitat, and an over improvement to fish and wildlife habitat (Abadie and Poirrier 2001).

The Service strongly supports strategies and projects designed to address adverse impacts of continued coastal wetland loss and degraded fish and wildlife habitats. To comply with Section 303 (d) of Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA), the Corps must implement and operate project features consistent with the Louisiana Coastal Wetlands Restoration Plan. That plan, developed by the Corps, the Service, and other Federal and State agencies, identified strategies to protect and restore Louisiana's coastal wetlands. Several Region 1 strategies include diverting Mississippi River water through Violet Canal to sustain the Central Wetlands and Biloxi Marshes, dedicated delivery of sediment for marsh building, as well as closure of the MRGO.

POTENTIAL SIGNIFICANT IMPACTS

Direct impacts to emergent wetlands as a result of the proposed project are not anticipated.

Construction of the new structures across the IHNC would result in the loss of lower quality habitat associated with the banks of the IHNC and areas along the existing floodwall/levee. These areas are covered mainly by grass and are periodically mowed or are partially paved industrial areas. Temporary construction easements totaling approximately 26.5 acres and permanent easements totaling approximately 14.8 acres would be required resulting in a permanent loss of approximately 15 acres of open water and disturbed uplands.

Direct Impacts

The construction phase is expected to have the greatest direct impact on fish and wildlife resources and is anticipated to last approximately 18 to 45 months. Aquatic wildlife using open-water habitats in the project area are mobile and could move to similar habitats in the area at the start of construction activities. The cofferdam would temporarily impede movement and transport of aquatic organisms between the IHNC and Lake Pontchartrain for as much as twelve months, impacting at least one life cycle of aquatic organisms using that pass to reach the lower salinity waters of Lake Pontchartrain. This would affect populations of bait fishes (e.g., bay anchovy, Gulf menhaden and Atlantic croaker) and other commercially important species, such as blue crabs and shrimp species, which migrate inshore utilizing this passage. Although the Chef Menteur and the Rigolets Passes would remain open as access points for aquatic organisms to reach nursery areas in the lake, individuals that reach the IHNC would most likely not recruit to the lake due to poor water conditions in the IHNC during construction and the extended distance and time required to travel to an alternative access point. Commercial and recreational fishing activities would be significantly altered (e.g., displaced or discontinued) with possible economic affects during the twelve months the cofferdam is in place.

Once construction is complete, the IHNC surge barrier structure would reduce the width of the IHNC at the project location from 250 feet wide to 195 feet wide. Although the width of the channel will be reduced, hydraulic modeling conducted by the Corps has indicated that the proposed design including the vertical lift gates will result in velocities similar to those experienced historically within the IHNC. By maintaining those previous velocities the Corps expects that the design will provide adequate passage for fish and aquatic wildlife to cross the surge barrier except during gate closures. Gate closures are expected during storm events and monthly operation and maintenance activities and during high velocity periods to alleviate potential navigation hazards through the GIWW gate. Scheduled gate closure events are expected to last a few days each month. During these closures organisms would be prevented from passing between Lake Pontchartrain and the IHNC. It is uncertain as to the frequency and duration of these closures; therefore, anticipated impacts are unknown. If migratory patterns of fish and aquatic wildlife are not considered, the scheduling and timing of these gate closures could affect migration and transport of those resources.

Two scour holes, most likely the result of tidal flow into and out of the lake at the IHNC, are located approximately 300 feet north and south of the Seabrook Bridge. As a feature of the proposed project the south scour hole would be filled to the adjacent bottom elevation. The south scour hole is approximately 275 feet wide, 450 feet long, and 90 feet deep. Localized mortality of some individuals will occur as a direct result of the filling of the scour hole.

Siltation and diminished sunlight penetration would be most prevalent during the construction of the cofferdam and the filling in of the scour hole and would impact benthic aquatic organisms and phytoplankton in the area despite the use of Best Management Practices (e.g. silt curtains). Although some increased turbidity levels are expected for the duration of construction (i.e., up to 45 months) these increases would be less than turbidity level expected during filling of the scour hole and constructing the cofferdam.

Filling in the south scour hole may result in permanent beneficial changes to dissolved oxygen (DO) levels in the IHNC after construction is complete and has the potential to ultimately improve water quality conditions in the study area (Dortch and Martin 2008). This improvement in DO conditions is anticipated to be especially beneficial to Rangia clams and other benthic organisms.

Indirect Impacts

To assess potential indirect impacts to aquatic resources, the Corps reviewed scientific literature and conducted modeling of DO, salinity, velocity, fish passage, and Particle Transport Movement (PTM) for eight larval organisms (i.e., brown shrimp, white shrimp, blue crab, bay anchovy, Gulf menhaden, Atlantic croaker, red drum, and speckled seatrout) in the project area. The following discussion summarizes the results of those investigations.

The IHNC, a man-made channel with bulkheads along the shoreline, is one of three major tidal passages between the Gulf of Mexico and Lake Pontchartrain used by many aquatic species. Significant alterations to this tidal passage would cause positive and negative impacts to multiple organisms because the mechanisms that drive transport and migration would be altered. During the construction period, tidal flow would be obstructed impacting species such as blue crab, white shrimp and brown shrimp that are dependent on the tidal passes of this estuary to complete its life cycle. Once construction is complete, velocities similar to those experienced historically within the IHNC are expected to be maintained and provide adequate passage for fish and aquatic wildlife.

The installation of a cofferdam that will span the width of the channel would prevent velocity and circulation between Lake Pontchartrain and the IHNC for 12 months of the construction sequence. During the remaining 33 months of construction the IHNC will be at least partially open; velocities at the IHNC surge barrier structure are expected to remain below the existing conditions the majority of this time. However, hydrologic modeling conducted by the Corps' Engineer Research and Development Center (ERDC) indicates that velocities through the GIWW barge gate are expected to exceed 4.0 feet per second (fps) 30% of the time making maritime navigation difficult during construction of the IHNC surge barrier. Average velocities through the GIWW are estimated to be 3.0 fps during construction of the IHNC surge barrier. After construction is complete, velocities within the IHNC are expected to increase above existing conditions (i.e., the MRGO closure structure at Bayou La Loutre and Borgne Barrier), but comparable to those historically experienced prior to the above-mentioned structures being in place. Historical average velocities range from approximately 2.40 fps during the fall to 2.73 fps

in the spring, with a maximum velocity of 4.98 fps (USACE 2009b). According to NMFS' guidance document titled "Fisheries Friendly Design and Operation Considerations for Hurricane and Flood Protection Water Control Structures," limited information indicates that velocities greater than 2.6 fps through tidal channels can inhibit fish passage and would cause even greater adverse impacts to less mobile aquatic organisms. However, this guidance may not necessarily be applicable to tidal passes or other similar major exchange points that naturally experience higher velocities. According to hydrologic modeling, velocities would exceed 4.0 fps in the IHNC 1% of the time under "September" modeling conditions and 3% of the time under "March" modeling conditions, and velocities exceed 2.6 fps in the IHNC 40% of the time under "September" conditions and 55% of the time under "March" conditions (USACE 2009a). The addition of the vertical lift gates on either side of the sector gate are expected to mitigate any turbulence caused by the sector gates. However, with the existing human alterations to the project area, fisheries resources are most likely already exposed to velocities greater than 2.6 fps during tidal cycles under existing conditions and occasionally are exposed to velocities similar to those predicted.

PTM modeling results indicate that the proposed action, in conjunction with the Lake Borgne surge barrier and the MRGO closure at Bayou La Loutre, may cause an overall 6% to 10% decrease in the dispersion of larval organisms into Lake Pontchartrain. Of the majority of the model fishery species that are recruited into Lake Pontchartrain via the IHNC those experiencing the greatest impact exhibit tidal lateral behavior during migration (e.g. brown shrimp, white shrimp, Gulf menhaden, Bay anchovy, and red drum). This predicted decline in recruitment could have some direct impacts to the overall population of these organisms because fewer organisms would occur in the system. Indirect impacts could be less prey available for seatrout and other predator fish if recruitment of shrimp and Atlantic croaker decline.

While the coffer dam is in place during the initial stage of construction, fish passage into Lake Pontchartrain will be completely blocked. During this period all life stages of prey and predatory species using the IHNC as an access to the less saline estuarine habitats will be disrupted resulting in possible increased stress on individuals (e.g., starvation or increased predation pressure). The Corps' investigations determined that population-level impacts may be experienced if closure of the channel exceeds the maximum anticipated construction duration of up to twelve months. Once the cofferdam is removed, access to Lake Pontchartrain would be restored; however, based on the results of the PTM modeling, slowed velocities during phase II construction (i.e., coffer dam removed) along the GIWW and into the IHNC and changes in directional flow would increase migratory time to enter the Lake Pontchartrain through the IHNC potentially reducing recruitment of larval life stages of fisheries species.

Potential cumulative impacts to aquatic resources in the project vicinity could occur from construction-related activities (e.g., turbidity from dredging, noise) and from other on-going, completed, and authorized projects (e.g., changes in salinity, velocity, circulation/flow, and DO). Changes to hydrology may negatively affect fisheries resources during construction by decreasing recruitment of larvae especially tidal lateral movers such as shrimp, bay anchovy, Gulf menhaden, and red drum, and negative impacts could be exacerbated should the cofferdam be in place longer than 12 months. While blocked flow between the IHNC and Lake Pontchartrain

may impact fish passage and tidal transport, salinities to the north and south of the project area would also change significantly during construction, potentially benefiting water quality parameters and benthic habitat. These alterations would include potential benefits to benthic communities in the southeastern portion of the lake, known as the benthic dead zone, and the temporary restoration of a natural salinity gradient in that area.

Modeling conducted by ERDC illustrated that the closure of the MRGO at Bayou La Loutre would have a significant effect on monthly average bottom salinity values not only in associated waterways, but also in the Lake Borgne area and in some areas of Lake Pontchartrain. Most areas showed decreases of 3 parts-per-thousand (ppt) to 4 ppt, with the MRGO showing the highest decrease of approximately 10 ppt in the region just north of the La Loutre closure, but minimal changes occur at Seabrook (< 1 ppt change) (Martin et al. 2009). The overall change to salinity could be both positive and negative to aquatic resources. It is expected that environmental conditions would be restored to those closer to historical conditions (e.g., pre-MRGO) including a more fresh-brackish water system. Although salinity would be returned to historic conditions, the area would experience a short-term reduction of prey species, changes in behavior, a decrease in growth rates, and a shift in species composition. While the initial impact may be substantial; it is expected to be beneficial in the long-term as the salinity regime is restored to somewhat historic conditions and the estuarine habitat becomes more productive. Restoring historic salinity conditions would be especially beneficial for benthic organisms that are currently experiencing poor DO and unfavorable salinity conditions within the bottom of the water column. Benefits may include increases in the populations of oysters and Rangia clams in Lake Pontchartrain and which in turn could assist in restoring historic submerged aquatic vegetation distribution within the lake. Other aquatic species using the areas would also benefit from improved water quality conditions.

While some areas may experience improved water quality conditions, there are other areas that may see a deterioration of water quality parameters as the salinity gradient shifts and recently constructed and authorized structures impede flow. Investigations are on-going to evaluate the cumulative impacts associated with the proposed project coupled with the Lake Borgne surge barrier structure, the MRGO de-authorization structure, as well as other projects proposed in the Lake Pontchartrain Basin.

As a result of the closure of the MRGO at Bayou La Loutre and the Lake Borgne surge barrier, organisms will no longer be able to use the MRGO and the western portion of the "golden triangle" marsh for transport or migration to Lake Pontchartrain. After construction, the IHNC via the GIWW and the Rigolets and Chef Menteur Passes in the eastern portion of the Lake would still be available. Even though larval transport and migration of other life stages may be reduced into Lake Pontchartrain through the IHNC, organisms could benefit from the overall change in flow direction from the implementation of closure of the MRGO, the Borgne Barrier, and the proposed action. If organisms used the alternate routes (i.e., the Rigolets and Chef Menteur Passes) they could enter and settle out in the eastern portion of Lake Pontchartrain, which contains more abundant high quality habitat, including natural shorelines bordered with complex habitat mosaics (SAV habitat, Rangia clams and oyster shells). Recruiting into these higher-quality habitats could result in higher growth rates, less predation, and a greater chance of

individuals successfully growing to maturity and spawning. Such benefits would only occur if carrying capacity in those areas has not been reached resulting in additional pressure on resources due to competition and overuse.

For twelve months during construction a cofferdam will block flow between the IHNC and Lake Pontchartrain. Blocking access to quality habitat could cause an increase in predation of some lower trophic level species and change available prey items to predators. This blockage along with the Borgne Barrier and the MRGO closure at La Loutre may require predators that have become dependent on that tidal passage to travel longer distances during construction and would extend an already lengthy trip thereby decreasing growth rates, overall health, and possibly the ability to reproduce of some individual fisheries resources. Additionally, fish kills documented in the MRGO at the La Loutre closure coupled with potential fish kills at the Bienvenue closure and the IHNC during this period would impact a larger number of individuals. Fish kills in these areas could cause slower growth rates in individuals subjected to this environment, and would decrease survival of some species causing changes in overall community structure near the closures. Greater impacts are expected due to the MRGO closures due to the higher salinities and deeper water depth in the area as compared to the proposed action.

FISH AND WILDLIFE CONSERVATION MEASURES

The Corps proposes to close the Lake Pontchartrain surge barrier during storm events and monthly maintenance events, and during periods of high velocities to ensure safe navigation through the GIWW structure. The definition of a storm event and velocity threshold that will require gate closures has not been provided. The frequency, timing, and duration of these events are also unknown, and depending on the operation of these closures, aquatic organisms could be adversely impacted. To minimize impacts and reduce the amount of closures, maintenance events should capitalize on closure events resulting from increased velocities. In the event this is not feasible, an effort to time closures during the two lowest tidal periods during a month would minimize impacts to fisheries migration and flow. To further minimize impacts, the closure of the IHNC surge barrier to alleviate high velocities through the GIWW should be carefully evaluated. A minimum channel reduction necessary at the IHNC surge barrier that will allow safe navigation at the GIWW gate and provide some aquatic organism access should be considered. The Service and other natural resource agencies should be provided an opportunity to review and comment on the timing and duration of the proposed closure events to further minimize their effects.

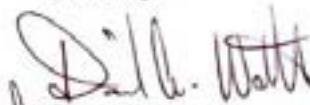
The IHNC hurricane protection project, including both the Lake Borgne and Lake Pontchartrain surge barriers, is expected to impact tidal exchange, minimize the channel cross sectional areas and geomorphology, and aquatic organism access. Operational plans and final design configurations should be developed to maximize the cross-sectional area. The Corps should coordinate with the natural resource agencies during ongoing development of the structure designs to ensure that fish and wildlife conservation measures are incorporated. Furthermore, NMFS' guidance document titled "Fisheries Friendly Design and Operation Considerations for Hurricane and Flood Protection Water Control Structures" provided in our November 26, 2007,

Draft Programmatic FWCA Report and also included in this Report (Appendix B) should assist in the design of flood protection features while incorporating estuarine habitat conservation measures.

The Corps has provided valuable insight into the potential impacts associated with the proposed project through their extensive modeling and investigations which has also benefited other proposed projects in the basin. To fully evaluate and disclose impacts associated with the construction and operation of the IHNC hurricane protection project, the Corps should continue to move forward with those modeling efforts and investigations. The Cumulative Environmental Document should fully describe the cumulative impacts of the IHNC hurricane protection project structures and the operation of those structures including impacts to water quality, aquatic organism access, and how those impacts relate to current and foreseeable projects in the area.

SERVICE POSITION AND RECOMMENDATIONS

The Service does not object to the construction of the proposed project provided the following fish and wildlife conservation recommendations are implemented concurrently with project implementation:


1. Generally, flood protection barriers and associated structures should be situated so that destruction and enclosure of emergent wetlands are avoided or minimized, to the greatest extent possible.
2. The project's first Project Cooperation Agreement (or similar document) should include language that specifies the responsibility of the local-cost sharer to provide operational, monitoring, and maintenance funds for mitigation features, as well as shoreline protection features.
3. Further detailed planning and design of project features (e.g., Design Documentation Report, Engineering Documentation Report, Plans and Specifications, or other similar documents) should be coordinated with the Service, NMFS, LDWF, Environmental Protection Agency (EPA) and Louisiana Department of Natural Resources (LDNR). The Service shall be provided an opportunity to review and submit recommendations on the all work addressed in those reports.
4. If a proposed project feature is changed significantly or is not implemented within one year of the date of our Endangered Species Act consultation letter, we recommend that the Corps reinitiate coordination with each office (i.e., NMFS in St. Petersburg, Florida, and the Service's Lafayette, Louisiana, Field Office) to ensure that the proposed project would not adversely affect any Federally listed threatened or endangered species or their habitat.
5. Operation and maintenance plans should inform the local sponsor of the potential for federally listed threatened and endangered species to occur near the proposed structures

and the need be aware of their presence during operation of those structures. We recommend that the Corps' include in the operation and maintenance plan provided to the local sponsor a measure that will inform them of the need to coordinate with the Service and NMFS every year and when operational plans are revised, as those revisions may affect federally listed threatened and endangered species.

6. To ensure manatees are not entrained within the flood protection structures or harmed during the closure of the structures, Standard Manatee Protection Measures should be included in the Corp's construction contracts as well as the operation and maintenance plans developed for the local sponsor.
7. Flood protection water control structures in any watercourse should maintain pre-project cross section in width and depth to the maximum extent practicable, especially structures located in tidal passes.
8. Flood protection water control structures should remain completely open except during storm events and should be operated to allow for maximum flow. The development of the operation and maintenance plans should be closely coordinated with the natural resource agencies to ensure maintenance events are scheduled to minimize impacts to aquatic resources.
9. To the maximum extent practicable, monthly maintenance activities should coincide with closure events intended to reduce velocities for the maritime industry. In the event this is not feasible, closures should be timed during the two low periods of the tidal range during a month to minimize impacts to fisheries migration and flow.
10. Structures should include shoreline baffles and/or ramps (e.g., rock rubble, articulated concrete mat) that slope up to the structure invert to enhance organism passage. Various ramp designs should be considered.
11. To the maximum extent practicable, structures should be designed such that average flow velocities during peak flood or ebb tides do not exceed 2.6 feet/second. This may not necessarily be applicable to tidal passes or other similar major exchange points.
12. Water control structures should be designed to allow rapid opening in the absence of an offsite power source after a storm passes and water levels return to normal.
13. Operation and maintenance plans should be developed to maximize the cross-sectional area open for as long as possible and should be coordinated with the natural resource agencies. Operations to maximize freshwater retention or redirect freshwater flows could be considered if hydraulic modeling demonstrates that is possible and such actions are recommended by the natural resource agencies.
14. Shoreline protection features should be constructed as proposed to maintain the shoreline integrity and minimize shoreline erosion.

Should you or your staff have any questions regarding this letter and our attached report, please contact Angela Trahan (337/291-3137) of this office.

Sincerely,

James F. Boggs
Supervisor
Louisiana Field Office

cc: Southeast LA Refuge Complex, Lacombe, LA
NMFS, Baton Rouge, LA
EPA, Dallas, TX
LDWF, Baton Rouge, LA
LDWF, NHP, Baton Rouge, LA
LDNR, CMD, Baton Rouge, LA
OCPR, Baton Rouge, LA

LITERATURE CITED

Abadie, S.W. and M.A. Poirier. 2001. Rangia clams as an indicator of hypoxia in Lake Pontchartrain, in N. McInnis and B. Rogers, Priority Conservation Areas in the Lake Pontchartrain Estuary Zone. The Nature Conservancy and Lake Pontchartrain Basin Foundation, Northshore Field Office, LA.

Checkett, Mike. "An aerial survey by LDWF biologists..." [Weblog comment.] December 18, 2006. Scaup Migration Update. Mike Checkett, Waterfowl Biologist. Ducks Unlimited Blogs. December 15, 2006(<http://www.ducks.org/blogs/1/56/index.html>) September 28, 2009.

Day, J.W., Jr., and G.P. Shaffer. 2008. Effects of the Mississippi River Gulf Outlet on Coastal Wetlands and Other Ecosystems in Southeastern Louisiana. Expert Report, July 11, 2008, pp. 71.

Dortch, M.S. and S.K. Martin. 2008. Estimation of Bottom Water Dissolved Oxygen in the Mississippi River Gulf Outlet and Gulf Intracoastal Waterway Resulting from Proposed Structures. U.S. Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi.

Lake Pontchartrain Restoration Working: Foundation Builds Successful Record of Citizens Projects. *Louisiana Environmentalist*. July – August 1995. September 24, 2009. <<http://www.leeric.lsu.edu/le/special/pontchartrain.htm>>.

Louisiana Coastal Wetland Conservation and Restoration Task Force and the Wetlands Conservation and Restoration Authority. 1998. Coastal 2050: Toward a Sustainable Coastal Louisiana. Louisiana Department of Natural Resources. Baton Rouge, LA. 70898.

Martin S.K., T.O. McAlpin, and D.C. McVan. 2009. Floodgate Analysis of the Mississippi River Gulf Outlet and Gulf Intracoastal Waterway. Coastal and Hydraulics Laboratory. U.S. Army Engineer Research and Development Center. Vicksburg, Mississippi.

Poirier, M.A., Z.R. del Rey, and E.A. Spalding. 2008. Acute disturbance of Lake Pontchartrain benthic communities by Hurricane Katrina. *Estuaries and Coasts* Volume 31: 1221-1228.

Spalding E.A., A.E. Walker, and M.A. Poirier. 2007. Restoration of 100 square miles of shellfish habitat in Lake Pontchartrain. Gulf of Mexico Program. New Orleans: EPA, MX974852-03-0.

U.S. Army Corps of Engineers (Corps). 2009a. Estimation of Dissolved Oxygen Concentrations of Two New Scenarios for Seabrook Conditions. ERDC/CHL TR-08-X. August.

U.S. Army Corps of Engineers (Corps). 2009b. Draft Seabrook Fish Larval Transport Study. ERDC/CHL TR-08-X. March.

APPENDIX A

National Marine Fisheries Service Baton Rouge Field Office

Recommendations for Fisheries Friendly Design and Operation of Hurricane and Flood Protection Water Control Structures and Supporting Appendices

SUMMARY

The purpose of this document is to: 1) identify design and operational guiding principles that would optimize passage of estuarine dependent marine fisheries species, or at least, minimize adverse impacts to their passage through hurricane and flood protection water control structures planned for the New Orleans District of the U.S. Army Corps of Engineers; and, 2) provide background literature for environmental justification and documentation. Specific projects for which this guidance should be considered include the Mississippi River and Tributaries, Morganza to the Gulf of Mexico Hurricane Protection Project; Donaldsonville to the Gulf Project; Supplemental Appropriations Projects, and the Louisiana Coastal Protection and Restoration Project (LACPR). However, these guiding principles would also pertain to any civil works projects that could include combinations of levees and/or water control structures. Project delivery teams should remain flexible to adapt these design principles on a case-by-case basis as new fishery resource information and project-specific hydraulics data become available.

In general, the ability of estuarine dependent marine fishery organisms to migrate to and from coastal habitats decreases as structural restrictions increase, thereby reducing fishery production. The physical ability (i.e., swimming speed) to navigate through a structure is not the only factor influencing fish passage. Both behavioral and physical responses govern migration and affect passage of fishery organisms through structures. These responses may vary by species and life stage. In addition, most marine fishery species are relatively planktonic in early life stages and are dependent on tidal movement to access coastal marsh nursery areas. For this reason, in general, the greater the flow through a structure into a hydrologically affected wetland area, the greater the marine fishery production functions provided by that area.

Data on marine fishery species migrations in the Gulf of Mexico are too limited to allow the development of definitive design and operational considerations for water control structures that would guarantee the protection of marine fishery production. Anecdotal comparisons can be made with data from water intake and fish passage studies from the west and east coasts. It should not be assumed that structures that have been determined to provide sufficient drainage capacity also optimize or provide adequate fishery passage. More investigation is warranted to refine and adaptively manage water control structure design and operations to minimize adverse impacts to fishery passage. Case specific recommendations for some features under the Mississippi Tributaries, Morganza to the Gulf of Mexico Hurricane Protection Project and LACPR are provided in the appendices. In addition, biological background information is provided in the appendices to assist in preparation of environmental documents required by the National Environmental Policy Act (NEPA).

Summary of guiding principles for designing and operating flood protection water control structures to maintain marine fishery passage:

- Generally, bigger and more numerous openings in hurricane and flood protection levees better maintain estuarine dependent fishery migration. As much opening as practicable, in number, size, and diversity of location should be considered.
- Flood protection water control structures in any watercourse should maintain pre-project cross section in width and depth to the maximum extent practicable, especially structures located in tidal passes.
- Flood protection water control structures should remain completely open except during storm events.
- Any flood protection water control structure sited in canals, bayous, or navigation channels that do not maintain the pre-project cross section should be designed and operated with multiple openings within the structure. This should include openings near both sides of the channel as well as an opening in the center of the channel that extends to the bottom.
- The number and siting of openings in flood protection levees should be optimized to minimize the migratory distance from the opening to enclosed wetland habitats.
- Structures should include shoreline baffles and/or ramps (e.g., rock rubble, articulated concrete mat) that slope up to the structure invert to enhance organism passage. Various ramp designs should be considered.
- To the maximum extent practicable, structures should be designed and/or culverts selected such that average flow velocities during peak flood or ebb tides do not exceed 2.6 feet/second. This may not necessarily be applicable to tidal passes or other similar major exchange points.
- To the maximum extent practicable, culverts (round or box) should be designed, selected, and installed such that the invert elevation is equal to the existing water depth. The size of the culverts should be selected that would maintain sufficient flow to prevent siltation.
- Culverts should be installed in construction access roads unless otherwise recommended by the natural resource agencies. At a minimum, there should be one, 24-inch culvert placed every 500 feet and at natural stream crossings. If the depth of water crossings allow, larger sized culverts should be used. Culvert spacing should be optimized on a case-by-case basis. A culvert may be necessary if the road is less than 500-feet long and an area would hydrologically isolated without that culvert.
- Water control structures should be designed to allow rapid opening in the absence of an offsite power source after a storm passes and water levels return to normal.
- Levee alignments and water control structure alternatives should be selected to avoid the need for fishery organisms to pass through multiple structures (i.e., structures behind structures) to access an area.
- Operational plans should be developed to maximize the cross-sectional area open for as long as possible. Operations to maximize freshwater retention or redirect freshwater flows could be considered if hydraulic modeling demonstrates that is possible and such actions are recommended by the natural resource agencies.

INTRODUCTION

Various flood protection and environmental water control structures in hurricane protection levees are being designed and considered for inclusion with ongoing local and federal civil works projects within the boundaries of the New Orleans District. Design purposes of the structures vary and may include maintaining safe navigation and optimizing drainage and passage of fishery organisms. For the Morganza to the Gulf of Mexico hurricane protection project, an interagency Habitat Evaluation Team (HET) and NOAA's National Marine Fisheries Service (NMFS) identified economically important fishery species that should be considered when assessing structure impacts on estuarine fisheries migration. Both the federal and state governments manage some of these species. Primary species that could be affected by flood protection structures in Louisiana include brown shrimp, white shrimp, blue crab, red drum, black drum, spotted seatrout, sand seatrout, southern flounder, and gulf menhaden. Some information is included herein on forage species, the production of which is important to maintain as they serve as important links of the aquatic food web for many of the managed fishery species.

The Baton Rouge office of NMFS has developed preliminary design principles for hurricane and flood protection water control structures to reduce impacts to living marine resources, especially related to migrations of estuarine dependent species. The basis for the following recommended guiding principles is briefly discussed where supporting literature is available. Case specific examples for some features under the Mississippi River and Tributaries, Morganza to the Gulf of Mexico hurricane protection project and the Louisiana Coastal Protection and Restoration Project are provided in the appendices. Basic behavior and physiology effects on the passage of fishery organisms are discussed in detail in appendices C and D, to aid federal agencies in environmental evaluations and descriptions under NEPA.

This document has been developed in consideration of input from the interagency HET, university faculty, fish passage staff of various agencies, and cursory literature reviews. These design considerations are intended to address potential impacts to living marine resources pursuant to the Fish and Wildlife Coordination Act and the Magnuson-Stevens Fishery Conservation and Management Act. Impacts to resources managed under other authorities, such as the Endangered Species Act or the Marine Mammal Protection Act, are not addressed in this document.

BEHAVIOR

The physical ability (i.e., swimming speed) to navigate a structure is not the only factor influencing fish passage, especially for small structures. Behavioral responses to stimuli individually or interactively affect passage with physiological constraints or responses. Behavior generally can be categorized as schooling and non-schooling behavior.

SCHOOLING BEHAVIOR

Schooling behavior consists of strategies that provide hydrodynamic efficiency, reduced predation, increased efficiency in finding food, and increased reproductive success. Water control structures for flood protection impact large numbers of fishery organisms due to this

group response. This could be because fish exhibit the tendency to approach and orient to other members of the species (i.e., biotaxis). This orientation confers a hydrodynamic advantage that is more efficient than individuals due primarily to vortices setup by lead fish. Schools function as a living organism where the group reacts to stimuli as an individual. It is this group reaction that influences greater affect on passage through water control structures.

NON-SCHOOLING BEHAVIOR

Agonistic, territorial, and hierarchical behaviors are examples of non-schooling behavior exhibited by fish. Agonistic and territorial behaviors are largely unknown for the listed estuarine and marine fishery species of concern and their life stages. Structures that create physically taxing water flow velocities and some low flow areas may encourage these behaviors as fish compete for resting areas similar to competition seen with fish competing for resting areas within shrimp trawls or behind rocks in river riffle/pool habitat. It is possible these behavioral responses overall may not be that influential on fish passage through a structure, but may come more into play during low flow conditions such as lower tides or slack tide. Hierarchical behavior can often be driven by a combination of physiological responses and will be discussed in that section. Overall, investigation on behavioral responses to water control structures is needed to avoid and minimize adversely impacting fishery passage if not optimizing it.

PHYSIOLOGICAL

Fishery species and life stages react differently to a current of water (i.e., rheotaxis). Generally, fish are better able to orient to horizontal verses vertical flow (Meyers et al. 1986).

Locomotion

There are two means for migratory transport of estuarine and marine fish and crustaceans: passive and active transport. Passive transport is drift of organisms carried by the tides and currents. Larval and post-larval fish and crustacean life stages are predominately transported passively by tides and currents. Passive transport via tidal forcing can play a strong role in migration of sub-adult and adult brown shrimp, white shrimp, and blue crabs. Active transport is movement by swimming, which is the primary means of locomotion for sub-adults and adult fish.

SWIMMING SPEED

Refer to guiding principles number 7 for details on swimming speeds relative to impacts on fish passage.

BEHAVIORAL/PHYSIOLOGY INTERACTION

Many fishery organisms exhibit hierarchical behavior. This is a direct response to stimuli, such as astronomical (e.g., tidal rhythm) or meteorological driven flows. For example, brown shrimp mediate transport by circadian or diel vertical migration. Brown shrimp move down in the water column or cease activity as they become negatively buoyant when low salinity and temperature water develop in estuaries with north winds associated with spring fronts. Brown shrimp activity resumes with their movement up in the water column with increasing water temperature, salinity, and hydrostatic pressure associated with the southerly gulf return following after a cold front.

(Rogers et al. 1993). Similar selective tidal stream transport was reported by Hartman et al. (1987). Fishery organisms identify tide changes by detecting altered velocity, salinity, temperature, all of which can cue staging for immigration with an incoming tide. Future tidal pass or inlet studies are needed for better information on vertical distribution, depth preferences, and changes in buoyancy or behavior to evaluate active and passive transport of fishery organisms.

GUIDING PRINCIPLES FOR DESIGNING FISHERIES FRIENDLY FLOOD PROTECTION WATER CONTROL STRUCTURES

1. Generally, bigger and more numerous openings in hurricane and flood protection levees better maintain estuarine dependent fishery migration. As much opening as practicable, in number, size, and diversity of location should be considered.

Most of Louisiana's commercial and recreational fishery species must have access to estuarine marshes to successfully complete some part of their life cycle (i.e., they are estuarine-dependent). Estuarine-dependent fishery productivity is a measure of standing crop (the number of fishery organisms present at a point in time) and the turnover rate (the rate at which the population is replaced). All things being equal, fishery production would be lower following levee and water control construction if structures retard turnover rate. This would be the case even while standing crop may appear normal. Restrictions in tidal movement caused by water control structures and levees would result in degraded or substantially changed species composition, which could alter fishery production and/or displace fisheries.

Marine transient species emigrate (i.e., move from coastal marshes towards Gulf waters) towards higher salinity water; therefore, a structure that maintains the greatest degree of opening while allowing the project objectives to be met would be desirable (Rogers et al. 1992).

2. Flood protection water control structures in any watercourse should maintain pre-project cross section in width and depth to the maximum extent practicable, especially structures located in tidal passes.

Water control structures should be designed to have a water flow capacity (and similar dimensions where possible) comparable to the waterway before construction. Restricted water exchange in marshes enclosed by levees and water control structures diminishes recruitment and standing stocks of species that must migrate from coastal spawning sites to marsh nurseries (Rogers et al. 1994). As the amount of hydrologic control increases, the effect on migration and production of marine transients and residents increases. Greater restriction decreases turn over rate of estuarine-dependent fishery organisms, which decreases their production (Rogers et al. 1992^a). Slotted and fixed crest weirs have been found to delay immigration. As the degree of restriction increased from slotted weirs, to low elevation weir, and to fixed crest weirs, greater impacts to different fisheries species and their emigration were observed.

Design considerations for hurricane and flood protection water control structures should include features to accommodate vertical and horizontal fishery distribution patterns within interior marsh tidal pathways and coastal passes. Fishery organisms exhibit preferences by species, life stage, and in some cases tide cycle, for vertical and horizontal distribution within smaller or interior marsh tidal connections (Table 1). Behavioral and physiological responses, such as diel vertical migration, affect these preferred distribution patterns.

Study of Keith Lake Pass in Texas revealed that all portions of the water column, both vertically and horizontally, are used by fishery organisms (Hartman et al. 1987). Most estuarine-dependent fishery species preferred the bottom or shore zones during flood tides, but were much denser near the shores of the pass, in slower moving water, on ebb tide. This lateral movement on slack to ebb tides appears to be a behavioral action to prevent displacement from the pass during ebb tide to accelerate movement to marsh nursery areas. The study identified the response to light cycles with midday densities greatest at bottom and densities greatest at surface during dawn to dusk. Similar within pass distribution patterns were reported by Sabins and Truesdale at Grand Isle, Louisiana (1974).

Table 1. Table on fishery preference within the water column (Marotz et al. 1990; Herke and Rogers 1985; Hartman et al. 1987; Sabins and Truesdale 1974). ^ajuveniles; ^bimmigrating; ^cemigrating; ^debb tide; ^fflood tide.

Species	Vertical Distribution			Horizontal Distribution
	Surface	Mid-depth	Bottom	Shore/Nearshore
brown shrimp ^b	X	X		X ^d
white shrimp ^b	X	X		
white shrimp ^c		X		X ^d
blue crab	X			X ^e
red drum ^a				X ^e
red drum ^b		X	X	
red drum ^c			X	
bay anchovy	X			
striped mullet	X			
Atlantic croaker ^a	X	X		X ^e
Atlantic croaker		X	X	X ^e
spotted seatrout		X	X	
sand seatrout		X	X	X ^e
gulf menhaden	X	X		
southern flounder				X ^f
black drum				X ^e

3. Flood protection water control structures should remain completely open except during storm events.

Fish passage should be optimized by the duration that structures remain fully open. Rozas and Minello (1999) reported that even when water-control structures were open, the densities of

transient species were low inside areas enclosed by levees and water control structures as compared to natural areas.

Fisheries migration that temporarily may be impacted with storm related closures are listed in Table 2. The degree of impact would be influenced by the timing and duration of a structure closure relative to peak migration.

Table 2. Migration of economically important fisheries in Louisiana that temporarily may be impacted with storm related closures.

Species	Migration Period Overlapping with Hurricane Season
brown shrimp	April - mid July
white shrimp	July - November
blue crab	June - September
spotted seatrout	April - October
sand seatrout	April - October
red drum	August - December
black drum	March - July
southern flounder	September - October

4. Any flood protection water control structures sited in canals, bayous, or navigation channels that do not maintain the pre-project cross section should be designed and operated with multiple openings within the structure. This should include openings near both sides of the channel as well as an opening in the center of the channel that extends to the bottom.

Hartman et al. (1987) recommended structures not be constructed in a tidal pass. If a structure was constructed, they recommended the incorporation of several gates at several vertical and horizontal locations, with baffles near shore. Baffles near shore are to direct shore or near shore fish passage on ebb tides through the available structure opening(s) (e.g., gates in wing walls).

Structures should be designed and operated with multiple openings if the pre-project water depth and widths of a channel are not maintained. Multiple openings are necessary to optimize passage of fishery organisms that prefer to migrate along the sides, bottom, and top of channels. For example, Rogers et al. (1992^b) recommended opening some vertical slots and top, middle, and bottom gates in a structure with multiple slots and gates.

5. The number and siting of openings in flood protection levees should be optimized to minimize the migratory distance from the opening to enclosed wetland habitats.

The location and number of structures likely affects the abundance and distribution of estuarine fishery species within habitats that would be located on the protected side of levees and water control structures. Rogers et al. (1992^c) determined that marine transient species were most numerous nearest the structures, partially due to the proximity of the openings with respect to the area enclosed. Similarly, other studies have shown there is a decrease in fishery species

abundance and diversity the greater the distance from the access point (Peterson and Turner 1994). This can become more pronounced if an environmental gradient (e.g., salinity) exists between an access point and the interior habitat located on the protected side of structures (Cashner 1994).

6. Structures should include shoreline baffles and/or ramps (e.g., rock rubble, articulated concrete mat) that slope up to the structure invert to enhance organism passage. Various ramp designs should be considered.

Study of Keith Lake Pass in Texas revealed vertical and horizontal distribution patterns of fishery organisms in the pass (Hartman et al. 1987). Estuarine-dependent fishery organisms preferred the bottom or near shore zones on flood tides. Most organisms appeared near shores of the pass on ebb tide in slower moving water. Baffles near shore are to direct shore or near shore fish passage through the structure.

Many fish migrate along the water bottom. Water control structures with crests or inverts higher than the lower portion of a channel could impede migration through the deep-water portions of channels. Ramps can provide a means to guide organisms over and through structures and increase access of fisheries organisms to enclosed habitat (Lafleur 1994). Various ramp designs need to be investigated.

7. To the maximum extent practicable, structures should be designed and/or culverts selected such that average flow velocities during peak flood or ebb tides do not exceed 2.6 feet/second.

In this preliminary investigation, no studies were located that evaluated the impacts of swimming speeds for the fishery species and life stages of concern in Louisiana. To avoid preventing or reducing ingress or egress of fishery organisms, preliminary guidance on water velocities through structures in Louisiana could be based on anecdotal comparisons with data available on general swimming speeds from studies on the west and east coasts (Tables 3 and 4).

Swimming speeds of estuarine and marine fish and crustaceans is a function of shape, stage of development, length, ambient temperature, light, and duration required for swimming performance. For most species, absolute speed increases as size increases. Generally, fish swimming speeds range from 2-4 body lengths/second with burst speeds up to 5 body lengths/second (Meyers et al. 1986).

Water intake studies have shown that maintaining water velocities less than 0.5 ft/sec would protect most fish and their life stages from being adversely affected by those flows (USEPA 2004). The species and life stages of fish for that study could not be located at this time and further investigation for Gulf of Mexico species is warranted. They also recommended creating horizontal velocity fields to avoid adverse affects on fish because fish are better able to orient to horizontal versus vertical flow. This could allow selective avoidance of water flows not preferred by fish or minimize disorientation or mortality rates caused by flows.

Eberhardt (personal communication) reported velocities exceeding 0.82 feet/second began to impede fish passage. Fish passage was decreased by 50% for velocities exceeding 2.6 feet/second. Based on evaluation of freshwater species, Gardner (2006) recommends keeping velocities through round culverts less than 1.8 ft/sec during 90% of the fish migration season. To improve fish passage through culverts, installing baffles within culverts should be considered to reduce flow velocity barriers for fish (Pacific Watershed Associates 1994).

Table 3. Water flow velocity thresholds for affecting fish passage or avoiding impingement within flows or on screens.

Source	Water Flow Velocity (ft/sec)	
Alyson Eberhardt, personal communication	0.82	Begin to impede
	2.62	Decreased fish passage by 50%
Gardner 2006	1.8	Critical velocity (freshwater fish)
Meyers et al. 1986	<0.49	To avoid impingement
USEPA 2004	<0.50	Protected 96% of the fish tested from impingement

Table 4. Sustained fish swimming speeds. Adapted from Meyers et al. (1986). Note that no data was located for the fisheries species and life stages for the Gulf of Mexico.

Fish/life stage	Swimming Speeds (ft/sec)
Atlantic herring	0.19 – 0.3
Mullet	4.19
Horse mackerel	4.46
Sole	0.19 - 0.3
most larvae	0.82 – 0.98

Based on these limited data, larval fish could be adversely impacted by water flow rates exceeding 0.82 feet/second. Post-larval and juvenile stages of flounders could be impacted by flow rates around 1.0 ft/sec. Other species or larger life stages likely would not be adversely impacted until flow rates exceed 2.62 feet/second based on inferences from these data. Water flow velocity monitoring in the Terrebonne Basin by the U.S. Fish and Wildlife Service has found maximum flows through existing open channels exceeding 1.0 feet /second and in larger saline marsh channels and passes exceeding 2.0 feet/second.

If the spatial extent of flow velocity fields exceed the distance that can be traveled with sustained or burst swimming speeds of fishery organisms, those flows could prevent or reduce ingress or egress during the time which those flows exist. However, the degree of mortality from not being able to access nursery and foraging habitat is not known. High flow rates may aid passage of larval fish that primarily depend on passive transport for migratory distribution and access to

estuarine habitat on the protected side of levees, if the high flows do not induce mortality from injury or fatigue. Water flow could exceed the fish swimming rates for short periods and still provide passage during low flows or during still water.

8. To the maximum extent practicable, culverts (round or box) should be designed, selected, and installed such that the invert elevation is equal to existing water depth. The size of the culverts should be selected that would maintain sufficient flow to prevent siltation.

Design considerations should include installing baffles within culverts to reduce flow velocity barriers (Pacific Watershed Associates 1994). Passage of salmon and herring species has been shown to be impaired by culverts. With baffles or other similar features, still water areas could be created to enhance fish passage.

If water control structures include plunge pools, the invert elevation of the structure could be equal to the depth of the plunge pool if the plunge pool is deeper than the pre-project water depth. This deeper invert would optimize passage of fisheries species, in particular bottom dweller species.

Fish often require visual cues for orientation and exhibit faster swimming speeds at increased light levels. Herring type fish (e.g., gulf menhaden) are particularly sensitive to light levels. However, although herring exhibited a preference for unshaded portions of treatments during both day and night periods, as little as 1.4% of the ambient light was necessary for their passage through a culvert (Mosser and Terra 1999).

9. Culverts should be installed in construction access roads unless otherwise recommended by the resource agencies. At a minimum, there should be one, 24-inch culvert placed every 500 feet and at all water crossings. If the depth of water crossings allow, larger sized culverts should be used. Culvert spacing should be optimized on a case-by-case basis. A culvert may be necessary, even if the road is less than 500 feet long, if an area would be hydrologically isolated without that culvert.

10. Water control structures should be designed to allow rapid opening in the absence of an offsite power source after storm passage and return of normal water levels.

Regardless of structure size, designs and contingency plans should include means to rapidly open the water control structures when flooding risks subside after a storm. Designs and plans should include infrastructure, equipment, and staff necessary to open the structures even if offsite electricity is not available. Design safeguards should be developed to protect the structures from being damaged rendering them inoperable and locked in a closed configuration after passage of a storm.

11. Levee alignment and water control structure alternatives should be selected to avoid the need for fishery organisms to pass through multiple structures (i.e., structures behind structures) to access an area.

12. Operational plans should be developed to maximize the cross-sectional area open for as long as possible. Operations to maximize freshwater retention or redirect freshwater flows could be considered if hydraulic modeling demonstrates that is possible and such actions are recommended by the natural resource agencies.

LITERATURE CITED

Cashner R.C., F.P. Gelwick, and W.J. Matthews. Spatial and temporal variation in the distribution of the Labranche wetlands area of the Lake Pontchartrain estuary, Louisiana. *Northeast Gulf Science* 13(2):107-120.

Environmental Protection Agency. 2004. 69 FR 68443. National Pollutant Discharge Elimination System – Proposed Regulations to Establish Requirements for Cooling Water Intake Structures at Phase III Facilities; Proposed Rule.

Gardner, A.E. 2006. Fish passage through road culverts. M.S. thesis, North Carolina State University. 103 pp.

Hartman, R.D., C.F. Bryan, and J.W. Korth. 1987. Community structure and dynamics of fishes and crustaceans in a southeast Texas estuary. Submitted to: U.S. Fish and Wildlife Service. Louisiana Cooperative Fish and Wildlife Research Unit, Louisiana State University Agricultural Center. 116 pp.

Lafleur, G.L. 1994. Relative fisheries recruitment past a fixed-crest and ramped weir. M.S. thesis, Louisiana State University. 97 pp.

Marotz, B.L., W.H. Herke, and B.D. Rogers. 1990. Movement of gulf menhaden through three marshland routes in southwestern Louisiana. *North American Journal of Fisheries Management* 10:408-417.

Meyers, E.P., D.E. Hoss, D.S. Peters, W.M. Matsumoto, M.P. Seki, R.N. Uchida, J.D. Ditmars, and R.A. Paddock. 1986. The potential impact of ocean thermal energy conversion (OTEC) on fisheries. NOAA Technical Report NMFS 40.

Mosser, M.L. and M.E. Terra. 1999. Low light as an impediment to river herring. *Journal of Fish Biology* 12:609-614.

Pacific Watershed Associates. 1994. Chapter 10. South Fork Trinity River Basin, Fishery Habitat Improvement Projects. *In* Action Plan for Restoration of the South Fork Trinity River Watershed and Its Fisheries. Prepared for U.S. Bureau of Reclamation and The Trinity River Task Force under contract No. 2-CS-20-01100.

Peterson, G.W. and R.E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh. *Estuaries* 17(18):235-262.

Rogers, B.D. and W.H. Herke. 1985. Estuarine-dependent fish and crustacean movements and weir management. *In* C.F. Bryan, P.J. Zwank, and R.H. Chabreck, editors. Proceedings of the fourth coastal marsh and estuary management symposium. Louisiana Cooperative Fish and Wildlife Research Unit, Louisiana State University Agricultural Center, Baton Rouge. pp 201- 219.

Rogers, D.R., B.D. Rogers, and W.H. Herke. 1994. Structural marsh management effects on coastal fishes and crustaceans. *Environmental Management* 18(3):351-369.

Rogers, D.R., B.D. Rogers, W.H. Herke. 1992^a. Some potential effects of the Cameron-Creole marsh management plan on fishery organisms. *School of Forestry, Wildlife, and Fisheries, Louisiana State University Agricultural Center*. 82 pp.

Rogers B.D., W.H. Herke, and E.E. Knudsen. 1992^b. Effects of three different water-control structures on the movements and standing stocks of coastal fishes and macrocrustaceans. *Wetlands* 12(2):106-120.

Rogers, D.R., B.D. Rogers, and W.H. Herke. 1992^c. Effects of a marsh management plan on fishery communities in coastal Louisiana. *Wetlands* 12(1):53-62.

Rogers, B.D., R.F. Shaw, W.H. Herke, and R.H. Blanchet. 1993. Recruitment of postlarval and juvenile brown shrimp (*Penaeus aztecus* Ives) from offshore to estuarine waters of the northwestern Gulf of Mexico. *Estuarine, Coastal and Shelf Science* 36:377-394.

Rozas, L.P. and T.J. Minello. 1999. Effects of structural marsh management on fishery species and other nekton before and during a spring drawdown. *Wetlands Ecology and Management* 7:121-139.

Sabins, D.S. and F.M. Truesdale. 1974. Diel and seasonal occurrence of immature fishes in a Louisiana tidal pass. *Proceedings of the 28th Annual Conference of Southeastern Association of Game and Fish Commissioners* 28:161-171.

APPENDIX B

Reference Websites, Fish Passage Agency Representatives, and University Faculty

Baker, C. and J. Boubee. 2003. Using ramps for fish passage past small barriers. *Water and Atmosphere* 11(2). June.
<http://www.niwasscience.co.nz/pubs/wa/11-2/passage>

USACE Portland District, Fish Passage Team
http://www.nwp.usace.army.mil/pm/cn_fish.asp

USACE, ERDC, Coastal Hydraulics Lab
<http://chl.erdc.usace.army.mil/CHL.aspx?p=s&a=ResearchAreas;22>

USFWS Fish Passage Decision Support System
<http://fpdss.fws.gov/index.jsp>

NC State's Center for Transportation and the Environment website:
<http://www.itre.ncsu.edu/>

[http://itre.ncsu.edu/CTE/gateway/downloads/Culvert%20Impact%20Study\(December2002\).pdf](http://itre.ncsu.edu/CTE/gateway/downloads/Culvert%20Impact%20Study(December2002).pdf)
<http://itre.ncsu.edu/CTE/gateway/downloads/FishPassage.pdf>

FishXing software and learning systems for fish passage through culverts. This software is intended to assist engineers, hydrologists, and fish biologists in the evaluation and design of culverts for fish passage. It is free and available for download.
<http://stream.fs.fed.us/fishxing/>

- Allows for comparison of multiple culverts designs within a single project.
- Calculates hydraulic conditions within circular, box, pipe-arch, open-bottom arch, and embedded culverts.
- Contains default swimming abilities for numerous North American fish species.
- Contains three different options for defining tailwater elevations.
- Calculates water surface profiles through the culvert using gradually varied flow equations, including hydraulic jumps.

- Outputs tables and graphs summarizing the water velocities, water depths, outlet conditions, and lists the limiting fish passage conditions for each culvert.

USFWS Fish Passage National Coordinator
thomas.sinclair@fws.gov

NOAA, NMFS
Eric.Hutchins@noaa.gov
James.G.Turek@noaa.gov
Richard.Wantuck@noaa.gov

Louisiana State University Coastal Fisheries Institute
Jim Cowan; jhcowan@lsu.edu
Bruce Thompson; coetho@lsu.edu

University of Texas Marine Science Institute
Lee Fuiman; lee@utmsi.utexas.edu

APPENDIX C

September 23, 2009, Endangered Species Act Concurrence Request

REPLY TO
ATTENTION OF

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P.O. BOX 60267
NEW ORLEANS, LOUISIANA 70160-0267

September 23, 2009

RECEIVED

SEP 28 2009

FISH & WILDLIFE SERV
LAFAYETTE, LA

DW

Planning, Programs, and
Project Management
Environmental Planning and
Compliance Branch

James Boggs
Field Supervisor
U.S. Fish and Wildlife Service
646 Cujundome Blvd - Suite 400
Lafayette, LA 70506

Dear Mr. Boggs:

Attn: Angela Trahan

Provided for your review are the project description, project location map, and determination by the U.S. Army Corps of Engineers (USACE), Mississippi Valley Division, New Orleans District (CEMVN) of the effect that the proposed action would have on threatened and endangered (T&E) species under USFWS jurisdiction. The proposed action, referred to as Improved Protection on the Inner Harbor Navigation Canal (IHNC) – Seabrook Floodgate Structure, is part of the Lake Pontchartrain and Vicinity (LPV) Hurricane and Storm Damage Risk Reduction System (HSDRRS) for Orleans Parish, Louisiana. Its environmental impacts are assessed in Individual Environmental Report # 11 (IER # 11) Tier 2 Pontchartrain. This IER will be completed in the next few months and will be forwarded to you upon completion.

PROJECT DESCRIPTION

The proposed action is located in Orleans Parish, Louisiana. The proposed action would provide 100-year level of risk reduction for Orleans Parish. IER # 11 Tier 2 Pontchartrain evaluates the proposed construction of a storm surge risk reduction structure on the IHNC near its connection to Lake Pontchartrain (figure 1). Specifically, the proposed action consists of a steel sector gate and two flow augmentation gates (vertical lift gates) to be built 540 ft south of the Senator Ted Hickey Bridge (also referred to as the Seabrook Bridge) in the IHNC. It also includes T-wall floodwall tie-ins and a roadway gate. A site plan of the proposed action is shown in figure 2.

A steel sector gate would be built with a top-of-gate elevation of +18.0 ft NAVD88 and a sill elevation between -16.0 ft and -20.0 ft. The sector gate would have a 95-ft-wide navigation opening, which is the width of the existing navigation channel, and concrete dolphins. The two vertical lift gates would be installed on either side of and adjacent to the sector gate. The vertical lift gates are necessary to maintain existing flow velocities through the sector gate since higher velocities would make navigation through the sector gate difficult (and potentially unsafe) and also could cause problems for fish migrating through the gate. The lift gates would each have a

width of between 40 ft and 60 ft and sill elevations between -10.0 ft and -20.0 ft NAVD88. The tops of the lift gates would be flush with the adjacent sector gate at EL +18.0 ft NAVD88.

T-walls placed on the existing levees would be built to EL +16.0 ft NAVD88. They would connect the western earthen levee to LPV 104 at elevation +16.5 ft NAVD88 and the eastern levee to LPV 105 at elevation +15.5 ft NAVD88. The floodwall on the east side of the channel would include a 20-ft-wide vehicle slide gate with a sill at existing ground elevation to provide access to Jourdan Road. On the western side of the IHNC, approximately 700 ft of T-walls built on the existing levee would tie-in the floodgates to the existing LPV 104 floodwall at EL +16.5 ft NAVD88. T-wall tie-in sections built to elevation +16.0 ft NAVD88 would be required to connect the gate structures in the IHNC to the T-walls built on existing levees on either bank of the IHNC. T-walls would be placed on the backfill and founded on sheetpiles. A 20-ft-wide roadway at the toe of the wall would provide for vehicular access to the either side of the sector gate structure. The proposed alignment centerline crosses properties owned by the Port of New Orleans.

The proposed action would encroach into a scour hole in the IHNC located approximately 300 ft to the south of the Seabrook Bridge. The hole is approximately 275 ft wide by 450 ft long by 90 ft deep and likely resulted from tidal flow into and out of the lake. The scour hole would be filled in before construction of the cofferdam and foundation. The scour hole would be filled in to provide frictional resistance for the pile foundation, help relieve pore water pressure during pile driving, and minimize turbidity in the IHNC. The lower portion of the scour hole would be filled with coarse sand to EL -42.0 ft NAVD88 before the guide wall and supporting piling are driven; then, stone riprap would be placed around the support piling to EL -37.0 ft NAVD88. The IHNC in the project vicinity ranges from approximately -30 ft to -41 ft in depth outside the scour hole.

During construction, a temporary, braced cofferdam would be installed across the channel, encompassing the approximate perimeter of the sector gate and vertical lift gates and remain in place for a period of approximately 6-12 months. This portion of the channel could be closed to navigation and recreational vessels for the duration of the construction of the sector gate and vertical lift gates, depending on design and construction techniques.

A control building also would be constructed to house a safe room area, standby generators, power distribution, and programmable logic controller communications/monitoring system for the gates. This hurricane-proof structure would have a 15-ft by 30-ft footprint and would be located on the protected side, to the west of the western vertical lift gate structure near the east end of the west bank floodwall. The control building would be accessible by a vehicle access drive for refueling, operation, and maintenance purposes. In order to design and construct the proposed action, permanent easements totaling almost 15 acres and a temporary work area easement of about 26 acres would be required (see figure 3).

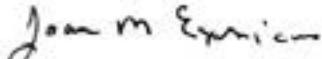
CEMVN DETERMINATION OF IMPACTS TO T&E SPECIES

CEMVN has assessed the environmental impacts of the proposed action on T&E species in the project vicinity. In a previous consultation letter to CEMVN dated February 2, 2009 (USFWS 2009), USFWS discussed two Federally listed species under its jurisdiction that potentially could occur in the IER # 11 Tier 2 – Pontchartrain project area: the endangered West Indian manatee (*Trichechus manatus*) and the endangered brown pelican (*Pelecanus occidentalis*). In that letter, which was based on preliminary plans for the IER # 11 Tier 2 – Pontchartrain project and also addressed IERs # 5, 6, 7, and 8, USFWS stated that none of the proposed projects evaluated in these IERs would be likely to adversely affect the manatee or brown pelican. Project plans for IER # 11 Tier 2 – Pontchartrain subsequently have been refined and finalized, as described above. Based on this additional project-specific information, CEMVN has reevaluated the potential for impacts to these two species.

Manatees potentially can occur in Lake Pontchartrain at the mouth of the IHNC and, although it is unlikely, they could enter the canal. The proposed action would involve construction and operation of flood control structures within the IHNC about 600 feet south of Lake Pontchartrain. A cofferdam would be in place across the canal for up to a year during construction of the gate structures. As a result, there is a small possibility that a manatee may enter the area where construction activities would occur. In order to minimize the potential for construction activities under the proposed action to injure or have other adverse effects on manatees during the construction period, and in accordance with recommendations from USFWS in their consultation letter, standard manatee protection measures (described in the IER) would be implemented for in-water construction activities.

After construction is completed, the only anticipated risk to the manatee would be potential trapping or injury caused by the operation of the sector gate or the two vertical lift gates on the IHNC. The sector gate and vertical lift gates would be kept open except during periods when there is a risk of storm-related flooding or during periodic maintenance activities. The likelihood of a manatee swimming 600 ft into the canal from the lake is minimal, and the potential for an individual manatee to then become trapped or injured by the infrequent closure of a gate is discountable. Assuming the standard protection measures for preventing disturbance or injury to manatees are employed during the period of construction, the direct effects of the proposed action are not likely to adversely affect the manatee.

The potential for indirect impacts on manatees due to adverse effects on the water quality of inshore areas of Lake Pontchartrain or the IHNC during the construction period would be minimized through the use of best management practices and adherence to regulations governing stormwater runoff at construction sites. As a result, potential indirect impacts on manatees from the proposed action would be insignificant. The proposed action would have no direct or indirect impacts that would contribute to cumulative impacts on this species. Thus, indirect or cumulative effects of the proposed action are not likely to adversely affect the manatee.


Brown pelicans are not known to nest in the project vicinity, and suitable nesting habitat is not present in the project area. Although brown pelicans forage for fish along the IHNC, they are able to readily avoid areas of construction activity and forage in the extensive areas of habitat available in Lake Pontchartrain or elsewhere on the IHNC. Thus, construction and operation of the proposed project would not be likely to have direct adverse effects on brown pelicans or their reproduction. Similarly, the proposed action would not reduce prey availability or otherwise indirectly impact brown pelicans, and it would not contribute to cumulative impacts on the pelican in conjunction with other projects in the region.

CONTACT INFORMATION

Please review the enclosed information and provide comments within 30 days of the date of this letter. The IER will not be signed until all environmental review and compliance requirements have been completed. A copy of the signed IER will be provided upon request.

Comments should be mailed to the attention of Ms. Laura Lee Wilkinson; U.S. Army Corps of Engineers; CEMVN-HPO; P.O. Box 60267; New Orleans, Louisiana 70160-0267. Comments may also be provided by E-Mail to Laura.L.Wilkinson@mvn02.usace.army.mil. Ms. Wilkinson may be contacted at (504) 862-1212, if questions arise.

Sincerely,

Joan Exnicios
Chief, Environmental
and Compliance Branch

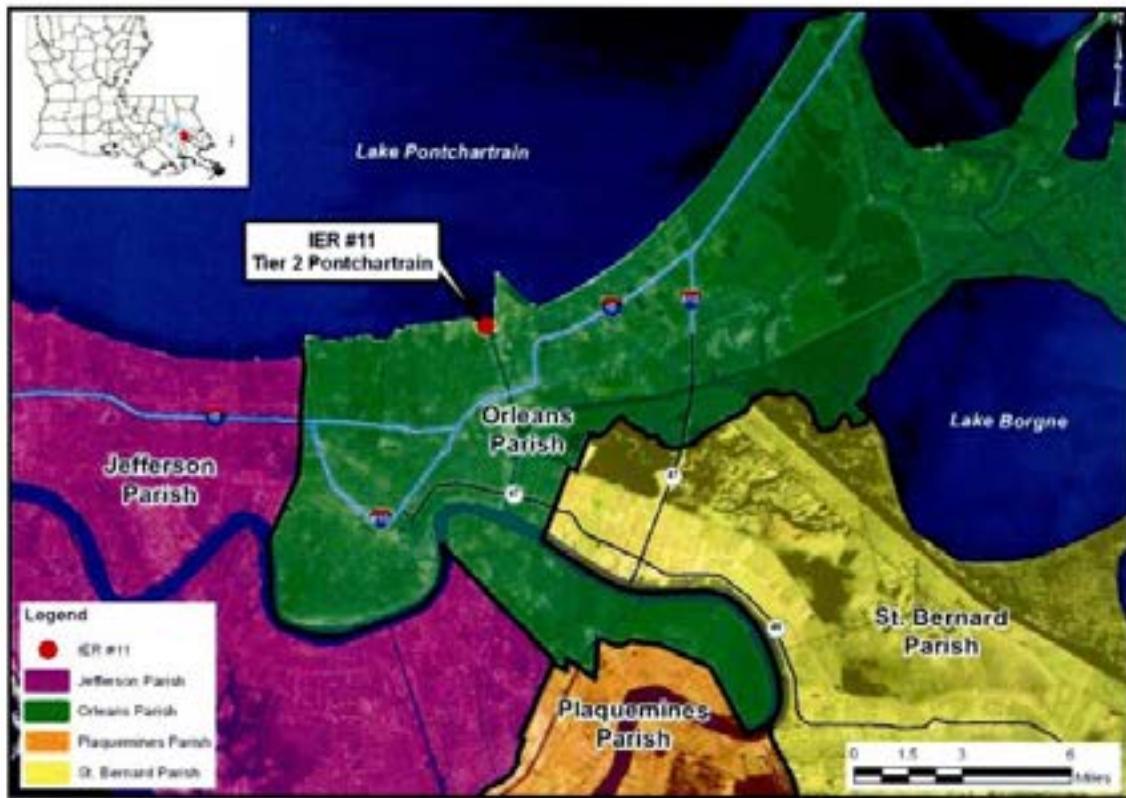
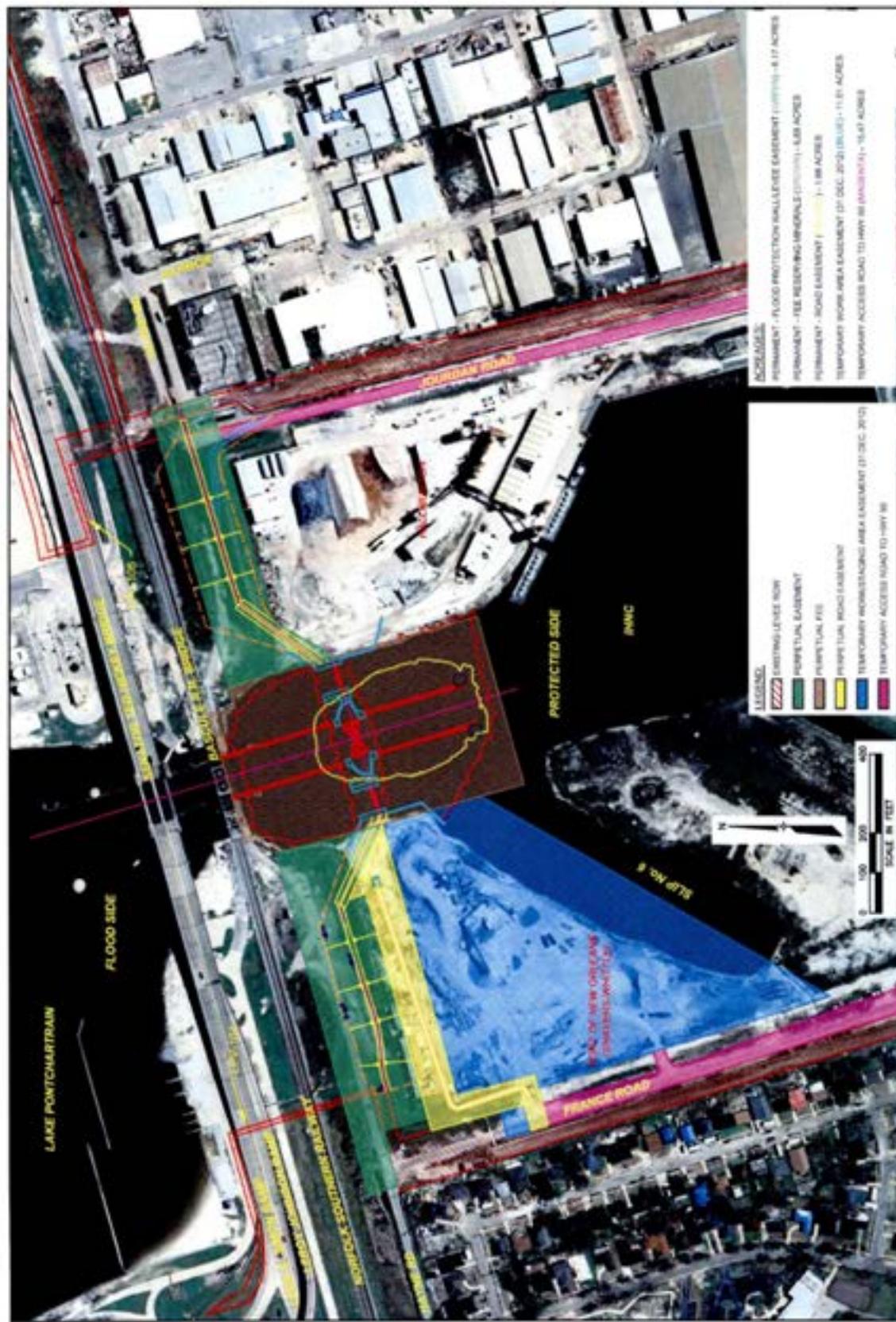



Figure 1. IER # 11 Tier 2 Pontchartrain Project Vicinity Map

Figure 2. Diagram of Proposed Action - Bridgeside Alignment 540 ft South of Seabrook Bridge

Figure 3. Permanent and Temporary Easements for the Proposed Action

BOBBY JINDAL
GOVERNOR

SCOTT A. ANGELLE
SECRETARY

State of Louisiana
DEPARTMENT OF NATURAL RESOURCES
OFFICE OF COASTAL RESTORATION AND MANAGEMENT

November 9, 2009

Joan Exnicios
Dept. of the Army,
New Orleans District,
Corps of Engineers
P. O. box 60267
New Orleans, LA 70160-6267

RE: C20090495, Coastal Zone Consistency
COE-NOD
Direct Federal Action
Seabrook Structure, Inner Harbor Navigation Canal
Orleans Parish, Louisiana.

Dear Ms. Exnicios:

The above referenced project has been reviewed for consistency with the approved Louisiana Coastal Resource Program (LCRP) as required by Section 307 of the Coastal Zone Management Act of 1972, as amended. The project, as proposed in the application, is consistent with the LCRP, provided LDWF is coordinated with in the development of the formal operations plan as agreed to by email of October 27, 2009. If you have any questions concerning this determination please contact Brian Marcks of the Consistency Section at (225)342-7939.

Sincerely yours,

Gregory J. DeCote
Administrator
Interagency Affairs/Field Services Division

GJD/JDH/bgm

cc: Dave Butler, LDWF
Elizabeth Davoli, OCPR
Richard Hartman, NMFS
Harold Daigle, LDOTD
Wynecta Fisher, Orleans Parish

Coastal Management Division • Post Office Box 44487 • Baton Rouge, Louisiana 70804-4487
(225) 342-7591 • Fax (225) 342-9439 • <http://www.dnr.state.la.us>

An Equal Opportunity Employer

BOBBY JINDAL,
GOVERNOR

HAROLD LEGGETT, Ph.D.
SECRETARY

State of Louisiana
DEPARTMENT OF ENVIRONMENTAL QUALITY
ENVIRONMENTAL SERVICES

DEC 28 2009

U.S. Army Corps of Engineers- New Orleans District
CEMVN-HPO
P.O. Box 60267
New Orleans, LA 70160-0267

Attention: Laura Lee Wilkinson

RE: Water Quality Certification (WQC 091102-02/AI 158513/CE/R 20090001)
Corps of Engineers Individual Environmental Report (IER #11)
Seabrook Floodgate
Orleans Parish

Dear Ms. Wilkinson:

The Department has reviewed your application for the construction of the Seabrook Floodgate project (IER #11), in the Inner Harbor Navigation Canal south of the Norfolk Southern Railroad bridge in New Orleans, Louisiana.

The requirements for Water Quality Certification have been met in accordance with LAC 33:IX.1507.A-E. Based on the information provided in your application, we have determined that the placement of the fill material will not violate the water quality standards of Louisiana provided for under LAC 33:IX, Chapter 11. Therefore, the Department has issued a Water Quality Certification.

Sincerely,

Melvin C. Mitchell, Sr.
Administrator
Water Permits Division

MCM/jp

Natural Resources Conservation Service
3737 Government Street
Alexandria, LA 71302

(318) 473-7795
Fax: (318) 473-7750

December 31, 2009

Ms. Joan M. Exnicios
Chief, Environmental Planning and Compliance Branch
U.S. Army Corps of Engineers
Planning, Programs, and Project Management Division
P.O. Box 60267
New Orleans, Louisiana 70160-0267

Dear Ms. Exnicios:

RE: **Draft IER # 11 TIER 2 PONTCHARTRAIN
IMPROVED PROTECTION ON THE INNER HARBOR NAVIGATION CANAL
ORLEANS PARISH, LOUISIANA**

In response to your request for NRCS review of the referenced project site location to identify natural resource constraints, if any, that may impact design and permitting, I have reviewed the Farmland and Hydric Soil Classifications.

Farmland Classification

The Farmland Protection Policy Act (FPPA)-Subtitle I of Title XV, Section 1539-1549 of PL 97-98, final rules and regulations were published in the Federal Register on June 17, 1994. These rules state that projects are subject to FPPA requirements if they may irreversibly convert farmland (directly or indirectly) to nonagricultural use and are completed by a federal agency or with assistance from a federal agency. For the purpose of FPPA, farmland includes prime farmland, unique farmland, and land of statewide or local importance. Farmland subject to FPPA requirements does not have to be currently used for cropland. It can be forestland, pastureland, cropland, or other land, but not water or urban built-up land.

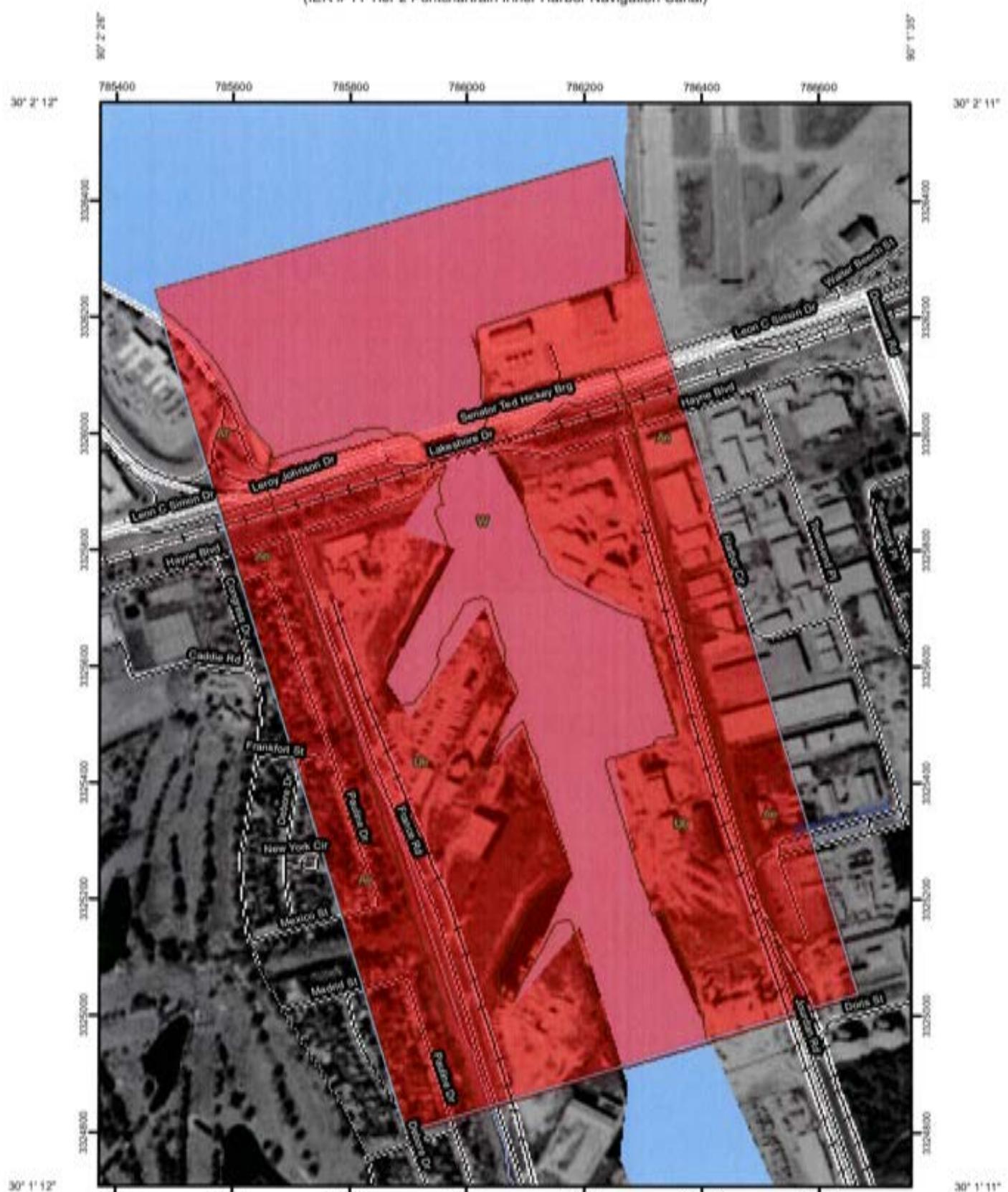
NRCS policy clarifies the Rule by stating that activities not subject to FPPA include:

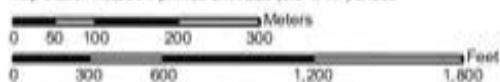
1. Federal permitting and licensing
2. Projects planned and completed without assistance of a federal agency
3. Projects on land already in urban development or used for water storage
4. Construction within an existing right-of-way purchased on or before August 4, 1984.
5. Construction for national defense purposes
6. Construction of on-farm structures needed for farm operations
7. Surface mining, where restoration to agricultural use is planned
8. Construction of new minor secondary structures, such as a garage or storage shed.

The soils on the proposed Inner Harbor Navigation Canal improvements are not Prime Farmland and will not require a farmland conversion impact rating. Furthermore, NRCS does not believe that the proposed project will impact any NRCS work in the vicinity. However, NRCS does recommend that appropriate erosion control measures are employed during the construction of the project to minimize any adverse effect on the surrounding environment.

I have attached the Farmland Classification with this response for your convenience and use.

Should you have any questions regarding the above comments, feel free to contact Mike Trusclair, District Conservationist, in our Boutte Field Office at (985) 758-2162, Ext. 3.


Sincerely,


E.J. "Ed" Giering II, P.E.
State Conservation Engineer

cc: Mike Trusclair, District Conservationist, NRCS, Boutte, Louisiana

Farmland Classification—Orleans Parish, Louisiana
(IER # 11 Tier 2 Pontchartrain Inner Harbor Navigation Canal)

Map Scale: 1:8,890 # printed on A size (8.5" x 11") sheet.

Natural Resources
Conservation Service

Web Soil Survey
National Cooperative Soil Survey

12/31/2009
Page 1 of 3

MAP LEGEND

Area of Interest (AOI)		Prime farmland if subsoiled, completely removing the root inhibiting soil layer.		US Routes
Area of Interest (AOI)		Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60		Major Roads
Soils		Prime farmland if irrigated and reduced of excess salts and sodium		Local Roads
Soil Map Units		Farmland of statewide importance		
Soil Ratings		Farmland of local importance		
		Farmland of unique importance		
		Not rated or not available		
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				
Soils				
Soil Map Units				
Soil Ratings				

Farmland Classification

Farmland Classification— Summary by Map Unit — Orleans Parish, Louisiana				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ae	Allemands muck, drained	Not prime farmland	43.8	14.6%
An	Aquents, dredged	Not prime farmland	28.0	9.3%
AT	Aquents, dredged, frequently flooded	Not prime farmland	6.0	2.0%
Ub	Urban land	Not prime farmland	117.6	39.1%
W	Water	Not prime farmland	105.2	35.0%
Totals for Area of Interest			300.7	100.0%

Description

Farmland classification identifies map units as prime farmland, farmland of statewide importance, farmland of local importance, or unique farmland. It identifies the location and extent of the soils that are best suited to food, feed, fiber, forage, and oilseed crops. NRCS policy and procedures on prime and unique farmlands are published in the "Federal Register," Vol. 43, No. 21, January 31, 1978.

Rating Options

Aggregation Method: No Aggregation Necessary

Tie-break Rule: Lower

REPLY TO
ATTENTION OF

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P. O. BOX 60267
NEW ORLEANS, LOUISIANA 70160-0267

Regional Planning and
Environmental Division, South
New Orleans Environmental Branch

E.J. "Ed" Giering III, P.E.
State Conservation Engineer
Natural Resources Conservation Service
3737 Government Street
Alexandria, VA 22302

Re: Draft Individual Environmental Report (IER) #11 Tier 2 Pontchartrain Comment Letter

Dear Mr. Giering:

This letter is in response to your letter received during the IER #11 Tier 2 Pontchartrain public review process. The US Army Corps of Engineers, New Orleans District (CEMVN), would like to thank you for your participation in the IER #11 Tier 2 Pontchartrain public review process.

The Commander considered the information provided in the IER document as well as those comments received from the public and from interested agencies. Colonel Lee made his decision based upon what is in the best interest of the people of southeastern Louisiana. The human environmental impacts were considered along with traditional engineering criteria that include risk and reliability, constructability, construction schedule, operation and maintenance, and cost. Public safety is the primary consideration for the Hurricane Storm Damage Risk Reduction System.

Again, we would like to thank you for your comments and for taking the time to participate in the IER #11 Tier 2 Pontchartrain public review process. Should you have additional questions please contact Ms. Laura Lee Wilkinson at (504) 862-1212 or at luw111@usace.army.mil.

Sincerely,

Joan M. Espinoza
Joan M. Espinoza
Chief, New Orleans
Environmental Branch

January 5, 2010

Joan M. Exnicios
Chief, Environmental Planning and
Compliance Branch
Colonel, U. S. Army Corps of Engineers
P.O. Box 60267
New Orleans, LA 70160-0267

Re: Response to IER #11 - Tier 2 Pontchartrain

Dear Ms. Exnicios:

Please accept this letter as the Board of Commissioners of the Port of New Orleans' (Port) response to the recently published Individual Environmental Report #11 - Tier 2 Pontchartrain. The IER prepared by the U.S. Army Corps of Engineers (Corps) provides evaluation of the potential impacts associated with the construction of a storm surge barrier on the Inner Harbor-Navigation Canal (IHNC) on the south side of the Seabrook Bridge at Lake Pontchartrain (Seabrook).

The Port is the owner of the IHNC and the banks on either side. In total the Port owns approximately 1,200 acres of land and water bottoms that is referred to as the IHNC or Industrial Canal. Currently the Port has over 40 leases with various industrial and commercial operations directly employing over 1,000 people. The IHNC is one of only a few industrial parks in the nation offering deep-water access to its users and tenants. The IHNC has served as the industrial heart of New Orleans since 1923.

While the Port fully supports the construction of the Seabrook surge gate we do have a number of concerns with the project that we believe will have an adverse impact on the Port and its tenants. In summary these concerns are:

- The Corps' recommended location for the surge gate, Alternative #1, 540 feet south of the Seabrook Bridge, will be very disruptive to Port business during the construction period. The Port favors Alternative #5, a location on the north side of the bridge.
- Increased noise and dust from the project will affect neighboring tenants, especially the RV Park. Construction activity could take place 24/7 according to the IER.

BOARD OF COMMISSIONERS OF THE PORT OF NEW ORLEANS

Post Office Box 60048 • New Orleans, Louisiana 70160 • Tel: (504) 522-2551 • Fax: (504) 524-4156

- Closure of ingress and egress to and from Lake Pontchartrain for up to one year during construction will have dramatic consequences on the business of Seabrook Harbor and Bayou Aggregates, and to a lesser extent Trinity Yachts and the RV Park.
- The Port stands to lose revenues from new tenants and leasing properties on the north end of the IHNC due to congestion and turmoil during construction (between one and two years of heavy construction, three years total duration estimated by the IER).
- Reduced or lost revenues from existing tenants from business interruption or temporary or permanent cessation of business due to construction of the surge gate; and restricted use of France Road by Port tenants due to proposed closure of one lane of traffic during construction.
- Reduced future values of Port properties because of lessened utility due to increased water velocities through the new surge gate structure, periodic closures of the gate each year to control water currents and major maintenance every ten years.
- Degradation of France and Jourdan Roads due to increased truck traffic and heavy loads from the construction.
- The chance the Port will not receive market value for properties acquired/leased for the project.
- Emptying seven drainage outfalls into the IHNC while the surge gates are closed during storm events may in some cases flood Port-owned properties unnecessarily by causing a "bathtub" effect.

CONSTRUCTION ON THE SOUTH (IHNC) SIDE OF THE SEABROOK BRIDGE WILL COST THE PORT AND ITS TENANTS REVENUES. While it is understood that construction of the surge gate on the north or lake side of the Seabrook Bridge (Alt. #5) will be more expensive for the Corps, we do not feel it is appropriate that the Port and its tenants be expected to bear economic hardship due to the Corps' recommended southerly location. If the Corps' final decision is to construct on the south side of the Seabrook Bridge, it is then only fair and reasonable to compensate the Port and all affected tenants for any current and future lost revenues due to the placement and construction of the surge gate on the IHNC rather than in the lake.

The Port has a bona fide risk of losing rental revenues from tenants whose businesses may be closed or relocated because of the surge gate construction. In particular Seabrook Marine, Halliburton and Lake Pontchartrain Properties (RV Park) all could be forced out of business, at least temporarily, due to the construction of the surge gate. After the project is completed the utility of certain sites such as the Halliburton property and 6401 France Road will be diminished due to new structures and land takings associated with the surge gate. Any closures, whether temporary or permanent, and any reductions in business, will translate into the loss of jobs.

RECOMMENDATION: For the reasons stated above, the Port recommends constructing the surge barrier on the lake side of the Seabrook Bridge. Constructing the surge barrier on the north or lake side of Seabrook will eliminate the majority of the listed concerns. If the Corps decides to build the surge gate on the south side of Seabrook, then the Port and the Corps need to agree on a process whereby the Port and its tenants are compensated for any revenue losses associated with the project, both during and after construction.

FAIR COMPENSATION FOR USE AND PURCHASE OF PORT PROPERTIES. The Port must receive market price for any properties occupied by Corps contractors during construction, for any properties acquired in fee simple and for any temporary or permanent easements. Compensation needs to be agreed to in advance of project commencement. The Port is still waiting to be compensated for properties taken after Katrina for expansion of levees.

RECOMMENDATION: It is advisable to start discussions on the valuation process as soon as possible so as not to hold up the project if there is a disagreement between Corps and Port advisors on lease and/or sale values or the methods used to determine same. The Port is not willing to grant any land rights for construction staging until financial terms are agreed upon. Additionally, permit requirements for the project's contractors need to be discussed pre-occupancy as the Port is the permitting agency for any constructions and improvements on its properties.

FAIR COMPENSATION FOR LOSS OF FUTURE REVENUES. The IER calculates an increase in water velocities through the new gate structure of over 1.60 times the existing flow velocities in spring and fall months. We are concerned that the increased velocities will limit and deter use of the gate for pleasure once completed. As the Port is marketing the north end of the IHNC for recreational and commercial uses, limiting the usability and functionality and increasing safety risks of the entrance to the lake could dramatically affect existing tenants' businesses and the opportunities to attract new tenants.

A dozen or so short closures of the Seabrook gate each year due to water flow conditions and extended closures approximately every ten years for maintenance purposes are impediments that currently do not exist. We do not know to what extent the closures will negatively affect IHNC businesses in the future as the closure durations are not discussed in the IER.

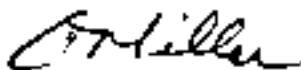
The guide walls and associated constructions on the new gate structure will restrict the use of the water front on the Halliburton site and also on the 6401 France Road property. The Port is in the business of leasing water front property. Restricting or eliminating access to the water front will reduce property values.

The table on page 43 of the IER shows water levels in the IHNC basin during tropical events over the past twenty years and projects water levels with the new surge barriers in place for the same storm events. In almost all instances the water levels are projected to be less with the new barriers in place. While this appears to be good news for the Port and its tenants, these are only projections and no one will know the actual impacts of draining seven major outfalls into a closed basin until a number of storm events have taken place. Even a perception by industry that IHNC properties could flood more often with the barriers in place will deter new business.

RECOMMENDATION: Have an agreed upon, detailed method between the Port and the Corps on how to estimate the loss of future revenues from the project.

ROADWAY DEGRADATION DURING THE CONSTRUCTION PERIOD. Both France and Jourdan Roads were damaged by flood waters after Hurricane Katrina and have deteriorated to a point where they must be rebuilt. Both roadways are owned by the Port. The Port has plans to reconstruct both roads but does not want to spend the large sum of money needed to rebuild the roads to have them damaged by Corps contractors (see IER pg 143 "Heavy trucks are the primary loading source causing pavement degradation"). Plus, any reconstruction of France and Jourdan Roads would necessarily have to take place during the project construction period which would be untenable for Port tenants and Corps contractors. In their present condition France and Jourdan Roads can not assume any additional heavy-haul truck traffic without greatly decreasing usability and increasing unsafe conditions for all users.

RECOMMENDATION: The Port will fill potholes and perform repairs to make the roadways safe for passage before project construction begins and the Corps' contractor will maintain the roadways in a safe and usable condition through the construction period. An agreement to this effect needs to be in place before project construction begins.


CONCLUSION. There are immediate and long term negative effects from the construction of the Seabrook surge gate that need to be addressed before the project commences. The Port is ready to discuss in detail with the Corps the issues and recommendations stated above. We suggest that the Port and its real estate and legal consultants meet with the Corps soon to work towards a resolution of the Port's concerns. Additionally, once all the comments on the IER are received and reviewed by the Corps, we request that another public meeting be held to discuss same.

Joan M. Exnicios
Response to IER 11
Page 5

The businesses located along the IHNC indirectly employ thousands of people and generate millions of dollars in tax revenue to the City and State and contribute over one hundred million dollars in economic impact. The IHNC businesses range from multi-national corporations to locally-owned "mom and pop" operations. Many have substantial investments in improvements and equipment; some have their entire livelihoods invested. It should be a goal of the Corps to complete the Seabrook project in a timely manner while protecting as much as possible the IHNC businesses and their employees from economic hardship.

The Port has always worked cooperatively with the Corps in all of its endeavors and we plan to continue that cooperation while protecting the interests of the Port and its tenants as mandated by fiduciary responsibility and state law. I welcome any questions or comments you may have on the above concerns and statements and look forward to meeting in the near future to discuss same.

Sincerely,

Clayton L. Miller
Director, Business Development

c: Gary P. LaGrange, PPM

REPLY TO
ATTENTION OF

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P. O. BOX 60267
NEW ORLEANS, LOUISIANA 70160-0267

Regional Planning and
Environmental Division, South
New Orleans Environmental Branch

Clayton L. Miller
Director, Business Development
Board of Commissioners of the Port of New Orleans
PO Box 60046
New Orleans, LA 70160

Re: Draft Individual Environmental Report (IER) #11 Tier 2 Pontchartrain Comment Letter

Dear Mr. Miller:

Thank you for your correspondence of January 5, 2010 providing comments on behalf of the Port of New Orleans (Port), to our December 2009 draft Individual Environmental Report (IER) for IER #11-Tier 2 Pontchartrain, Improved Protection on the Inner Harbor Navigation Canal.

After a careful consideration of your comments, we are providing the following responses.

Comment #1: The Corps's recommended location for the surge gate, Alternative #1, 540 feet south of the Seabrook Bridge, will be very disruptive to Port business during the construction period. The Port favors Alternative #5, a location on the north side of the bridge.

Response: The impacts to the business along the IHNC have been documented through interviews with the Port and the local business owners. These concerns are noted in Section 1.5 of the IER, Public Concern, and are analyzed within Section 3.3, Socioeconomic Resources. The socioeconomic impacts of each alternative evaluated are considered along with the impacts to natural resources when determining the proposed action. The analysis presented in the IER discusses temporary impacts to Port businesses during the construction period. These temporary impacts do not constitute a taking of a real property interest.

Comment #2: Increased noise and dust from the project will affect neighboring tenants, especially the RV Park. Construction activity could take place 24/7 according to the IER.

Response: These concerns are noted in Section 1.5 of the IER, Public Concern, and are analyzed within Section 3.2.12, Air Quality and 3.2.13, Noise. As stated in Section 3.2.12, Air Quality, “site-specific construction effects would be temporary and dust emissions would be controlled using Best Management Practices (BMP). As stated in Section 3.2.13, “Noise would be regulated in accordance with the City of New Orleans Ordinance 23263, Chapter 66, Article IV.”

Comment #3: Closure of ingress and egress to and from Lake Pontchartrain for up to one year during construction will have dramatic consequences on the business of Seabrook Harbor and Bayou Aggregates, and to a lesser extent Trinity Yachts and the RV Park.

Response: These concerns are noted in Section 1.5 of the IER, Public Concern, and are analyzed throughout the IER. As recommended by U.S. Coast Guard, as discussed in Section 1.5, Public Concerns, and as stated in Section 2.3, “[t]he USACE carefully reviewed the option to provide a navigable ‘bypass’ through the cofferdam structure, but determined that regardless of the construction sequence, a bypass would be infeasible due to the potential for high flow rates, which raised public safety concerns associated with navigating directly through an active construction area in a high current situation.” Section 3.3 recognizes the impact that the temporary closure could have on area businesses. Alternative routes to the lake are available through the Rigolets and Chef Menteur Pass (see figure 43). The Rigolets detour requires an 11-hour round trip. Boats could also be transported overland to an alternative launch site (e.g. Seabrook Launch); boaters could still enjoy close access to the fishing site, but would require additional coordination to arrange for drop-off and pick-up.

Comment #4: The Port stands to lose revenues from new tenants not leasing properties on the north end of the IHNC due to the congestion and turmoil during construction (between one and two years of heavy construction, three years total duration estimated by the IER)

Response: The marketability of leases for properties on the north end of the Industrial Canal corridor could be impaired during the period of closure for those potential tenants that require direct access to Lake Pontchartrain through Seabrook, as recognized in Section 3.3 of the IER. Any loss of revenue that may accrue in the short term may be balanced by the increased marketability of these sites to potential tenants once construction of the Seabrook gate is completed given the increased level of risk reduction from storm surges. This acknowledgement has been added to Section 3.3 of the IER. Any impacts, such as lost revenues and business, to Port properties or

tenants located outside of the tentatively identified right of way are considered the result of a temporary inconvenience. These temporary impacts do not constitute a taking of a real property interest.

Comment #5: Reduced or lost revenues from existing tenants from business interruption or temporary or permanent cessation of business due to construction of the surge gate; and restricted use of France Road by Port tenants due to proposed closure of one lane of traffic during construction.

Response: Please see response to comment #4. Additionally, a partial closure of France Road is not anticipated for this project.

Comment #6: Reduced future values of Port properties because of lessened utility due to increased water velocities through the new surge gate structure, periodic closures of the gate each year to control water currents and major maintenance every ten years.

Response: As described in Section 3.2.1 Hydrology, water velocities within the IHNC near the location of the proposed action are modeled to decrease following completion of construction of the MRGO closure at Bayou La Loutre and with the Borgne Barrier in place. This represents existing conditions for purposes of the IER Tier 2 Pontchartrain document (see Table 6, ADH Modeling Scenarios). Following construction of the proposed Seabrook structure, velocities are expected to increase over this existing condition as defined, however the increase in velocity modeled is comparable to those velocities experienced within the IHNC prior to the MRGO closure structure and the Borgne Barrier in place. Since the businesses along the IHNC were able to operate while experiencing these historical conditions within the IHNC and the velocities experienced within the IHNC following the completion of the proposed action are comparable, the modeled water velocities should have no impact on the utility of the Port properties.

Closure of the Seabrook structure during high velocity events is being evaluated to mitigate velocities that may be experienced at the GIWW gate structures. As provided in Section 1.6 of the IER, “Studies done by the USACE indicate that occasionally unfavorable navigational conditions could arise at the GIWW gate within the Borgne Barrier given typical weather and tidal conditions. This refers to an event during ‘normal conditions’ and not classified as a tropical event. A reasonable, conservative estimate of 10 times per year was used for analyses purposes.” Also, as provided in Section 1.6 of the IER, “[t]hese unfavorable conditions could be mitigated

by closure of the Seabrook gate which is amongst others, an option that is being studied. ...Other options which are still part of the study are to either allow for passage of barges by means of tripping the barges or ultimately accept navigational delays for these rare events. ...Criteria for closing of the Seabrook Gate Complex are still being analyzed and final details will be described in a future Water Control Plan.” Closures during non-storm events would be temporary and short, on the order of several hours, which would cause minimal disruption to businesses within the IHNC.

Any impacts, such as lost revenues and business, to Port properties or tenants located outside of the tentatively identified right of way are considered the result of a temporary inconvenience. These temporary impacts do not constitute a taking of a real property interest.

Comment #7: Degradation of France and Jourdan Roads [will occur] due to increased truck traffic and heavy loads from the construction.

Response: Agreed. As listed in Section 3.2.14, “[a]dditional wear-and-tear of paved roads within the project vicinity could occur due to increased truck traffic under the proposed action. On-going construction related to other reconstruction projects in the Seabrook area would also contribute to increased truck traffic, which would therefore increase wear-and-tear on roads and add to area congestion.”

Comment #8: The Port may not receive market value for properties acquired/leased for the project.

Response: The IER document discusses the areas required for right-of-way (ROW) acquisition along with a discussion of the overall alternative within Section 2.3, Proposed Action and Section 2.4, Alternatives to the Proposed Action. ROW acquisition will be in accordance with Federal, State and local laws, as applicable.

Comment #9: Emptying seven drainage outfalls into the IHNC while the surge gates are closed during storm events may in some cases flood Port-owned properties unnecessarily by causing a “bathtub” effect.

Response: Concerns for increases in water levels of the businesses along the IHNC were studied by USACE and there is no indication that flooding of the businesses would increase as a result of the project. These results are incorporated into the IER. As provided in Section 3.2.1 Hydrology, “[i]ncluded in this analysis is rainfall and runoff being pumped into the system as well as overtopping. In all cases, water levels in the system would have been equal to or reduced as

outlined in table 7. Water would not be stored in the system longer than if the barriers were not constructed. Once lake and internal water levels allow, the gates would be opened."

Comment #10:

Construction on the south (IHN) side of the Seabrook Bridge will cost the Port and its tenants revenues.

Response:

Please see response to comment #4.

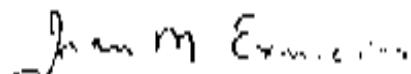
Comment #11:

Compensation for use and purchase of Port properties needs to be agreed to in advance of project commencement.

Response:

The IER document discusses the areas required for ROW acquisition along with a discussion of the overall alternative within Section 2.3 Proposed Action and Section 2.4 Alternatives to the Proposed Action. ROW acquisition will be in accordance with Federal, State and Local laws, as applicable.

Comment #12:


Maintenance of France and Jourdan Roads during construction must be agreed to in advance of project commencement.

Response:

The Corps will require its contractor to maintain France Road and Jourdan Road in its present condition during the life of the project.

Again, we would like to thank you for your comments and for taking the time to participate in the IER #11 Tier 2 Pontchartrain public review process. Should you have additional questions please contact Ms. Laura Lee Wilkinson at (504) 862-1212 or at laural.wilkinson@usace.army.mil.

Sincerely,

Juan M. Escrivá
Chief, New Orleans
Environmental Branch

United States Department of the Interior

FISH AND WILDLIFE SERVICE
646 Cajundome Blvd.
Suite 400
Lafayette, Louisiana 70506

January 5, 2010

Colonel Robert Sinkler
Commander
Hurricane Protection Office
U.S. Army Corps of Engineers
Post Office Box 60267
New Orleans, Louisiana 70160-0267

Dear Colonel Sinkler:

Please reference the U.S. Army Corps of Engineers' (Corps) draft Individual Environmental Report (IER) # 11, Tier 2 Pontchartrain, titled "Improved Protection on the Inner Harbor Navigation Canal (IHNC)," Orleans Parish, Louisiana. The draft IER was transmitted via a December 8, 2009, letter from Ms. Joan M. Exnicios, Chief of your Environmental Planning and Compliance Branch. That draft IER evaluates the potential impacts associated with the proposed hurricane protection improvements along the Inner Harbor Navigation Canal (IHNC), and Tier 2 evaluates potential impacts associated with the proposed construction of a storm surge barrier between the IHNC and Lake Pontchartrain. The U.S. Fish and Wildlife Service (Service) submits the following comments in accordance with provisions of the National Environmental Policy Act (NEPA) of 1969 (83 Stat. 852, as amended; 42 U.S.C. 4321 et seq.).

The Pontchartrain 2 location alternative includes a storm surge protection barrier which would be built to protect the IHNC and surrounding areas from storm surges coming from Lake Pontchartrain. Five alignments were considered in the draft IER. Aside from the proposed alternative alignment locations each alternative including the preferred alternative would consist of several common features (i.e., T-wall floodwalls, a steel sector gate, and two vertical lift gates on both sides of, and adjacent to, the sector gate). The proposed alternative, Alternative 1, is the Bridgeside alignment which includes a sector gate located 540 feet south of Seabrook Bridge and approximately 1,475 feet of T-walls built on existing levees. The proposed alternative alignment would also require filling in the existing south scour hole before commencement of construction of the cofferdam and foundation.

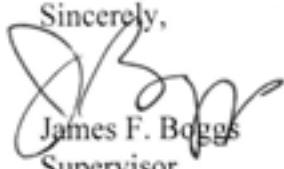
During construction, a temporary braced cofferdam would be installed across the channel around the approximate perimeter of the sector and vertical lift gates, closing this portion of the channel to navigation, recreational vessels, and aquatic organism access for the duration of the construction of the sector gate and vertical lift gates (i.e., for a period of approximately 12

months). The Corps determined that a bypass channel would be infeasible due to the potential for high flow rates and public safety concerns associated with navigating directly through an active construction area. Additionally, the construction sequence necessary to provide such bypass could potentially add approximately eight months to the construction schedule resulting in a cost increase. Additionally, during operation and maintenance of the storm surge protection barrier this portion of the channel will be closed periodically to reduce velocities at the GIWW structure and allow for monthly maintenance events. Direct impacts to emergent wetlands as a result of the proposed project are not anticipated.

General Comments

The draft IER provides a good description of fish and wildlife resources in the study area, the purpose and need for the proposed action, and the potential impacts associated with each alternative. We commend the Corps efforts to investigate all of the concerns put forth by the natural resource agencies within the expedited environmental analysis period. The Corps has provided valuable insight into the potential impacts associated with the proposed project through their extensive modeling and investigations which has also benefited other proposed projects in the basin.

There continues to be some unknowns and uncertainties due to the level of engineering and design. The Water Control Plan (i.e., operational plan) for the structures is dependent on the results of the Adaptive Hydraulics (ADH) modeling which will be preformed in the near future. To fully evaluate and disclose impacts associated with the construction and operation of the IHNC hurricane protection project, the Corps intends to continue to move forward with those modeling efforts and investigations. The Cumulative Environmental Document (CED) should fully describe the cumulative impacts of the IHNC hurricane protection project structures and the operation of those structures including impacts to water quality, aquatic organism access, and how those impacts relate to current and foreseeable projects in the area. Mitigation necessary to fully offset impacts to fish and wildlife resources will be addressed during the development of the mitigation IERs and the CED once associated unavoidable impacts are fully understood. In the meantime water quality monitoring could provide real-time data and provide a more accurate picture of conditions within a system that has recently been and will be manipulated by several hurricane protection and restoration projects. The U.S. Geological Survey (USGS) is currently monitoring water quality parameters associated with the closure of the Mississippi River Gulf Outlet (MRGO) at Bayou La Loutre. Additional impacts associated with the Lake Borgne and Lake Pontchartrain storm surge protection structures and the second closure of the MRGO at Bayou Bienvenue (all features of IER 11) are anticipated; however, the cumulative impacts cannot be accurately identified without monitoring data. To better understand cumulative impacts in an aquatic system that is in transition, monitoring efforts by USGS should be expanded to include the IHNC hurricane protection project.


As mentioned in the draft IER, the frequency and duration of gate closure events will be addressed in the Water Control Plan to be finalized at a later date once more hydrologic

modeling is completed. Impacts can not be fully assessed until that plan is developed; therefore, extensive coordination with the natural resource agencies should continue through the finalization of that plan. In addition, the final IER should address the feasibility of partial opening of structures during major maintenance and/or high flow events to allow some ingress and egress of aquatic organisms during extended closure durations.

Specific Comments

3.2.7 Threatened and Endangered Species, page 112 – Please be aware that occurrences and the distribution of the endangered West Indian manatee appears to be increasing as they have been regularly reported in the Amite, Blind, Tchefuncte, and Tchefaw Rivers, and in canals within the adjacent coastal marshes of Louisiana. They have also been occasionally observed elsewhere along the Louisiana Gulf coast and infrequently observed along the Texas Gulf coast. In addition to the Standard Manatee Protection Measures for in-water work, signs should also be posted within work areas associated with operation of the flood control structures to ensure that operators are aware of the potential presence of manatee during the periodic closure of the structures. The operational plan (Water Control Plan) should include measures to avoid entrapment of individuals during the closure of the surge barrier structures. We recommend that the Corps consult with the Service on the operation of the structure once that plan is developed.

The Service appreciates the opportunity to comment on the draft IER, and we look forward to continuing coordination with the Corps and the other natural resource agencies to develop a feasible hurricane protection project for this region in a timely manner. If your staff has additional questions regarding our comments, please contact Angela Trahan at (337) 291-3137.

Sincerely,

James F. Boggs
Supervisor
Louisiana Field Office

cc: U.S. Army Corps of Engineers, New Orleans, LA (Attn.: Ms. Laura Lee Wilkinson,
CEMVN-PM-RS)
NMFS, Baton Rouge, LA
EPA, Dallas, TX
LDWF, Baton Rouge, LA
LDNR (CMD), Baton Rouge, LA
OCPR, Baton Rouge, LA

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P. O. BOX 60267
NEW ORLEANS, LOUISIANA 70160-0267

REPLY TO
ATTENTION OF

Regional Planning and
Environmental Division, South
New Orleans Environmental Branch

James Boggs
Field Supervisor
U.S. Fish and Wildlife Service
646 Cajundome Blvd - Suite 400
Lafayette, LA 70506

Re: Draft Individual Environmental Report (IER) #11 Tier 2 Pontchartrain Comment Letter Dear

Mr. Boggs:

Thank you for your correspondence of January 5, 2010 providing comments on behalf of the U.S. Fish and Wildlife Service (Service), to our December 2009 draft Individual Environmental Report (IER) for IER #11-Tier 2 Pontchartrain, Improved Protection on the Inner Harbor Navigation Canal.

The Commander considered the information provided in the IER document as well as those comments received from the public and from interested agencies. Colonel Lee made his decision based upon what is in the best interest of the people of southeastern Louisiana. The human environmental impacts were considered along with traditional engineering criteria that include risk and reliability, constructability, construction schedule, operation and maintenance, and cost. Public safety is the primary consideration for the Hurricane Storm Damage Risk Reduction System.

After a careful consideration of your comments, we are providing the following responses.

Comment #1: The Service made the general comment that, “the Cumulative [sic] Environmental Document (CED) should fully describe the cumulative impacts of the IHNC hurricane protection project structures and the operation of those structures including impacts to water quality, aquatic organism access, and how those impacts relate to current and foreseeable projects in the area.”

Response: The Corps will conduct monitoring to obtain observed rather than predicted dissolved oxygen data. If the results of this monitoring demonstrate the need for modeling and/or actions to address adverse impacts, the Corps will coordinate with

the resource agencies to complete modeling, within authorization and funding, to evaluate alternatives for providing rectification and/or mitigation to offset adverse impacts. The outcomes of the monitoring and modeling will be disclosed in the future CED and Final mitigation IER which will include overall cumulative impacts, including those associated with project operations and maintenance.

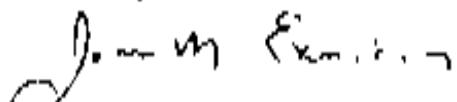
Comment #2: Mitigation necessary to fully offset impacts to fish and wildlife resources will be addressed during the development of the mitigation IERs and the CED once associated unavoidable impacts are fully understood. In the mean time, water quality monitoring efforts by USGS should be expanded to include the IHNC hurricane protection project. The CED should fully describe the cumulative impacts of the IHNC hurricane protection project structures.

Response: Please see response to comment #1.

Comment #3: Impacts cannot be fully assessed until the Water Control Plan (WCP) is developed, and therefore, extensive coordination should continue until finalization of the WCP. Additionally, the Service suggested that the final IER “address the feasibility of partial opening of structures during major maintenance and/or high flow events to allow some ingress and egress of aquatic organisms during extended closure durations.”

Response: The Water Control Plan is not a predictive document; it will not provide an estimate of the frequency and duration of closures of these structures. The Plan will instead provide the operators of these structures a framework of criteria such as water level that should trigger the closure of the structures for both storm and non-storm conditions for the purposes of flood risk reduction, and be developed in cooperation with the non-federal sponsor. The non-federal sponsor will be responsible for operation and maintenance of the structure. Table 2 of the IER provides a reasonable conservative estimate of the frequency and duration of closure, based on what CEMVN believes the water level and velocity triggers would be in the Plan applied to known water elevation data and bathymetry within the Lake Pontchartrain Basin, and modeling utilizing 2006 water elevation data and navigational simulations of velocity conditions at the GIWW gate. CEMVN believes that this application provides an estimate of the maximum frequency and duration of closure for the system. If the Water Control Plan provides closure triggers that differ significantly from those predicted in this section, a Supplemental IER would be developed to disclose the impacts of any greater frequency or duration of closure.

The USACE initially considered both the partial opening of gate structures (i.e., all gates would be partially opened) and the complete opening of individual gate structures (i.e., at least one gate structure would be opened completely but the others could be closed) as strategies for minimizing impacts to aquatic organisms during closure events; however, it was determined that in both scenarios velocities would exceed reasonable conditions for the passage of fish and other aquatic organisms and could create potentially hazardous conditions for recreational vessels. During coordination with the resource agencies in the development of the Water Control Plan and OMRR&R plan, the CEMVN commits to further consider


partial opening scenarios and coordination of closure events to minimize impacts to resources.

Comment #4: Occurrences and distribution of manatee appears to be increasing.

Response: The language in the IER regarding the distribution of manatees has been revised to reflect the increasing occurrences. In addition to the Standard Manatee Protection Measures for in-water work, the USACE agrees to post signs in work areas associated with operation of the flood control structures to ensure that operators are aware of the potential presence of manatee during periodic closures of the structures. To ensure the endangered West Indian manatee would not be impacted during operation of the surge barrier structures the Corps will reinitiate ESA coordination with the Service during the development of the Water Control Plan.

Again, we would like to thank you for your comments and for taking the time to participate in the IER #11 Tier 2 Pontchartrain public review process. Should you have additional questions please contact Ms. Laura Lee Wilkinson at (504) 862-1212 or at laura.l.wilkinson@usace.army.mil.

Sincerely,

Joan M. Exnickios
Chief, New Orleans
Environmental Branch

State of Louisiana

Department of Health and Hospitals
Office of Public Health

January 7, 2010

Joan Exnieios
USACE - New Orleans District
Environmental Planning and Compliance
CEMVN-PM-R
P.O. Box 60267
New Orleans, LA 70160-0267

Re: Draft IER #11 Tier 2 Pontchartrain

This office is in receipt of your Solicitation of View regarding the above referenced project(s).

Based upon the information received from your office we have no objection to the referenced project(s) at this time. The applicant shall be aware of and comply with any and all applicable Louisiana State Sanitary Code regulations (LAC 51, as applicable). Furthermore, should additional project data become available to this office that in any way amend the information upon which this office's response has been based, we reserve the right of additional comment on the referenced project(s).

In the event of any future discovery of evidence of non-compliance with the Louisiana Administrative Code Title 51 (Public Health-Sanitary Code) and the Title 48 (Public Health-General) regulations or any applicable public health laws or statutes which may have escaped our awareness during the course of this cursory review, please be advised that this office's preliminary determination on this Solicitation of View of the project(s) shall not be construed as absolving the applicant of responsibility, if any, with respect to compliance with the Louisiana Administrative Code Title 51 (Public Health-Sanitary Code) and the Title 48 (Public Health-General) regulations or any other applicable public health laws or statutes.

Respectfully,

Johan Forsman
Geologist
Engineering Services Section
Center for Environmental Health Services
Telephone: (225) 342-7309
Electronic mail: johan.forsman@la.gov

REPLY TO
ATTENTION OF

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P. O. BOX 50267
NEW ORLEANS, LOUISIANA 70160-0267

Regional Planning and
Environmental Division, South
New Orleans Environmental Branch

Johan Forsman
Geologist
Engineering Services Section, Center for Environmental Health Services
Department of Health and Hospitals, Office of Public Health
Bienville Building
P.O. Box 4489
Baton Rouge, LA 70821-4489

Re: Draft Individual Environmental Report (IER) #11 Tier 2 Pontchartrain Comment Letter

Dear Mr. Forsman:

This letter is in response to your letter received during the IER #11 Tier 2 Pontchartrain public review process. The US Army Corps of Engineers, New Orleans District (CENMVN), would like to thank you for your participation in the IER #11 Tier 2 Pontchartrain public review process.

The Commander considered the information provided in the IER document as well as those comments received from the public and from interested agencies. Colonel Lee made his decision based upon what is in the best interest of the people of southeastern Louisiana. The human environmental impacts were considered along with traditional engineering criteria that include risk and reliability, constructability, construction schedule, operation and maintenance, and cost. Public safety is the primary consideration for the Hurricane Storm Damage Risk Reduction System.

Again, we would like to thank you for your comments and for taking the time to participate in the IER #11 Tier 2 Pontchartrain public review process. Should you have additional questions please contact Ms. Laura Lee Wilkinson at (504) 862-1212 or at laura.l.wilkinson@usace.army.mil.

Sincerely,

Joan M. Exnicios
Joan M. Exnicios
Chief, New Orleans
Environmental Branch

UNITED STATES DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
NATIONAL MARINE FISHERIES SERVICE

FACSIMILE TRANSMITTAL FORM

NATIONAL MARINE FISHERIES SERVICE

HABITAT CONSERVATION DIVISION - BATON ROUGE BRANCH

c/o Louisiana State University, Baton Rouge, LA 70803-7535

DELIVER TO: Mr. Joe Exavier
(504) 862-2088

FROM: **RICHARD HARTMAN**
NATIONAL MARINE FISHERIES SERVICE
(225) 389-0506 ext 203
(225) 389-0506 fax
Richard.Hartman@noaa.gov

DATE: _____

NUMBER OF PAGES: _____ (plus transmittal form)

SUBJECT: _____

COMMENTS: _____

UNITED STATES DEPARTMENT OF COMMERCE
 National Oceanic and Atmospheric Administration
 NATIONAL MARINE FISHERIES SERVICE

Southeast Regional Office
 263 13th Avenue South
 St. Petersburg, Florida 33701

January 7, 2010 F/SEA446/PW:jk
 225/389-0508

Ms. Juan Extincios, Chief
 Environmental Planning and Compliance Branch
 Planning, Programs, and Management Division
 New Orleans District, U.S. Army Corps of Engineers
 Post Office Box 60267
 New Orleans, Louisiana 70160-0267

Dear Ms. Extincios:

NOAA's National Marine Fisheries Service (NMFS) has received the draft Individual Environmental Report (IER) #13, Tier 2 Pontchartrain titled "Improved Protection on the Inner Harbor Navigation Canal (IHNC), Orleans Parish, Louisiana" provided by your letter dated December 8, 2009. The draft IER evaluates the impacts associated with activities deemed necessary to provide 100-year level of hurricane protection to that portion of New Orleans in the vicinity of the IHNC.

This IER is identified as Tier 2 of a two-step or tiered process being utilized. Two previous comment letters were submitted by NMFS on the IER #11 (Tier 1 Pontchartrain and Barataria and Tier 2 Barataria), in which actions were requested to adequately assess and report potential impacts to estuarine fisheries both in the Tier 2 Pontchartrain and the Cumulative Environmental Report (CER). NMFS does not object to the proposed action and comments provided below are not intended to slow construction of the structures needed to provide hurricane storm surge protection to the New Orleans area in the vicinity of the IHNC. However, NMFS submits the following general and specific comments and recommendations to ensure that an adequate evaluation and disclosure of impacts to estuarine fisheries and essential fish habitat (EFH) is achieved. To that end, NMFS recommends the Corps of Engineers (COE) consider releasing an addendum to this Tier 2 IER that reflects revisions recommended below.

General Comments

The uncertainty of environmental impacts (e.g., water quality in some areas and estuarine fisheries), both individually and cumulatively in concert with other ongoing effects in the project area should be further expressed in the IER such that the limits of potential risks are better understood. National Environmental Policy Act guidelines stipulate that statements should be included that there is incomplete or unavailable information when evaluating reasonably.

foreseeable adverse effects on the environment. The intent here is not to call into debate whether the nature of the effect is reasonably foreseeable, but rather a request for a broader disclosure of uncertainty in the IER of potential risks, even if the extent of the effect is not foreseeable or it may have a low probability of occurrence. Additionally by addendum to the IER, the COE should commit to continue assessing dissolved oxygen (DO) impacts with monitoring, fisheries modeling, and adaptive management, and commit to reassessing cumulative impacts in the CED.

The efforts by the COE to coordinate with NMFS in developing the Particle Tracking Model (PTM) to assess potential effects of project alternatives on fisheries recruitment in the study area have been appreciated. This represents a first time use of such type of modeling to assess potential fisheries impacts in the Gulf of Mexico. The PTM was presented in the IER as the cornerstone basis for concluding relatively minor long-term impacts to fisheries. However, no matter how much relative utility this model has shown, risk should not be evaluated by a single theoretical model without full acknowledgement in the IER of the model's uncertainties. The plain language description of the PTM in Sections 1.6 Data Gaps and Uncertainty and 3.2.4 Aquatic Resources and Fisheries should be expanded to address the shortcomings (e.g., model assumptions, confidence) pertaining to the PTM.

Impacts disclosed within the IER are predicated based on the available structure design, but equally important is how the structures at Seabrook, Bayou Bienville and the Gulf Intracoastal Waterway (GIWW) will be operated, individually and cumulatively, in yet to be developed Operation and Maintenance, Repair, Replacement and Rehabilitation (OMRAR) plans. Although it is understood time is necessary for the COE and local sponsor to develop such plans, more advanced details than those provided are needed to assess impacts and make a determination of no significant adverse impacts. Short of more advanced details, NMFS recommends the COE commit to requiring the HINC, GIWW, and Bayou Bienville structures to be kept open to the maximum extent practicable except during periods that a hurricane is predicted to enter the Gulf of Mexico. Such a stipulation should be provided in the recommended addendum to the IER. The commitment in the IER should identify that any changes from such stipulations would be disclosed in the CER.

According to information provided in the document, unsafe navigation conditions due to current velocities were estimated from modeling efforts to occur 60 times per year. The estimate of 10 annual closures due to such high velocities results from an analysis of how frequently 2 by 2 loaded barges would attempt to navigate through the structure. The navigation industry may find it unreasonable to wait for the Seabrook structure to be closed whenever a 2 by 2 barge approaches the barge opening in the Borgne Barrier. If so, NMFS believes it is possible that the openings in the Seabrook structure may be closed whenever velocities at the Borgne Barrier exceed safe limits; i.e., 60 times per year. NMFS recommends the appropriate sections of the document be revised to discuss this possibility. If determined to be likely, all analyses pertaining to impacts to measures of concern should be re-evaluated in the CER.

Potential cumulative impacts to DO levels should be addressed further, in particular between the Mississippi River Gulf Outlet (MRGO) barrier and south of the Bayou La Loutre plug. NMFS

requires a commitment by the COE be stipulated by addendum to the Tier 2 report to continue conducting DO monitoring and to conduct fisheries impact modeling using monitoring data, if unusually adverse DO is documented to persist. Additionally, the COE should commit to identifying and evaluating adaptive management measures through coordination with the resource agencies once the data from the monitoring and modeling becomes available. We believe the COE should commit in this IER to report in the CER the monitoring and modeling data and any resultant remedial actions determined necessary through adaptive management. With regards to fisheries modeling, both Individual Based Models⁶ and the Comprehensive Aquatic Systems Models can assess DO impacts on fisheries and should be considered. NMFS acknowledges that these impacts are not attributable to IER 11 alone; however, an ecosystem wide view rather than a project-by-project view is encouraged. The responsibility to assess and address these potential cumulative impacts could be shared by multiple projects (e.g., IER 11 and the MRGO Headsystem Restoration project).

Finally, various life stages of both fish and crustaceans utilize Lake Pontchartrain as nursery and foraging habitat as assessed through the IHNC. The IER should be revised throughout to incorporate "and crustaceans" after "fish" when mentioning passage and use of project area habitats.

Specific Comments

1.6 Data Gaps and Uncertainty

Page 8, paragraph 5. The Seabrook structure may be closed an estimated 10 times annually under non-storm conditions to mitigate unfavorable flow conditions for navigation at the GWW gate within the St. Bernard Barrier. This estimate is based on anticipated sea level conditions upon construction. The report should be revised to include estimates on the frequency and duration of closures during the project life with reasonably foreseeable sea level rise.

Page 9, Tables 1 and 2, paragraph 2. Although deferring development of a Water Control Plan until a later date may be necessary to allow continuing analysis of closure criterion, such a plan is necessary to quantify potential adverse environmental impacts. The IER identifies that the COE will conduct hydrology and hydraulics modeling of the IHNC system to determine operating conditions for the Seabrook barrier and that information will be documented in a Water Control Plan (WCP). The IER addendum should specifically state that the WCP would be included in the CER and that the impacts of that WCP on resources of concern would be fully evaluated in the CER.

Page 10, paragraphs 1-3. According to information provided in this section of the document, unsafe navigation conditions due to current velocities actually were estimated from modeling efforts to occur 60 times per year. The estimate of 10 annual closures due to such high velocities results from an analysis of how frequently 2 by 2 loaded barges would attempt to navigate

⁶ Sable, S.B., 2007. A comparison of individual-based and matrix projection models to applied fish population and community dynamics. Ph.D. Dissertation, Louisiana State University, 223 pp.

through the structure. Considering that it may be found to be unreasonable by the navigation industry to wait for the Seabrook structure to be closed whenever a 2 by 2 barge approaches the barge opening in the Borgne Barrier, NMFS believes it is possible that the openings in the Seabrook structure may be closed whenever velocities at the Borgne Barrier exceed safe limits; i.e., 60 feet per year. NMFS recommends this section of the document be revised to discuss this possibility.

Various analytical methods were used to assess impacts under no action and alternative action scenarios at base and in future conditions. In some instances, one model results drive a subsequent model. Such is the case for the Adaptive Hydrology/Hydraulics modeling driving the PTM. This section of the IER should summarize the individual and compounding uncertainty of used methods and tools to provide a relative understanding and index of confidence in projected effects of the evaluated alternatives. Incorporation by reference to technical details is permissible, but this section should include a plain language summary of the model uncertainties. This should be done for at least each of the salinity, flow, particle tracking, and DO models.

2.3 Proposed Action

Page 19, paragraph 3. The relative frequency of closing the Seabrook floodgates is provided, but not the duration. Potential environmental impacts are predicated on an assumed, not yet determined operation plan. The IER identifies that additional ADH modeling would be conducted to develop the WCP. The likely frequency and duration of closure of the openings at Seabrook should be identified in the recommended IER addendum. If there is insufficient time to develop this information for inclusion in the IER, it should be provided in the CER.

3.2.1 Hydrology

Proposed Action (Alternative #1), Cumulative Impacts to Hydrology

Page 44, paragraphs 2-6. The report would benefit from including a description of why only effects on flow velocities are reported for March and September of the year. Further, this section reports changes to monthly average flow velocities. Although it is understandable to report monthly averages, structure operation based on hourly changes is more likely.

3.3.2 Water Quality

Discussion of Impacts

Proposed Action (Alternative #1)

Cumulative Impacts to Water Quality

Page 53. Although the proposed action, when combined with other features, may indicate minimal changes in DO and salinity in some portions of the study area, substantial changes occur elsewhere. In particular, low DO in the vicinity of the Bayou La Loutre closure occurred seasonally during 2009 and may persist as an annual occurrence. Also, salinity modeling showed a substantial increase south of the Bayou La Loutre structure from the combined effects.

of the Hurricane Tuggs Damage Risk Reduction System and the MRGO deauthorization features. The IER should be revised to indicate these water quality impacts are occurring and are projected to occur in portions of the study area.

3.3.4 Aquatic Resources and Fisheries

Existing Conditions for Aquatic Resources

Page 61, paragraph 2. The first sentence indicates that open water of the study area is influenced by diurnal tides from two natural tidal passes. This sentence should be revised to also list the IHNC as a third point of influence affecting the tides of the estuarine open water in the study area.

Discussion of Impacts

Proposed Action (Alternative #1)

Direct Impacts to Aquatic Resources and Fisheries

Pages 69-71. The document provides an adequate discussion of potential project impacts on fishery migrations into and out of Lake Pontchartrain. However, a paragraph describing direct impacts on fishery productivity should be included. Altered recruitment could impact year class strength and reduce the population densities spatially within the study area (e.g., Lake Pontchartrain near Seminole). The sections on each alternative should include the cross sectional area of the opening channel in comparison to proposed structures. This section should identify that a previous assessment of macroplankton (i.e., larval fishes and crustaceans) movement through these passes determined there was no significant difference in unit catch between the passes and concluded that migration through the passes was necessary to maintain the populations in Lake Pontchartrain^b.

In addition, we recommend specific details on the existing cross sectional area of the IHNC at its' initial contemplated location and the location of the proposed action be included and compared to the cross sectional area provided by the open structure in the proposed action.

Dissolved Oxygen

Page 72, paragraph 3. For clarity, the projected duration of "temporary" blockage of the IHNC should be listed as up to one year. Although short in duration relative to the project life, it could be relatively important to year class strength as well as fishermen and other users of the waterway.

Transport and Migration

Cumulative Impacts to Aquatic Resources and Fisheries

^b Pazzalay, M.T. 1979. Macroplankton movement through the tidal passes of Lake Pontchartrain. Chapter 15 in J. Stone, ed., Environmental Analysis of Lake Pontchartrain, Louisiana its surrounding wetlands and selected land uses. U.S. Army Corps of Engineers, New Orleans District, New Orleans, Louisiana 70160.

Page 80, paragraph 1. In the second to last sentence of the this paragraph "CWPPRA" should be replaced with "restoration" because more than just CWPPRA restoration projects fall within the study area and influence the cumulative impacts.

Pages 82-82. It is important to disclose the limitations and associated uncertainty with the PTM. The IER should be revised to list and briefly discuss practical limitations of the PTM. Most fundamental perhaps from a fishery biology standpoint is PTM simulates fish transport by assigning assumed behaviors to ambient particles. PTM is not directly driven by actual fisheries data, actual behaviors or catch data. It does not include predator-prey interactions or mortality. Although particles simulated as fish in some instances were unable to reach "recruitment space" designated within the model, they may remain in the system longer than the four-week analysis period. However, the model does not account for any losses from mortality, whether from predator-prey, exhaustion, or lack of access to necessary forage or predator refugia, or harvesting.

Other shortcomings in the model that could impact accuracy result from model predictions being dependent on the points of initiating the particles used to simulate fish. In addition, literature does not exist for the swimming speeds for many of the species of concern and therefore assumed swimming speeds were used. The modeling assumed that larvae would be naturally introduced into the system at a uniform rate and that all species (without regard to varying behaviors) would be introduced together into the system during all phases of the hydrodynamic period. From a hydrology/hydraulics standpoint, limitations and therefore uncertainties come from a number of factors. A few examples include following a pre-described flow field in general, the model "requires" designating a consistent unidirectional flow for incoming and outgoing tides, or resolution of Ekman transport with a depth-integrated model.

The following paragraph from the pre-draft provided to NMFS for review should be re-incorporated into this section:

"After project completion, fisheries resources are expected to emerge into Lake Pontchartrain predominantly through the northeastern passes as the result of tidal flow, thereby affecting fisheries resources. Although the Rigolets and Chef Pass are also viable options for passage into Lake Borgne, swimming aquatic organisms and ones using passive transport or cues to migrate in flood tide may have a longer travel time to reach areas of suitable habitat. This could be especially important for tidal lateral moving larvae such as shrimp and blue crab."

NMFS staff previously have diagnosed that impacts to fisheries organisms are minimal from blocking the IMNC for up to one year and periodically thereafter to mitigate high flow events at the GIWW structure and for OMRR&R. Although the durations may be relatively short, such closures would totally block migration and recruitment to available habitats in the vicinity of the IMNC. The IER should be revised to directly state this substantive, but albeit temporary impact to local fisheries populations and associated users.

The COE should commit to continued monitoring and fisheries impact modeling to assess cumulative impacts to fisheries from the Hurricane Surge Damage Risk Reduction, coastal restoration, and MRGO de-authorization measures. The cost and effort of this burden should not be the sole responsibility of IER 11. Rather, other projects (e.g., MRGO Ecosystem Restoration Study, Louisiana Coastal Area Study projects) should contribute to this cumulative impact assessment. The commitment to do so, at least for IER 11, should be reflected in the addendum to the Tier 2 document with the results reported and discussed in the CER.

3.2.5 Essential Fish Habitat

Table 11 should be revised as previously requested by NMFS staff to include Gulf stone crab as follows:

Species	Life Stage	Symbol	EFH Zone and Habitat Type
Gulf Stone Crab	Egg	E/M	sand/shell/soft bottom
	larva/pupal/ven	E/M	plankton/oyster reefs, soft bottom
	Juvenile	E	sand/shell/soft bottom, oyster reef

Dissolved Oxygen

Page 95, paragraph 5. NMFS believes it is premature to conclude that a substantial DO problem will not persist within portions of the study area. We recommend the last sentence be revised to change "rebound" to "reach an altered equilibrium..." Continuing monitoring and additional potential fisheries modeling would characterize the potential extent of DO impacts to fisheries for inclusion in the CER.

Page 96, paragraph 4. The last sentence should be revised to indicate that DO could be degraded in some portions of the study area.

3.2.7 Threatened and Endangered Species

Discussion of Impacts

Pages 112-113. This section discusses potential impacts to Gulf sturgeon, and its designated critical habitat as well as means to avoid and minimize those impacts. However, there is no mention of monitoring for the presence of Gulf sturgeon before dewatering the cofferdam to construct the IHNC structure or mention of reinitiating consultation with NMFS Protected Resources Division (PRD) on appropriate ranges for relocating sturgeon as stipulated by NMFS letter dated August 31, 2009, which is located in Appendix E of the IER. Both verbally and by copy of this letter, NMFS, PRD has been informed of this matter. The COE should address this matter with Kelly Sheets of NMFS, PRD at (727) 824-5312.

3.2 Socioeconomic Resources

Absent from this section of the report is an assessment of socioeconomic resources associated with recreational and commercial fisheries, in particular those users in areas identified as, "outside the IHINC project area" (i.e., the IHINC itself). Also absent is a discussion of potential displacement impacts to those resources under the various alternatives. It is possible impacts on those fishing boats could include affected access to target areas, increased sail time, foreseeable shifts in fishing pressure or effort, and associated expense. Based on coordination with the Louisiana Department of Wildlife and Fisheries and a Louisiana Sea Grant economist, little data is available to inform potential effects on displacement of the fisheries and whether or not there would be a net loss to the economy. We recommend the IHR acknowledge those largely *unavailable* information to assess those potential impacts, regardless of duration.

4.9 Cumulative Impacts

4.2.2.2 MRGO Deep-Draft Deauthorization (Closure of the MRGO at Bayou La Loutre)

Page 184, paragraph 2. Although the habitat impact from the IHINC part of the overall surge barrier system would be comparatively small, it is additive nonetheless to substantial cumulative habitat impacts in the area. This section should be revised to include potential adverse impacts to DO between the MRGO closure associated with the surge barrier and that at Bayou La Loutre and continuation of seasonally degraded DO and increased salinity south of the Bayou La Loutre closure.

In addition, NMFS believes it is speculative to state that closure of the MRGO should have beneficial cumulative impacts on fisheries within the Lake Pontchartrain basin and Breton Sound basin. NMFS recommends the term "fisheries" be deleted from the last sentence in this paragraph.

4.3 Summary of Cumulative Impacts

Page 187, paragraph 4. DO should be added to the list of potential example cumulative impacts in the first sentence. In addition, we are concerned with the content of the conclusion that reduced cumulative transport of larval organisms may only cause slight reductions of sport fish and prey. We recommend this sentence be revised as, "Given the limitations of the modeling conducted, relative reductions in transport of larval organisms from the Gulf into Lake Pontchartrain may cause slight reductions, over the long-term, of certain species and life stages of aquatic organisms, including sport fish and their prey."

Page 187, paragraph 5. Recommend including "decreased DO and increased salinity in some areas" as examples of negative changes as discussed in the last sentence. Similarly, this should be listed in the third paragraph.

Page 189. A summary of cumulative impacts on the recreational and commercial fishing industry should be discussed on this page.

In summary, NMFS requests an addendum to the Tier 2 IER document to address these comments. These comments pertain to the need for a more candid discussion of the uncertainty to predict the future based on incomplete or unavailable information. There should be a commitment by the COB in a revised IER to continue monitoring cumulative impacts on DO and commitment to fisheries modeling of DO effects to be reported in the CHP and adaptive management, only if it is determined that degraded DO persists seasonally. A commitment to monitor for Gulf sturgeon prior to dewatering the cofferdam should be reflected in the addendum in accordance to previous comment resolution with NMFS PRD unless approved otherwise by re-initiated coordination with PRD.

We appreciate the opportunity to review and comment on the draft IER. If you have questions regarding our comments and recommendations, please contact Patrick Williams at (225) 389-0308, ext 206.

Sincerely,

 Miles M. Croom
Assistant Regional Administrator
Habitat Conservation Division

cc:
FWL, Lafayette, Walker/Tulane
EPA, Dallas, Kaplan
FPA, New Orleans, Fritscher
LWFP, Bimley
LA DNR, Conservancy
P/BER46, Swafford
P/SAC31, Shotts
Pines

DEPARTMENT OF THE ARMY
NEW ORLEANS DISTRICT, CORPS OF ENGINEERS
P. O. BOX 60267
NEW ORLEANS, LOUISIANA 70160-0267

REPLY TO
ATTENTION OF

Regional Planning and
Environmental Division, South
New Orleans Environmental Branch

Miles Croom
Assistant Regional Administrator
National Marine Fisheries Service, Habitat Conservation Division
263 14th Avenue South
St. Petersburg, Florida 33701-5505

Re: Draft Individual Environmental Report (IER) #11 Tier 2 Pontchartrain Comment Letter

Dear Mr. Croom:

Thank you for your correspondence of January 7, 2010 providing comments on behalf of the National Marine Fisheries Service, to our December 2009 draft Individual Environmental Report (IER) for IER #11-Tier 2 Pontchartrain, Improved Protection on the Inner Harbor Navigation Canal. CEMVN appreciates NMFS taking the time to submit comments and participate in comment resolution. We would like to address the concerns you brought up in your January 7 letter:

The Commander considered the information provided in the IER document as well as those comments received from the public and from interested agencies. Colonel Lee made his decision based upon what is in the best interest of the people of southeastern Louisiana. The human environmental impacts were considered along with traditional engineering criteria that include risk and reliability, constructability, construction schedule, operation and maintenance, and cost. Public safety is the primary consideration for the Hurricane Storm Damage Risk Reduction System.

After a careful consideration of your comments, we are providing the following responses.

Comment #1: The uncertainty of environmental impacts, both individually and cumulatively in concert with other ongoing efforts in the project area should be further expressed in the IER such that the limits of potential risk are better understood.

Response: A discussion of the uncertainty and unknowns of the impacts to the affected environment with regard to the information that was incomplete or unavailable at the time of publication of the draft document such as final design parameters, hydraulic modeling, navigational and operational scenarios and sea level rise is

provided within Section 1.6, "Data Gaps and Uncertainty" of the draft IER.. The limitations of this analysis which is based partially on ADH modeling and PTM modeling is discussed within the resource sections and within the modeling reports themselves which are incorporated into the IER document as Appendix B.

The impacts analysis in the IER relies on a number of models, and each model has its own limitations and uncertainties. When two or more of these models were used in concert to predict project impacts, the individual model uncertainties are compounded, creating greater uncertainty in the model outcomes. Also, the dissolved oxygen model assumes fully mixed systems which are rarely the case for many portions of the study area. Limitations such as these underlie the uncertainty in the results of these models. Additional details regarding the limitations of the models used in this IER are discussed within the resource sections and within the modeling reports themselves which are incorporated into the IER document as Appendix B.

Comment #2: The COE should commit to continue assessing dissolved oxygen impacts with monitoring, fisheries modeling, and adaptive management, and commit to reassessing cumulative impacts in the CED.

Response: The Corps will conduct monitoring to obtain observed rather than predicted dissolved oxygen data. If the results of this monitoring demonstrate the need for modeling and/or actions to address adverse impacts, the Corps will coordinate with the resource agencies to complete modeling, within authorization and funding, to evaluate alternatives for providing rectification and/or mitigation to offset adverse impacts. The outcomes of the monitoring and modeling will be disclosed in the future CED and Final mitigation IER which will include overall cumulative impacts, including those associated with project operations and maintenance.

Comment #3: The PTM descriptions in sections 1.6 "Data Gaps and Uncertainty" and 3.2.4 "Aquatic Resources and Fisheries" should be expanded to address the shortcomings (e.g. model assumptions, confidence) pertaining to the PTM.

Response: Limitations of the PTM with regard to larval transport analysis are provided within Section 3.2.4 "Aquatic Resources and Fisheries" under the heading of Transport and Migration. Additional information with regard to the validation of the model and perceived limitations are incorporated into the Draft IER document as part of Appendix B. PTM is not directly driven by actual fisheries data, actual behaviors or catch data. The model does not include predator-prey interactions or mortality. Although particles simulated as fish in some instances were unable to reach "recruitment zones" designated within the model, they remain in the system longer than the four week analysis period. However, the model does not account for any losses from mortality, whether from predator-prey, exhaustion, or lack of access to necessary forage or refugia, or harvesting.

Literature does not exist for the swimming speeds for many of the species of concern and therefore assumed swimming speeds were assumed. The model assumed that larvae would be naturally introduced into the system at a uniform rate and that all species would be introduced together into the system without regard to varying behavior.

Comment #4: Recommends the COE commit to requiring the IHNC, GIWW, and Bayou Bievnenue structures to be kept open to the maximum extent practicable except during periods that a hurricane is predicted to enter the Gulf of Mexico. Such a stipulation should be provided in the recommended addendum to the IER.

Response: As explained in Section 1.6 “Data Gaps and Uncertainty”, “[c]riteria for closing of the Seabrook Gate Complex are still being analyzed and final details will be described in a future Water Control Plan.” While it is the intent to maximize the amount of time the Seabrook Gate would remain open, periodic closures may be required as provided in the IER. A reasonable conservative estimate of 10 closures per year for non-storm related events was used for analysis purposes.

Comment #5: NMFS believes it is possible that the openings in the Seabrook structure may close whenever velocities at the Borgne Barrier exceed safe limits; i.e., 60 times per year. NMFS recommends the appropriate sections of the document be revised to discuss this possibility.

Response: In Section 1.6 “Data gaps,” the IER does indicate that hydrodynamic analysis conducted by ERDC indicates that the threshold of 4.4 fps may be exceeded approximately 60 times per year. However, CEMVN does not anticipate that the non-federal sponsor, who is responsible for the eventual operation and maintenance of this structure, would operate the gates during every high flow event. This velocity scenario is only a navigation hazard for a limited subset of barge configurations; if this velocity threshold is exceeded at a time when no such barge configurations need to pass through the GIWW gate (which the IER estimates is the case over 80% of the time), the non-federal sponsor would have no incentive to expend resources operating the Seabrook Gate. The IER does not analyze the possibility of 60 closures per year because such a scenario is not anticipated.

Comment #6: The COE should commit to continue assessing dissolved oxygen impacts with monitoring, fisheries modeling, and adaptive management, and commit to reassessing cumulative impacts in the CED.

Response: Please see response to Comment #2.

Comment #7: Individual and comprehensive models can assess dissolved oxygen impacts on fisheries and should be considered. The responsibility to assess and address these potential cumulative impacts could be shared by multiple projects.

Response: Please see response to Comment #2.

Comment #8: The IER should be revised throughout to incorporate “and crustaceans” after “fish” when mentioning passage and use of project area habitats.

Response: This text has been added throughout the document where appropriate.

Comment #9: The report should be revised to include estimates on the frequency and duration of closures during the project life with reasonably foreseeable sea level rise.

Response: This project is designed to account for sea level rise over the 50-year project life (USACE, 2007. Elevations for Design of Hurricane Protection Levees and Structures, Lake Pontchartrain, Louisiana and Vicinity Hurricane Protection Project and West Bank and Vicinity, Hurricane Protection Project.). The closure frequency and duration scenarios for storm events in Table 2 were estimated based on expert judgment by analyzing hydrographs from a suite of 152 hypothetical storms from the FEMA/USACE flood insurance study while considering an additional 1 foot of relative sea level rise over the 50-year project life. The estimation for closure of the Seabrook structure for tropical storm conditions provided in the IER is based on the historical measured frequency of tropical events in the New Orleans area.

Regardless of the local effects of global sea level rise it is the assumption that this frequency based on 79 years of historical data will not change over the 50 year project life time of the structure. Hence a closure for a tropical event once per year on average is a reasonable assumption. It is recognized that the duration of the closure could be slightly influenced due to extended duration of elevated water levels above a certain threshold in the future. It should be noted however that storm surge is characterized by a great diversity in observed historically peak water elevation and duration. The presented approximate duration of ~2 to 3 days provided in the IER already brackets the uncertainty of possible changes in storm surge duration due to the effects of sea level rise. The impact of sea level rise on velocities through the GIWW structure is uncertain. If sea level rise were to significantly alter the bathymetry and/or size of Lake Pontchartrain and/or Lake Borgne, the relative water level difference between the two bodies could change, therefore possibly influencing velocities through the GIWW. However, the velocity in the GIWW is thought to be strongly influenced by wind (USACE, 2009. Final Seabrook Fish Larval Transport Study. ERDC/CHL TR-08-X. March), which is not dependent on sea level rise. Therefore, the impact of sea level rise on the frequency and duration of Seabrook closures to control velocities through the GIWW is unknown. Given the above caveats, the impacts analysis in the IER considers the impact of sea level rise on this project’s impacts to a limited extent.

Comment #10: The IER addendum should specifically state that the WCP would be included in the CER and that the impacts of that WCP on resources of concern would be fully evaluated in the CER.

Response: The Water Control Plan is not a predictive document; it will not provide an estimate of the frequency and duration of closures of these structures. The Plan will instead provide the operators of these structures a framework of criteria such as water level that should trigger the closure of the structures for both storm and non-storm conditions for the purposes of flood risk reduction, and be developed in cooperation with the non-federal sponsor. The non-federal sponsor will be responsible for operation and maintenance of the structure. Table 2 of the IER provides a reasonably conservative estimate of the frequency and duration of closure, based on what CEMVN believes the water level and velocity triggers would be in the Plan applied to known water elevation data and bathymetry within the Lake Pontchartrain Basin, and modeling utilizing 2006 water elevation data and navigational simulations of velocity conditions at the GIWW gate. CEMVN believes that this application provides an estimate of the maximum frequency and duration of closure for the system. If the Water Control Plan provides closure triggers that differ significantly from those predicted in this section, a Supplemental IER would be developed to disclose the impacts of any greater frequency or duration of closure.

Comment #11: NMFS believes it is possible that the openings in the Seabrook structure may close whenever velocities at the Borgne Barrier exceed safe limits; i.e., 60 times per year. NMFS recommends the appropriate sections of the document be revised to discuss this possibility.

Response: Please see response to comment #5.

Comment #12: Summarize the individual and compounding uncertainty of used methods and tools to provide a relative understanding and index of confidence in projected effects of the evaluated alternatives. Include a plain language summary of the model uncertainties for salinity, flow, particle tracking, and DO models.

Response: Please see response to Comment #1 and #2

Comment #12: The likely frequency and duration of closure of the openings at Seabrook should be identified in the recommended IER addendum.

Response: Table 2 in Section 1.6 “Data gaps” provides a reasonably conservative estimate of the frequency and duration of closure of the openings at Seabrook. This conservative estimate of 10 closures per year for velocity control on the GIWW is used throughout this document for the purposes of impacts analysis.

Three additional plans, aside from the Water Control Plan, will be developed for this project. An Interim Control Plan will be developed which provides a

framework of criteria such as water level that should trigger the closure of the structures for the purposes of flood risk reduction during the construction period of the Borgne Barrier and Seabrook Gate. For a large portion of this construction period, cofferdams will be in place at Seabrook, Bayou Bienvenue, and the location of the sector gate on GIWW. Therefore, the only structure to be operated during this period would be the GIWW barge gate during storm events.

A Hurricane Evacuation Plan will be developed for use during the construction period of this project. This plan will provide guidance to the construction contractor on removal and/or securing construction equipment within the construction zone and IHNC. This plan would not cause any changes to the predicted frequency and closure durations provided in Table 2 of the IER.

An Operation, Maintenance, Repair, Replace and Rehabilitation Manual will also be developed for this project. The “Operation” portion of this document will mimic the Water Control Plan. The plan will provide the non-federal sponsor with guidance on the maintenance, repair, replacement, rehabilitation and inspection details required for the proper care and efficient operation of the various project elements. This manual would not cause any changes to the predicted frequency and closure durations provided in Table 2 of the IER.

Comment #13: The report would benefit from including a description of why only effects on flow velocities are reported for March and September of the year. The monthly average flow velocities should be based on hourly changes.

Response: March is indicative of more erratic conditions due to rain events and frontal passages, and September represents lower wind speeds and more typical diurnal tides expected in the Gulf of Mexico.

Comment #14: Revise the IER to incorporate salinity and dissolved oxygen impacts that have occurred in the Bayou La Loutre area.

Response: The direct DO impacts of the Seabrook structure in the IER relied upon a model which represented only the incremental impact of adding the Seabrook cofferdam to a system that already includes the MRGO closure at Bayou La Loutre and Borgne Barrier. It does not capture the total change from all three structures. There could be localized adverse impacts to dissolved oxygen due to the cumulative impact of the MRGO closure at Bayou La Loutre and the Borgne Barrier. Low dissolved oxygen in the vicinity of Bayou La Loutre closure occurred seasonally during 2009 and may persist as an annual occurrence. Previous modeling that included the MRGO closure at Bayou La Loutre as a base condition (Dortch, M.S. and S.K. Martin. 2008. Estimation of Bottom Water Dissolved Oxygen in the Mississippi River Gulf Outlet and Gulf Intracoastal Waterway Resulting from Proposed Structures. U.S. Army Corps of Engineers, Engineer Research and Development Center. Vicksburg, Mississippi) predicted localized drops in bottom DO due to the addition of the Borgne Barrier

and a 95 ft wide structure at Seabrook, some of which were below a DO standard of 4.0 mg/L. This model also showed improved DO conditions within Bayou Bienvenue just east of the Borgne Barrier closure of MRGO, above the DO conditions modeled with just the MRGO closure at Bayou La Loutre in place. This model has certain uncertainties; for example, it uses input from the TABS-MDS model which has not been validated. It also models smaller gate dimensions than the size of the GIWW gate being constructed within the Borgne Barrier and proposed at Seabrook. This model also assumes a fully mixed system, which is not the case consistently throughout the project area.

Comment #15: Revise the IER to list the IHNC as a third point of influence affecting the tides of the estuarine open water in the study area.

Response: The following text, “In addition, the IHNC serves as a third tidal pass.” has been added to Section 3.2.4.

Comment #16: Include a paragraph describing direct impacts on fishery productivity.

Response: Fannaly (1979) demonstrated that the IHNC functions similarly to natural passes in terms of transport of planktonic, larval stages of fish, crabs, and shrimp between Lake Pontchartrain, surrounding estuaries, and the Gulf of Mexico, and that migration through the passes is essential to the maintenance of populations of these species in Lake Pontchartrain. Fannaly (1979) found no statistically significant difference in the abundance of macroplankton transported by the IHNC, the Rigolets, and Chef Menteur Pass. It is not known if this relationship will remain unchanged after closure of the MRGO and construction of the other proposed features. The relationship between hydrology and macroplankton transport is complex as indicated by Swenson and Chuang (1983) who found that the IHNC was an ebb-dominated pass and the Rigolets was a flood-dominated pass.

Three aspects of the construction and operation of the proposed alternative may directly impact fisheries production: 1) closure of the IHNC during the construction phase; 2) modified hydrology/water exchange caused by the new structure; and 3) modifications in hydrology during episodic closures of the structure for a variety of purposes. Closure of the IHNC during the construction phase may reduce year class strength and densities of some populations in Lake Pontchartrain and the GIWW in the vicinity of the project. Episodic closures of the gates during high flow events are expected to be relatively uncommon and of short duration, a few hours to a few days. These episodic closures of the gates may cause some increased loss of larval organisms; however, losses from this activity are not expected to measurably affect fish and crustacean populations in Lake Pontchartrain. Approximately the same volume of water will be transported through the structures as is currently transported through the IHNC passage at Seabrook without the structures. Velocities and tidal fluctuations will be slightly lower than conditions prior to implementation of any of the associated

projects, i.e. MRGO closure and the Borgne Barrier. Baffles and ramps will be incorporated into the project to minimize creation of turbulence and eddies which may trap larval organisms. The cumulative effect of these different actions indicates there may be a short-term direct effect on fish and crustacean populations; however, the long-term effects are not likely to be measurable. Possible effects are described in more detail Section 3.2.4 of the IER.

Comment #17: Each alternative should include the cross-sectional area of the existing channel in comparison to proposed structures.

Response: The cross-sectional area of the existing channel (approximately 5,200 square feet [sq ft]) would be reduced by construction of the proposed structures (approximately 3,150 sq ft to 3,870 sq ft, depending on final design).

Comment #18: NMFS recommends specific details on the existing cross sectional area of the IHNC at its most constricted location and the location of the proposed action be included and compared to the cross sectional area provided by the open structure in the proposed action.

Response: The IHNC at the Seabrook Bridge is the most constricted portion of the channel. This is the dimension for the existing channel width that is provided in the response to comment #17.

Comment #19: List the project duration of “temporary” blockage of the IHNC as up to one year.

Response: Text has been revised to define the temporary blockage as 6 to 12 months.

Comment #20: “CWPPRA” should be replaced with “restoration”.

Response: Text has been revised.

Comment #21: Revise the IER to list and briefly discuss practical limitations of the PTM.

Response: See response to comment #3. Additional information with regard to the validation of the model and perceived limitations are incorporated into the Draft IER document as part of Appendix B.

Comment #22: Reincorporate the paragraph from the pre-draft (described in the comment letter) into section 3.2.4.

Response: The CEMVN acknowledges that after project completion, fisheries resources are expected to emerge into Lake Pontchartrain predominantly through the northeastern passes as the result of tidal flow, thereby affecting fisheries resources. Although the Rigolets and Chef Pass are also viable options for passage into Lake Borgne, swimming aquatic organisms and ones using passive transport or cues to migrate in flood tide may have a longer travel time to reach

areas of suitable habitat. This could be especially important for tidal lateral moving larvae such as shrimp and blue crab.

Comment #23: Revise the IER to incorporate temporary impacts to local fisheries populations and associated users in the vicinity of the IHNC.

Response: Existing conditions of, and alternative impacts on Aquatic Resources and Fisheries in the project area, as well as impacts to recreation and commercial fisheries, are discussed in Section 3.2.4. Impacts to recreational fishing and “reduced effectiveness of fishing in the area” are discussed in the Cumulative impacts to Socioeconomics (Section 3.3). Impacts to both recreational fishing boats and commercial fishing fleets that rely on fisheries resources, including vessels that operate outside of the IHNC, potentially include restricted access to target fishing areas, increased sail time, shifts in fishing pressure or required effort, and increased expenses in response to these impacts.

Cumulative impacts on recreational and commercial fishing industries are difficult to predict because of the complex array of changes that would result from projects in the area. Blue crabs, brown shrimp, and white shrimp are commercially harvested from Lake Pontchartrain, while early life stages of Gulf menhaden, another important commercial species, also utilize Lake Pontchartrain. Important recreational species like red drum, spotted seatrout, and Atlantic croaker are also found in the project area. Lake Pontchartrain supports commercial fisheries for freshwater catfish, buffalo, and alligator gar. Long-term reductions in Lake Pontchartrain salinity resulting from the projects may promote expansion of fresh and intermediate marsh along with SAV that in turn, could provide improved habitat for commercial and recreational estuarine species and their prey. Reduced larval transport through the IHNC could result in fewer individuals of recreationally and commercially important species entering Lake Pontchartrain in the project area. Since possible reductions in larval transport affect early life stages, which typically experience relatively high mortality rates, it is not clear there will be measurable reductions in the numbers of commercially and recreationally available fish and shellfish. It would be expected that these complex interactions would not measurably impact the fishing industries over the long-term.

Recreational and commercial fishing activities would be limited during construction due to reduced access between the IHNC and Lake Pontchartrain at Seabrook. There could also be long-term, slight reductions in commercial and recreational fishing in the project area because the gates would close at certain times during the year to prevent dangerous conditions or flooding. Gate closures would not be expected to significantly impact fishing because the conditions which would require closure of the gates would also tend to be unfavorable to recreational and commercial fishing. Little data is available on potential effects the proposed action could have on the displacement of fisheries, or whether there

would be a net loss to the economy, regardless of duration of the project and restriction of navigation through the Seabrook pass.

Comment #24: The COE should commit to continued monitoring and fisheries impact modeling to assess cumulative impacts to fisheries from the Hurricane Surge Damage Risk Reduction, coastal restoration, and MRGO de-authorization measures.

Response: Please see response to comments #2.

Comment #25: Revise Table 11 to include Gulf stone crab.

Response: The table has been revised to include information on the Gulf stone crab.

Comment #26: Revise the last sentence to change “rebound” to “reach an altered equilibrium”.

Response: The text has been revised to replace “rebound” with “achieve an equilibrium”.

Comment #27: Page 98, paragraph 4 – The last sentence should be revised to indicate that DO could be degraded in some portions of the study area.

Response: In Section 3.2.5 “Essential Fish Habitat”, under the heading of “Cumulative Impacts to EFH”, the 1st paragraph was revised to further clarify what is meant by “altered DO”.

Comment #28: There is no mention of monitoring for Gulf sturgeon before dewatering the cofferdam or the appropriate means to for relocation. The COE should address this matter with Kelly Shotts of NMFS.

Response: As a precautionary measure, before the cofferdam is dewatered for construction activities to commence, the area would be surveyed for the presence of Gulf sturgeon. The construction contractor will advise the government when the cofferdam is scheduled to be dewatered and the government will coordinate with the interagency team to have biologists on hand, if necessary, to relocate Gulf sturgeon to appropriate habitat. If any sturgeon are observed, the USACE will reinitiate consultation with NMFS on the appropriate means for relocating Gulf sturgeon to a safe location away from the project area. Once construction is completed and the cofferdam removed, unrestricted flow between the IHNC and Lake Pontchartrain will be restored. Although not located in designated Gulf sturgeon critical habitat, the project is hydrologically connected to designated critical habitat in Unit 8.

Comment #29: Socioeconomic Resources – The IER should acknowledge there is largely unavailable information to assess these potential impacts, regardless of duration.

Response: Please see response to comment #23

Comment #30: Revise the IER to incorporate salinity and dissolved oxygen impacts that have occurred in the Bayou La Loutre area.

Response: Please see response to comment #14. There could be potential adverse impacts to DO due to the MRGO deauthorization structure and continuation of seasonally degraded DO and increased salinity south of this structure. DO could be degraded elsewhere in some portions of the study area.

Comment #31: Delete the term “fisheries” from the last sentence in paragraph 2 of section 4.2.2.2.

Response: The CEMVN acknowledges that there could be potential adverse impacts to DO due to the MRGO deauthorization structure and continuation of seasonally degraded DO and increased salinity south of this structure. Monitoring and, if necessary, modeling will be conducted to further assess the impacts to resources within the project area.

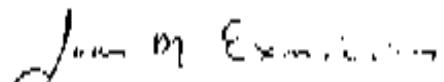
Comment #32: Add DO to the list of potential example cumulative impacts to the first sentence on page 187, paragraph 4 and revise the last sentence in the same paragraph to read, “Given the limitations of the modeling conducted, relative reductions in transport of larval organisms from the Gulf into Lake Pontchartrain may cause slight reductions, over the long-term, of certain species and life stages of aquatic organisms, including sport fish and their prey.”

Response: Although “water quality” impacts is already listed in this paragraph, the text has been revised to provide DO to the list of potential example cumulative impacts. The CEMVN acknowledges that given the limitations of the modeling conducted, relative reductions in transport of larval organisms from the Gulf into Lake Pontchartrain may cause slight reductions, over the long-term, of certain species and life stages of aquatic organisms, including sport fish and their prey.

Comment #33: Recommend including “decreased DO and increased salinity in some areas” as examples of negative changes as discussed in the last sentence. Similarly, this should be listed in the third paragraph.

Response: The sentences have been revised accordingly.

Comment #34: Page 189 – A summary of cumulative impacts on the recreational and commercial fishing industry should be discussed on this page.


Response: Please see response to comment #23

Comment #35: NMFS requests an addendum be added to the Tier 2 IER document to address NMFS comments.

Response: After careful consideration of the comments received from your agency and others, as well as discussion with your agency regarding possible responses to your comments, CERMVN believes it is prudent and reasonable to address these comments through response letters, which will become part of the Final IER in Appendix B, rather than an addendum.

Again, we would like to thank you for your comments and for taking the time to participate in the IER #11 Tier 2 Pontchartrain public review process. Should you have additional questions please contact Ms. Laura Lee Wilkinson at (504) 862-1212 or at laura.l.wilkinson@usace.army.mil.

Sincerely,

John M. Encios
Chief, New Orleans
Environmental Branch

CC: Richard Hartman

United States Department of the Interior

FISH AND WILDLIFE SERVICE
646 Cajundome Blvd.
Suite 400
Lafayette, Louisiana 70506

March 29, 2010

Colonel Robert Sinkler
Commander
Hurricane Protection Office
U.S. Army Corps of Engineers
Post Office Box 60267
New Orleans, Louisiana 70160-0267

Dear Colonel Sinkler:

Please reference the Individual Environmental Report (IER) 11, Tier 2 Pontchartrain, for the Improved Protection on the Inner Harbor Navigation Canal (IHNC), Orleans and St. Bernard Parishes, Louisiana. That IER is being prepared under the approval of the Council on Environmental Quality (CEQ) that will partially fulfill the U.S. Army Corps of Engineers (Corps) compliance with the National Environmental Policy Act (NEPA) of 1969 (83 Stat. 852, as amended; 42 U.S.C. 4321- 4347). IERs are a CEQ approved alternative arrangement for compliance with NEPA that would allow expedited implementation of improved hurricane protection measures. Work proposed in IERs would be conducted under the authority of Public Law 109-234, Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane Recovery, 2006 (Supplemental 4) and Public Law 110-28, U.S. Troop Readiness, Veterans' Care, Katrina Recovery, and Iraq Accountability Appropriations Act, 2007 (5th Supplemental). Those laws authorized the Corps to upgrade two existing hurricane protection projects [i.e., Westbank and Vicinity of New Orleans (WBV) and Lake Pontchartrain and Vicinity (LPV)] in the Greater New Orleans area in southeast Louisiana. This report contains a description of resources in the project area and provides planning objectives and recommendations to minimize project impacts on those resources.

The proposed project was authorized by Supplemental 4 which instructed the Corps to proceed with engineering, design, and modification (and construction where necessary) of the LPV and the WBV Hurricane Protection Projects so those projects would provide 100-year hurricane protection. Procedurally, project construction has been authorized in the absence of the report of the Secretary of the Interior that is required by Section 2(b) of the Fish and Wildlife Coordination Act (FWCA) (48 Stat. 401, as amended; 16 U.S.C. 661 et seq.). In this case, the authorization

process has precluded the normal procedures for fully complying with the FWCA. The FWCA requires that our Section 2(b) report be made an integral part of any report supporting further project authorization or administrative approval. Therefore, to fulfill the coordination and reporting requirements of the FWCA, the Service will be providing post-authorization 2(b) reports for each IER.

This report incorporates and supplements our FWCA Reports that addressed impacts and mitigation features for the WBV of New Orleans (dated November 10, 1986, August 22, 1994, November 15, 1996, and June 20, 2005) and the LPV (dated July 25, 1984 and January 17, 1992) Hurricane Protection projects; the November 26, 2007, Draft Programmatic FWCA Report that addresses the hurricane protection improvements authorized in Supplemental 4; the October 9, 2008, Final FWCA Report and September 18, 2009, Draft Supplemental FWCA Report that addressed the Tier 2, Borgne storm surge protection barrier; and the October 23, 2009, draft FWCA Report that addressed the Tier 2, Pontchartrain for the Improved Protection on the IHNC. Additionally, the Service provided comments in a January 5, 2010, letter regarding the Corps draft IER which have been incorporated in this report.

This report contains a description of the existing fish and wildlife resources of the project area, discusses future with- and without-project habitat conditions, identifies fish and wildlife-related impacts of the proposed project, and provides recommendations for the proposed project. This document constitutes the report of the Secretary of the Interior as required by Section 2(b) of the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661 et seq.). This report has been provided to the Louisiana Department of Wildlife and Fisheries and the National Oceanic and Atmospheric Administration's (NOAA), National Marine Fisheries Service (NOAA's NMFS), and their comments are incorporated (Appendix C).

DESCRIPTION OF THE STUDY AREA

The IER 11 study area includes the Orleans East Bank, New Orleans East, and Chalmette Loop sub-basins along the east bank of the Mississippi River in Orleans and St. Bernard Parishes, Louisiana. Lake Pontchartrain borders the study area to the north. Reaches 148 and 147, and portions of Reach 146 of the LPV Hurricane Protection Levee (i.e., subsections of IER 10) that parallel the Mississippi River Gulf Outlet (MRGO) make up the study area's southern boundary. The eastern boundary extends along the eastern edge of Lake Borgne. The study area for Tier 2 Pontchartrain incorporates the section of the IHNC from the intersection of the de-authorized MRGO and the Gulf Intracoastal Waterway (GIWW) and to the west, and includes the IHNC lock complex to the south and the intersection of the IHNC and Lake Pontchartrain to the north.

Two areas have been selected as the preferred location for the storm surge protection barrier to protect the IHNC from storm surges coming from Lakes Pontchartrain and Borgne. The Borgne 1 location alternative, which would reduce storm surge from Lake Borgne and surrounding areas, extends from west of the Parish Road Bridge on the GIWW to east of the Michoud Canal on the GIWW and south of Bayou Bienvenue on the MRGO, and includes a portion of the emergent

marsh area referred to as the “golden triangle.” The other preferred location alternative is the Pontchartrain 2 barrier location alternative which extends from the Seabrook Bridge to 2,500 feet south of that bridge on the IHNC (Figure 1). The Pontchartrain 2 barrier location alternative would protect the IHNC against storm surge coming from Lake Pontchartrain. The Tier 2, Pontchartrain IER evaluates five alternative designs and alignments within the Pontchartrain 2 location alternative; this report focuses on that alternative location alignment.

Figure 1. Lake Pontchartrain and Vicinity (LPV), IHNC, Tier 2 Pontchartrain study area, Orleans and St. Bernard Parishes, Louisiana (IER 11).

FISH AND WILDLIFE RESOURCES

Habitat types in the IER 11 study area include wet and non-wet bottomland hardwood habitat, early successional stage bottomland hardwood habitat (i.e., scrub-shrub), marsh, open water, and developed areas. Open water areas associated with the IHNC, GIWW, MRGO, Bayou Bienvenue, and interspersed open water areas within emergent marsh habitat make up a large portion of the study area. Due to urban development and a forced-drainage system, the hydrology of most of the forested habitat within the levee system has been altered. The forced-drainage system has been in operation for many years, and subsidence is evident throughout the areas enclosed by levees. Urban development and open water associated with the IHNC make up a significant portion of the Pontchartrain 2 barrier location project area. Minimal wetland habitats occur along the shoreline between the existing levee system and the waterway.

Wetlands (forested, marsh, and scrub-shrub) within the study area provide plant detritus to adjacent coastal waters and thereby contribute to the production of commercially and recreationally important fishes and shellfishes. They also provide valuable water quality functions such as reduction of excessive dissolved nutrient levels, filtering of waterborne contaminants, and removal of suspended sediment. In addition, coastal wetlands buffer storm surges reducing their damaging effect to man-made infrastructure within the coastal area. Factors that will strongly influence future fish and wildlife resource conditions outside of the protection levees include freshwater and sediment input and loss of coastal wetlands. Regardless of which of the above factors ultimately has the greatest influence, emergent wetlands within, and adjacent to, the project area will probably experience losses due to subsidence, erosion, and relative sea-level rise.

The Service has provided FWCA Reports for the authorized hurricane protection projects. Those reports contain a thorough discussion of the significant fish and wildlife resources (including those habitats) that occur within the study area. For brevity, that discussion is incorporated by reference herein but the following information is provided to update the previously mentioned reports and provide IER specific information and recommendations.

The following is provided in accordance with the ESA of 1973, as amended. On October 23, 2009, the Service concurred with the Corps' determination that the proposed hurricane protection improvement project along the IHNC is not likely to adversely affect federally listed threatened and endangered species within our jurisdiction, including the brown pelican (*Pelecanus occidentalis*) and the West Indian manatee (*Trichechus manatus*). That concurrence was based on information provided to the Service in a September 23, 2009, letter which included the incorporation of the standard manatee protective measures into the Corps' construction contracts. Since that consultation the brown pelican has been officially removed from the List of Endangered and Threatened Species which occurred on December 17, 2009. Although the brown pelican has been removed from the List of Endangered and Threatened Species, it continues to be protected under the MBTA. For additional information please refer to the following links:

http://www.fws.gov/home/feature/2009/pdf/brownpelicanfinaldelisting11-10-09_to_OFR.pdf
and http://www.fws.gov/home/feature/2009/pdf/brown_pelicanfactsheet09.pdf.

West Indian manatees, federally listed as an endangered species, occasionally enter Lakes Pontchartrain and Maurepas, and associated coastal waters and streams during the summer months (i.e., June through September). Please be aware that occurrences and the distribution of the endangered West Indian manatee appears to be increasing as they have been regularly reported in the Amite, Blind, Tchefuncte, and Tchefuncte, and Tchefuncte, and Tchefuncte, and Tiefaw Rivers, and in canals within the adjacent coastal marshes of Louisiana. They have also been occasionally observed elsewhere along the Louisiana Gulf coast and infrequently observed along the Texas Gulf coast. In addition to the Standard Manatee Protection Measures for in-water work, signs should also be posted within work areas associated with operation of the flood control structures to ensure that operators are aware of the potential presence of manatee during the periodic closure of the structures. The operational plan (Water Control Plan) should include measures to avoid entrapment of

individuals during the closure of the surge barrier structures. We recommend that the Corps consult with the Service on the operation of the structure once that plan is developed.

Potential changes in the status of federally listed threatened and endangered species, and possible additions to the Federal endangered species list are likely to occur. We recommend that the Corps' include in the operation and maintenance plan provided to the local sponsor a measure that will inform them of the need to coordinate with the Service and NMFS on an annual basis and when operational plans are revised, as those revisions may affect federally listed threatened and endangered species.

The threatened Gulf sturgeon (*Acipenser oxyrinchus desotoi*), is known to occur in the study area. As you are aware, the National Oceanic and Atmospheric Administration's (NOAA), NMFS in St. Petersburg, Florida is responsible for consultations regarding impacts to the Gulf sturgeon and its critical habitat with the Corps in estuarine habitats, and as we understand the Corps is coordinating with that office.

Estuarine emergent wetlands, estuarine water column, and estuarine water bottoms within the project area have been identified as Essential Fish Habitat (EFH) for both postlarval, juvenile and sub-adult stages of brown shrimp, white shrimp, and red drum, as well as the adult stages of those species in the nearshore and offshore reaches. Commercially important estuarine and marine species such as red drum, spotted seatrout, Gulf menhaden, brown shrimp, and white shrimp are found in the project area. EFH requirements vary depending upon species and life stage.

The 1996 amendments to the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act; P.L. 104-297) set forth a new mandate for NOAA's NMFS, regional fishery management councils (FMC), and other federal agencies to identify and protect important marine and anadromous fish habitat. The EFH provisions of the Magnuson-Stevens Act support one of the nation's overall marine resource management goals of maintaining sustainable fisheries. Essential to achieving this goal is the maintenance of suitable marine fishery habitat quality and quantity. Detailed information on Federally-managed fisheries and their EFH is provided in the 1999 generic amendment of the Fishery Management Plans (FMP) for the Gulf of Mexico prepared by the Gulf of Mexico FMC (GMFMC). The generic FMP subsequently was updated and revised in 2005 and became effective in January 2006 (70 FR 76216). NMFS administers EFH regulations. Categories of EFH in the project area include the estuarine waters and substrates of the MRGO channel. Estuarine categories include estuarine emergent wetlands and estuarine water column, mud, sand, and shell water bottoms, and rock substrates.

Coastal wetlands also provide nursery and foraging habitat that supports economically important marine fishery species such as spotted seatrout, sand seatrout, southern flounder, Atlantic croaker, spot, gulf menhaden, striped mullet, white mullet, killifish, kingfish, pompano, anchovies, and blue crab. Some of these species serve as prey for other fish species managed under the Magnuson-Stevens Act by the GMFMC (e.g., mackerels, snappers, and groupers) and highly migratory species managed by NMFS (e.g., billfishes and sharks). Under future without

project conditions there would be no change to EFH.

ALTERNATIVES UNDER CONSIDERATION

During the initial IER, Tier 1 analysis, the no-action alternative and the alternative to raise the existing Hurricane Protection System to a 100-year level of protection were considered. The location alternatives (i.e., Borgne 1 and Pontchartrain 2) selected for the construction of storm surge protection structures were considered by the Corps to be most responsive to the project's purpose and need, and would be an effective engineering solution that minimizes uncertainty and risk to acceptable levels in a reasonable period of time.

Figure 2. IER 11, LPV, IHNC, Tier 2 Pontchartrain Alternative Alignments and Proposed Action.

http://www.nolaenvironmental.gov/sec/projects/usace_levee/docs/original/IER11Tier2Pontchartrain090909.pdf

The Pontchartrain 2 location alternative includes a storm surge protection barrier which would be built to protect the IHNC and surrounding areas from storm surges coming from Lake Pontchartrain. IER 11, Tier 2 Pontchartrain is evaluating five alternative alignments (Figure 2) within the selected Pontchartrain 2 location range. Aside from the alternative alignment locations each alternative including the preferred alternative would consist of several common features. T-wall floodwalls are proposed to be built to a construction grade elevation +16.0 feet North American Vertical Datum 1988 (NAVD 88). A steel sector gate would be built with a top of gate elevation of +18.0 feet NAVD 88 and a sill elevation between -16.0 feet and -20.0 feet NAVD 88 and would have the same width as the existing navigational channel (i.e., 95-foot wide). Two flow augmentation gates (i.e., vertical lift gates) are proposed on either side of, and

adjacent to, the sector gate. These vertical lift gates are necessary primarily to maintain existing flow velocities in order to facilitate safe navigation through the sector gate, but could also minimize increased velocities potentially detrimental for fisheries migration through the gate. The lift gates would each have a width of between 40 feet and 60 feet and sill elevations between -10.0 feet and -20.0 feet NAVD 88.

DESCRIPTION OF SELECTED PLAN

The proposed alternative (i.e., Alternative 1, Figure 3) is the Bridgeside Alignment which includes a sector gate located 540 feet south of Seabrook Bridge and approximately 1,475 feet of T-walls built on existing levees. The features of the proposed alternative are as described above.

The proposed alternative alignment would also require filling in the existing south scour hole before commencement of construction of the cofferdam and foundation. The scour hole would be filled with coarse sand to an elevation of -42.0 feet NAVD 88 before the guide wall and supporting piling are driven. Stone riprap would be placed around the support piling to -37.0 feet NAVD 88. The IHNC in the project vicinity ranges from approximately -30 feet to -41 feet in depth outside the scour hole.

Figure 3. IER 11, LPV, IHNC, Tier 2 Pontchartrain Proposed Alternative (i.e., Bridgeside Alignment) Features.

http://www.nolaenvironmental.gov/sec/projects/usace_levee/docs/original/IER11Tier2Pontchartrain090909.pdf

During construction, a temporary braced cofferdam would be installed across the channel around

the approximate perimeter of the sector and vertical lift gates, closing this portion of the channel to navigation, recreational vessels, and aquatic organism access for the duration of the construction of the sector gate and vertical lift gates (i.e., for a period of approximately 12 months). The Corps determined that a bypass channel would be infeasible due to the potential for high flow rates and public safety concerns associated with navigating directly through an active construction area. Additionally, the construction sequence necessary to provide such bypass could potentially add approximately eight months to the construction schedule resulting in a cost increase.

FISH AND WILDLIFE CONCERNS IN THE STUDY AREA

Since 1930, Louisiana has lost over 1,500 square miles of marsh, and is still losing 25-30 square miles each year (LCWCR Task Force and WCR Authority 1998). Erosion, subsidence, and relative sea level rise continue to contribute to Louisiana's coastal land loss. The Lake Pontchartrain Basin is the largest contiguous estuary system along the Gulf Coast and is dominated by Lakes Pontchartrain, Maurepas and Borgne and their associated estuarine marshes and coastal forested wetlands. During the 1970's and 1980s, several studies and reports focused on the declining environmental state of the Lake Pontchartrain Basin caused by a number of factors including urban development, urban and agricultural runoff, poorly treated and untreated sewage, wetland loss, and salt water intrusion associated with the MRGO (Lake Pontchartrain Restoration Working 2009). The MRGO navigation channel was dredged through the Breton Sound Basin in 1963. Saltwater intrusion facilitated by the MRGO killed thousands of acres of freshwater wetland forests within the Lake Pontchartrain Basin and transformed intermediate and brackish marshes into more saline habitats. Wave-induced shoreline erosion associated with vessel traffic along the MRGO has further exacerbated marsh loss in the area.

Lake Pontchartrain itself has also fallen victim to the intrusion of higher saline waters from the MRGO. A 100-square-mile dead zone north of the IHNC in Lake Pontchartrain is the result of higher salinity and episodes of bottom water anoxia and hypoxia (Poirrier et al. 2008 and Day et al. 2008). Within this dead zone, a significant reduction of rangia clams, a filter feeder, has resulted in increased algae blooms, turbidity, and fecal coliforms, and as a result of increased turbidity the area has seen a reduction in submerged aquatic habitat. Historically the high density of rangia clams and clam shell hash has contributed to stabilizing the mud bottom and adjacent shoreline (Spalding et al. 2007). Rangia clams are also a good food source for fish, crabs, and waterfowl, and are the primary food source for scaup on Lake Pontchartrain. In 2006, the scaup population was estimated at 1.2 million on Lake Pontchartrain, a record high estimate in contrast to the year before (i.e., less than 1,000 scaup) which followed the 2005 hurricanes (Checkett 2006). The former highest record estimate was just under 500,000 scaup in 1981. Ducks Unlimited, Inc. biologists hypothesize that the increased numbers of scaup that year are a result of the very high production of Rangia clams (Checkett 2006).

In accordance with the Water Resources Development Act of 2007, approval by the Secretary of the Army and submittal of the June 5, 2008, Chief's Report to Congress by the Assistant Secretary of the Army de-authorized the MRGO channel from mile 60 to the Gulf of Mexico

resulting in no further actions to maintain that portion of the MRGO navigation project. That Report authorized the closure of the MRGO with a plug, and in late July 2009 construction was initiated and complete closure was achieved. The Tier 2, Borgne barrier structure which will reduce storm surges in the IHNC from Lake Borgne also includes an earthen plug on the MRGO further obstructing salt water intrusion through the Seabrook structure into Lake Pontchartrain. These recent actions are expected to further reduce salinity spikes through the IHNC and into the southern reach of Lake Pontchartrain, thus, reducing hypoxia and providing favorable conditions for the restoration of rangia clam habitat within Lake Pontchartrain. As a result it is expected that the benthic dead zone will see an increase in water clarity and quality, improvements to submerged aquatic vegetation and hard bottom reef habitat, and an over improvement to fish and wildlife habitat (Abadie and Poirrier 2001).

The Service strongly supports strategies and projects designed to address adverse impacts of continued coastal wetland loss and degraded fish and wildlife habitats. To comply with Section 303 (d) of Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA), the Corps must implement and operate project features consistent with the Louisiana Coastal Wetlands Restoration Plan. That plan, developed by the Corps, the Service, and other Federal and State agencies, identified strategies to protect and restore Louisiana's coastal wetlands. Several Region 1 strategies include diverting Mississippi River water through Violet Canal to sustain the Central Wetlands and Biloxi Marshes, dedicated delivery of sediment for marsh building, as well as closure of the MRGO.

POTENTIAL SIGNIFICANT IMPACTS

Direct impacts to emergent wetlands as a result of the proposed project are not anticipated. Construction of the new structures across the IHNC would result in the loss of lower quality habitat associated with the banks of the IHNC and areas along the existing floodwall/levee. These areas are covered mainly by grass and are periodically mowed or are partially paved industrial areas. Temporary construction easements totaling approximately 26.5 acres and permanent easements totaling approximately 14.8 acres would be required resulting in a permanent loss of approximately 15 acres of open water and disturbed uplands.

Direct Impacts

The construction phase is expected to have the greatest direct impact on fish and wildlife resources and is anticipated to last approximately 18 to 45 months. Aquatic wildlife using open-water habitats in the project area are mobile and could move to similar habitats in the area at the start of construction activities. The cofferdam would temporarily impede movement and transport of aquatic organisms between the IHNC and Lake Pontchartrain for as much as twelve months, impacting at least one life cycle of aquatic organisms using that pass to reach the lower salinity waters of Lake Pontchartrain. This would affect populations of bait fishes (e.g., bay anchovy, Gulf menhaden and Atlantic croaker) and other commercially important species, such as blue crabs and shrimp species, which migrate inshore utilizing this passage. Although the

Chef Menteur and the Rigolets Passes would remain open as access points for aquatic organisms to reach nursery areas in the lake, individuals that reach the IHNC would most likely not recruit to the lake due to poor water conditions in the IHNC during construction and the extended distance and time required to travel to an alternative access point. Commercial and recreational fishing activities would be significantly altered (e.g., displaced or discontinued) with possible economic affects during the twelve months the cofferdam is in place.

Once construction is complete, the IHNC surge barrier structure would reduce the width of the IHNC at the project location from 250 feet wide to 195 feet wide. Although the width of the channel will be reduced, hydraulic modeling conducted by the Corps has indicated that the proposed design including the vertical lift gates will result in velocities similar to those experienced historically within the IHNC. By maintaining those previous velocities the Corps expects that the design will provide adequate passage for fish and aquatic wildlife to cross the surge barrier except during gate closures. Gate closures are expected during storm events and monthly operation and maintenance activities, and during high velocity periods to alleviate potential navigation hazards through the GIWW gate. Scheduled gate closure events are expected to last a few days each month. During these closures organisms would be prevented from passing between Lake Pontchartrain and the IHNC. It is uncertain as to the duration and timing of these closures; therefore, anticipated impacts are unknown. If migratory patterns of fish and aquatic wildlife are not considered, the scheduling and timing of these gate closures could affect migration and transport of those resources.

Two scour holes, most likely the result of tidal flow into and out of the lake at the IHNC, are located approximately 300 feet north and south of the Seabrook Bridge. As a feature of the proposed project the south scour hole would be filled to the adjacent bottom elevation. The south scour hole is approximately 275 feet wide, 450 feet long, and 90 feet deep. Localized mortality of some individuals will occur as a direct result of the filling of the scour hole.

Siltation and diminished sunlight penetration would be most prevalent during the construction of the cofferdam and the filling in of the scour hole and would impact benthic aquatic organisms and phytoplankton in the area despite the use of Best Management Practices (e.g. silt curtains). Although some increased turbidity levels are expected for the duration of construction (i.e., up to 45 months) these increases would be less than turbidity level expected during filling of the scour hole and constructing the cofferdam.

Filling in the south scour hole may result in permanent beneficial changes to dissolved oxygen (DO) levels in the IHNC after construction is complete and has the potential to ultimately improve water quality conditions in the study area (Dortch and Martin 2008). This improvement in DO conditions is anticipated to be especially beneficial to Rangia clams and other benthic organisms.

Indirect Impacts

To assess potential indirect impacts to aquatic resources, the Corps reviewed scientific literature and conducted modeling of DO, salinity, velocity, fish passage, and Particle Transport Movement (PTM) for eight larval organisms (i.e., brown shrimp, white shrimp, blue crab, bay anchovy, Gulf menhaden, Atlantic croaker, red drum, and speckled seatrout) in the project area. The following discussion summarizes the results of those investigations.

The IHNC, a man-made channel with bulkheads along the shoreline, is one of three major tidal passages between the Gulf of Mexico and Lake Pontchartrain used by many aquatic species. Significant alterations to this tidal passage would cause positive and negative impacts to multiple organisms because the mechanisms that drive transport and migration would be altered. During the construction period, tidal flow would be obstructed impacting species such as blue crab, white shrimp and brown shrimp that are dependent on the tidal passes of this estuary to complete its life cycle. Once construction is complete, velocities similar to those experienced historically within the IHNC are expected to be maintained and provide adequate passage for fish and aquatic wildlife.

The installation of a cofferdam that will span the width of the channel would prevent velocity and circulation between Lake Pontchartrain and the IHNC for 12 months of the construction sequence. During the remaining 33 months of construction the IHNC will be at least partially open; velocities at the IHNC surge barrier structure are expected to remain below the existing conditions the majority of this time. However, hydrologic modeling conducted by the Corps' Engineer Research and Development Center (ERDC) indicates that velocities through the GIWW barge gate are expected to exceed 4.0 feet per second (fps) 30% of the time making maritime navigation difficult during construction of the IHNC surge barrier. Average velocities through the GIWW are estimated to be 3.0 fps during construction of the IHNC surge barrier. After construction is complete, velocities within the IHNC are expected to increase above existing conditions (i.e., the MRGO closure structure at Bayou La Loutre and Borgne Barrier), but comparable to those historically experienced prior to the above-mentioned structures being in place. Historical average velocities range from approximately 2.40 fps during the fall to 2.73 fps in the spring, with a maximum velocity of 4.98 fps (USACE 2009b). According to NMFS' guidance document titled "Fisheries Friendly Design and Operation Considerations for Hurricane and Flood Protection Water Control Structures," limited information indicates that velocities greater than 2.6 fps through tidal channels can inhibit fish passage and would cause even greater adverse impacts to less mobile aquatic organisms. However, this guidance may not necessarily be applicable to tidal passes or other similar major exchange points that naturally experience higher velocities. According to hydrologic modeling, velocities would exceed 4.0 fps in the IHNC 1% of the time under "September" modeling conditions and 3% of the time under "March" modeling conditions, and velocities exceed 2.6 fps in the IHNC 40% of the time under "September" conditions and 55% of the time under "March" conditions (USACE 2009a). The addition of the vertical lift gates on either side of the sector gate are expected to mitigate any turbulence caused by the sector gates. However, with the existing human alterations to the project area, fisheries resources are most likely already exposed to velocities greater than 2.6 fps during tidal cycles under existing conditions and occasionally are exposed to velocities similar to

those predicted.

PTM modeling results indicate that the proposed action, in conjunction with the Lake Borgne surge barrier and the MRGO closure at Bayou La Loutre, may cause an overall 6% to 10% decrease in the dispersion of larval organisms into Lake Pontchartrain. Of the majority of the model fishery species that are recruited into Lake Pontchartrain via the IHNC those experiencing the greatest impact exhibit tidal lateral behavior during migration (e.g. brown shrimp, white shrimp, Gulf menhaden, Bay anchovy, and red drum). This predicted decline in recruitment could have some direct impacts to the overall population of these organisms because fewer organisms would occur in the system. Indirect impacts could be less prey available for seatrout and other predator fish if recruitment of shrimp and Atlantic croaker decline.

While the coffer dam is in place during the initial stage of construction, fish passage into Lake Pontchartrain through the IHNC will be completely blocked. During this period all life stages of prey and predatory species using the IHNC as an access to the less saline estuarine habitats will be disrupted resulting in possible increased stress on individuals (e.g., starvation or increased predation pressure). The Corps' investigations determined that population-level impacts may be experienced if closure of the channel exceeds the maximum anticipated construction duration of up to twelve months. Once the cofferdam is removed, access to Lake Pontchartrain would be restored; however, based on the results of the PTM modeling, slowed velocities during phase II construction (i.e., coffer dam removed) along the GIWW and into the IHNC and changes in directional flow would increase migratory time to enter the Lake Pontchartrain through the IHNC potentially reducing recruitment of larval life stages of fisheries species.

Potential cumulative impacts to aquatic resources in the project vicinity could occur from construction-related activities (e.g., turbidity from dredging, noise) and from other on-going, completed, and authorized projects (e.g., changes in salinity, velocity, circulation/flow, and DO). Changes to hydrology may negatively affect fisheries resources during construction by decreasing recruitment of larvae especially tidal lateral movers such as shrimp, bay anchovy, Gulf menhaden, and red drum, and negative impacts could be exacerbated should the cofferdam be in place longer than 12 months. While blocked flow between the IHNC and Lake Pontchartrain may impact fish passage and tidal transport, salinities to the north and south of the project area would also change significantly during construction, potentially benefiting water quality parameters and benthic habitat. These alterations would include potential benefits to benthic communities in the southeastern portion of the lake, known as the benthic dead zone, and the temporary restoration of a natural salinity gradient in that area.

Modeling conducted by ERDC illustrated that the closure of the MRGO at Bayou La Loutre would have a significant effect on monthly average bottom salinity values not only in associated waterways, but also in the Lake Borgne area and in some areas of Lake Pontchartrain. Most areas showed decreases of 3 parts-per-thousand (ppt) to 4 ppt, with the MRGO showing the highest decrease of approximately 10 ppt in the region just north of the La Loutre closure, but minimal changes occur at Seabrook (< 1 ppt change) (Martin et al. 2009). The overall change to salinity could be both positive and negative to aquatic resources. It is expected that

environmental conditions would be restored in portions of the project area to those closer to historical conditions (e.g., pre-MRGO) including a more fresh-brackish water system. Although salinity would be returned to historic conditions, the area would experience a short-term reduction of prey species, changes in behavior, a decrease in growth rates, and a shift in species composition. While the initial impact may be substantial; it is expected to be beneficial in the long-term as the salinity regime is restored to somewhat historic conditions and the estuarine habitat becomes more productive. Restoring historic salinity conditions would be especially beneficial for benthic organisms that are currently experiencing poor DO and unfavorable salinity conditions within the bottom of the water column. Benefits may include increases in the populations of oysters and Rangia clams in Lake Pontchartrain and which in turn could assist in restoring historic submerged aquatic vegetation distribution within the lake. Other aquatic species using the areas would also benefit from improved water quality conditions.

While some areas may experience improved water quality conditions, there are other areas that may see a deterioration of water quality parameters as the salinity gradient shifts and recently constructed and authorized structures impede flow. Investigations are on-going to evaluate the cumulative impacts associated with the proposed project coupled with the Lake Borgne surge barrier structure, the MRGO de-authorization structure, as well as other projects proposed in the Lake Pontchartrain Basin.

As a result of the closure of the MRGO at Bayou La Loutre and the Lake Borgne surge barrier, organisms will no longer be able to use the MRGO and the western portion of the "golden triangle" marsh for transport or migration to Lake Pontchartrain. After construction, the IHNC via the GIWW and the Rigolets and Chef Menteur Passes in the eastern portion of the Lake would still be available. Even though larval transport and migration of other life stages may be reduced into Lake Pontchartrain through the IHNC, organisms could benefit from the overall change in flow direction from the implementation of closure of the MRGO, the Borgne Barrier, and the proposed action. If organisms used the alternate routes (i.e., the Rigolets and Chef Menteur Passes) they could enter and settle out in the eastern portion of Lake Pontchartrain, which contains more abundant high quality habitat, including natural shorelines bordered with complex habitat mosaics (SAV habitat, Rangia clams and oyster shells). Recruiting into these higher-quality habitats could result in higher growth rates, less predation, and a greater chance of individuals successfully growing to maturity and spawning. Such benefits would only occur if carrying capacity in those areas has not been reached resulting in additional pressure on resources due to competition and overuse.

For twelve months during construction a cofferdam will block flow between the IHNC and Lake Pontchartrain. Blocking access to quality habitat could cause an increase in predation of some lower trophic level species and change available prey items to predators. This blockage along with the Borgne Barrier and the MRGO closure at La Loutre may require predators that have become dependent on that tidal passage to travel longer distances during construction and would extend an already lengthy trip thereby decreasing growth rates, overall health, and possibly the ability to reproduce of some individual fisheries resources. Additionally, fish kills documented in the MRGO at the La Loutre closure coupled with potential fish kills at the Bienvenue closure

and the IHNC during this period would impact a larger number of individuals. Fish kills as a result of poor water quality in these areas could cause slower growth rates in individuals subjected to this environment, and would decrease survival of some species causing changes in overall community structure near the closures. Greater impacts are expected due to the MRGO closures due to the higher salinities and deeper water depth in the area as compared to the proposed action.

FISH AND WILDLIFE CONSERVATION MEASURES

The Corps proposes to close the Lake Pontchartrain surge barrier during storm events and monthly maintenance events, and during periods of high velocities to ensure safe navigation through the GIWW structure. The definition of a storm event and velocity threshold that will require gate closures has not been provided. However, the frequency of closure events due to unsafe conditions for navigation (i.e., high velocities) is conservatively estimated to be on the order of ten times a year over the 50-year project life. The timing and duration of closure events are uncertain, and depending on the operation of these closures, aquatic organisms could be adversely impacted. To minimize impacts and reduce the amount of closures, maintenance events should capitalize on closure events resulting from increased velocities. In the event this is not feasible, an effort to time closures during the two lowest tidal periods during a month would minimize impacts to fisheries migration and flow. To further minimize impacts, the closure of the IHNC surge barrier to alleviate high velocities through the GIWW should be carefully evaluated. A minimum channel reduction necessary at the IHNC surge barrier that will allow safe navigation at the GIWW gate and provide some aquatic organism access should be considered, provided that it does not compromise structural integrity. Allowing partial openings could also avoid unfavorable water quality conditions. Upon recent coordination, the Corps has committed to coordinate with the natural resource agencies during development of the Water Control Plan and operation and maintenance plan to further consider the feasibility of partial opening scenarios and coordination of closure events to minimize impacts to resources. Further, if the Water Control Plan provides closure triggers that differ significantly from those predicted in IER 11, a Supplemental IER would be developed to disclose the impacts of any greater frequency or duration of closure.

The IHNC hurricane protection project, including both the Lake Borgne and Lake Pontchartrain surge barriers, is expected to impact tidal exchange, reduce the channel cross sectional areas affecting the geomorphology, and impact aquatic organism access. Operational plans and final design configurations should be developed to maximize the cross-sectional area. The Corps should coordinate with the natural resource agencies during ongoing development of the structure designs and Water Control Manual and Plan to ensure that fish and wildlife conservation measures are incorporated and provide the agencies adequate review time of those draft plans once developed. Furthermore, NMFS' guidance document titled "Fisheries Friendly Design and Operation Considerations for Hurricane and Flood Protection Water Control Structures" provided in our November 26, 2007, Draft Programmatic FWCA Report and also included in this Report (Appendix B) should assist in the design and operation of flood protection features while incorporating estuarine habitat conservation measures.

The Corps has provided valuable insight into the potential impacts associated with the proposed project through their extensive modeling and investigations which have also benefited other proposed projects in the basin. However, there continues to be some unknowns and uncertainties due to the limitations of certain models (i.e., dissolved oxygen model) and due to the level of engineering, design, and development of the operation plan. The Water Control Plan (i.e., operational plan) for the structures is dependent on the results of the Adaptive Hydraulics (ADH) modeling which will be performed in the near future. To further evaluate and disclose direct and cumulative impacts associated with the construction and operation of the IHNC hurricane protection project along with several other hurricane protection and restoration projects, the Corps intends to acquire additional water quality monitoring data and provide a more accurate picture of conditions within the project area. Should monitoring data indicate potential adverse impacts, the Corps will coordinate with the resource agencies to complete modeling and/or evaluate alternatives for mitigating those adverse impacts.

At a minimum, the Cumulative Environmental Document (CED) should fully describe the cumulative impacts of the IHNC hurricane protection project structures and the operation of those structures including impacts to water quality, aquatic organism access, and how those impacts relate to current and foreseeable projects in the area. However, monitoring results should be provided to the natural resource agencies and the public as soon as they are available and prior to finalizing the mitigation IER. Mitigation necessary to fully offset unavoidable impacts to fish and wildlife resources as a result of the construction and operation of the IHNC hurricane protection project will be addressed during the development of the mitigation IERs and the CED once associated unavoidable impacts are fully understood.

For any reason, should monitoring and modeling efforts not fully disclose impacts to aquatic resources or should those efforts not be fulfilled, we recommend that a mitigation plan be developed in coordination with the Corps and the Interagency Team to offset the determined impacts to aquatic resources (e.g., increased migration times, increased predation, temporary loss of recreational use, decreases in DO at some locations) based on existing information available. That plan could include a combination of the following recommended alternatives:

Impacts to Water Quality

- 1) Structure operation: modify the water control plan/ operation of the structures, particularly the Seabrook Structure, to allow some flow during periodic velocity closures thereby minimizing reduced dissolved oxygen conditions;
- 2) Design and place aeration structures in areas experiencing lower dissolved oxygen conditions indicated by the monitoring data;
- 3) Backfill portions of MRGO to reduce depth and salinity stratification resulting in reduced dissolved oxygen.

Impacts to Aquatic Habitat and Recreational Use (Impacts associated with increased migration times and potential increased usage of those passages by aquatic resources displaced from the project area)

- 4) Seagrass plantings along areas of the Lake Pontchartrain shoreline historically colonized by submerged aquatic vegetation,
- 5) Marsh restoration focusing around the areas that would experience increased usage (tidal passes); and/or,
- 6) Construction of reef balls or a similar structure north of the Seabrook structure in Lake Pontchartrain.

The last three also address potential impacts associated with resource use or human use of resources. It is the Service's mitigation policy to mitigate impacts to fish and wildlife, their habitat, and uses thereof. However, if mitigation of habitat value occurs, then losses of human use are also considered to be minimized. So, should the Corps mitigate for impacts to aquatic habitat by planting seagrass, creating marsh, installing reef balls and/or some other option that offsets aquatic habitat impacts, human use of those resources would be minimized.

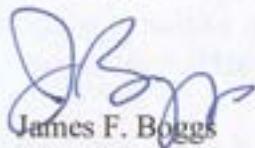
SERVICE POSITION AND RECOMMENDATIONS

The Corps has committed to conduct monitoring and, if necessary, additional modeling to fully evaluate impacts to aquatic resources. Should the modeling reveal project related adverse impacts, the Corps has committed to evaluating mitigation alternatives in coordination with the natural resource agencies. Also the feasibility of incorporating partial opening scenarios in the Water Control Plan will continue to be considered to reduce impacts to aquatic resources. Because of these assurances and provided that the following fish and wildlife conservation recommendations are implemented concurrently with project implementation the Service does not object to the construction of the proposed project:

1. Generally, flood protection barriers and associated structures should be situated so that destruction and enclosure of emergent wetlands are avoided or minimized, to the greatest extent possible.
2. The project's first Project Cooperation Agreement (or similar document) should include language that specifies the responsibility of the local-cost sharer to provide operational, monitoring, and maintenance funds for mitigation features, as well as shoreline protection features.
3. Further detailed planning and design of project features (e.g., Design Documentation Report, Engineering Documentation Report, Plans and Specifications, Water Control Plans or other similar documents) should be coordinated with the Service, NMFS, LDWF, Environmental Protection Agency (EPA) and Louisiana Department of Natural

Resources (LDNR). The Service shall be provided an opportunity to review and submit recommendations on all work addressed in those reports.

4. Mitigation for unavoidable impacts to fish and wildlife resources associated with the construction and operation of the IHNC hurricane protection project should be finalized in the Mitigation IER.
5. The Service recommends that water quality monitoring efforts conducted by USGS for the MRGO closure at Bayou La Loutre and fishery impact analyses (e.g., dissolved oxygen analysis) conducted for the MRGO Environmental Restoration Study be expanded to include the IHNC hurricane protection project to fully understand direct and cumulative impacts associated with those projects.
6. Should monitoring and modeling efforts reveal adverse impacts, the Service recommends that the Corps coordinate with the natural resource agencies to develop and evaluated alternatives to mitigate those impacts.
7. Financial assurances should be procured from the project construction cost to ensure monitoring, modeling, and, mitigation is provided for, if necessary. The Service therefore, recommends that a tentative scope for additional modeling and mitigation to analyze and offset impacts to aquatic resources be developed prior to construction close out and finalizing the mitigation IER and cumulative environmental document.
8. If a proposed project feature is changed significantly or is not implemented within one year of the date of our Endangered Species Act consultation letter, we recommend that the Corps reinitiate coordination with each office (i.e., NMFS in St. Petersburg, Florida, and the Service's Lafayette, Louisiana, Field Office) to ensure that the proposed project would not adversely affect any Federally listed threatened or endangered species or their habitat.
9. Operation and maintenance plans (e.g., Water Control Manual and Plan) should inform the local sponsor of the potential for federally listed threatened and endangered species to occur near the proposed structures and the need be aware of their presence during operation of those structures. We recommend that the Corps' include in the operation and maintenance plan provided to the local sponsor a measure that will inform them of the need to coordinate with the Service and NMFS every year and when operational plans are revised, as those revisions may affect federally listed threatened and endangered species.
10. To ensure manatees are not entrained within the flood protection structures or harmed during the closure of the structures, Standard Manatee Protection Measures should be included in the Corp's construction contracts as well as the operation and maintenance plans (i.e., Water Control Manual and Plan) developed for the local sponsor. We recommend that the Corps consult with the Service on the operation of the structure once


that plan is developed. A copy of those draft plans should be provided to the agencies for review and to provide comments.

11. Flood protection water control structures in any watercourse should maintain pre-project cross section in width and depth to the maximum extent practicable, especially structures located in tidal passes.
12. Flood protection water control structures should remain completely open except during storm events and should be operated to allow for maximum flow. The development of the operation and maintenance plans (i.e., Water Control Manual and Plan) should be closely coordinated with the natural resource agencies prior to being finalized to ensure closure events are scheduled and designed to minimize impacts to aquatic resources.
13. The Corps should consider the minimum channel reduction necessary at the IHNC surge barrier that will allow safe navigation at the GIWW gate to avoid and minimize impacts to aquatic resources.
14. To the maximum extent practicable, monthly maintenance activities should coincide with closure events intended to reduce velocities for the maritime industry. In the event this is not feasible, closures should be timed during the two low periods of the tidal range during a month to minimize impacts to fisheries migration and flow.
15. Structures should include shoreline baffles and/or ramps (e.g., rock rubble, articulated concrete mat) that slope up to the structure invert to enhance organism passage. Various ramp designs should be considered.
16. To the maximum extent practicable, structures should be designed such that average flow velocities during peak flood or ebb tides do not exceed 2.6 feet/second. This may not necessarily be applicable to tidal passes or other similar major exchange points.
17. Water control structures should be designed to allow rapid opening in the absence of an offsite power source after a storm passes and water levels return to normal.
18. Operation and maintenance plans (i.e., Water Control Manual and Plan) should be developed to maximize the cross-sectional area open for as long as possible and should be coordinated with the natural resource agencies. Operations to maximize freshwater retention or redirect freshwater flows could be considered if hydraulic modeling demonstrates that is possible and such actions are recommended by the natural resource agencies.
19. Shoreline protection features should be constructed as proposed to maintain the shoreline integrity and minimize shoreline erosion.

Should you or your staff have any questions regarding this letter and our attached report, please

contact Angela Trahan (337/291-3137) of this office.

Sincerely,

James F. Boggs
Supervisor
Louisiana Field Office

cc: Southeast LA Refuge Complex, Lacombe, LA
NMFS, Baton Rouge, LA
EPA, Dallas, TX
LDWF, Baton Rouge, LA
LDWF, NHP, Baton Rouge, LA
LDNR, CMD, Baton Rouge, LA
OCPR, Baton Rouge, LA

LITERATURE CITED

Abadie, S.W. and M.A. Poirrier. 2001. Rangia clams as an indicator of hypoxia in Lake Pontchartrain, in N. McInnis and B. Rogers, Priority Conservation Areas in the Lake Pontchartrain Estuary Zone. The Nature Conservancy and Lake Pontchartrain Basin Foundation, Northshore Field Office, LA.

Checkett, Mike. "An aerial survey by LDWF biologists..." [Weblog comment.] December 18, 2006. Scaup Migration Update. Mike Checkett, Waterfowl Biologist. Ducks Unlimited Blogs. December 15, 2006(<http://www.ducks.org/blogs/1/56/index.html>) September 28, 2009.

Day, J.W., Jr., and G.P. Shaffer. 2008. Effects of the Mississippi River Gulf Outlet on Coastal Wetlands and Other Ecosystems in Southeastern Louisiana. Expert Report, July 11, 2008, pp. 71.

Dortch, M.S. and S.K. Martin. 2008. Estimation of Bottom Water Dissolved Oxygen in the Mississippi River Gulf Outlet and Gulf Intracoastal Waterway Resulting from Proposed Structures. U.S. Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi.

Lake Pontchartrain Restoration Working: Foundation Builds Successful Record of Citizens Projects. *Louisiana Environmentalist*. July – August 1995. September 24, 2009.

<<http://www.leeric.lsu.edu/le/special/pontchartrain.htm>>.

Louisiana Coastal Wetland Conservation and Restoration Task Force and the Wetlands Conservation and Restoration Authority. 1998. Coastal 2050: Toward a Sustainable Coastal Louisiana. Louisiana Department of Natural Resources. Baton Rouge, LA. 70898.

Martin S.K., T.O. McAlpin, and D.C. McVan. 2009. Floodgate Analysis of the Mississippi River Gulf Outlet and Gulf Intracoastal Waterway. Coastal and Hydraulics Laboratory. U.S. Army Engineer Research and Development Center. Vicksburg, Mississippi.

Poirrier, M.A., Z.R. del Rey, and E.A. Spalding. 2008. Acute disturbance of Lake Pontchartrain benthic communities by Hurricane Katrina. *Estuaries and Coasts* Volume 31: 1221-1228.

Spalding E.A., A.E. Walker, and M.A. Poirrier. 2007. Restoration of 100 square miles of shellfish habitat in Lake Pontchartrain. Gulf of Mexico Program. New Orleans: EPA, MX974852-03-0.

U.S. Army Corps of Engineers (Corps). 2009a. Estimation of Dissolved Oxygen Concentrations of Two New Scenarios for Seabrook Conditions. ERDC/CHL TR-08-X. August.

U.S. Army Corps of Engineers (Corps). 2009b. Draft Seabrook Fish Larval Transport Study. ERDC/CHL TR-08-X. March.

APPENDIX A

National Marine Fisheries Service Baton Rouge Field Office

Recommendations for Fisheries Friendly Design and Operation of Hurricane and Flood Protection Water Control Structures and Supporting Appendices

SUMMARY

The purpose of this document is to: 1) identify design and operational guiding principles that would optimize passage of estuarine dependent marine fisheries species, or at least, minimize adverse impacts to their passage through hurricane and flood protection water control structures planned for the New Orleans District of the U.S. Army Corps of Engineers; and, 2) provide background literature for environmental justification and documentation. Specific projects for which this guidance should be considered include the Mississippi River and Tributaries, Morganza to the Gulf of Mexico Hurricane Protection Project; Donaldsonville to the Gulf Project; Supplemental Appropriations Projects, and the Louisiana Coastal Protection and Restoration Project (LACPR). However, these guiding principles would also pertain to any civil works projects that could include combinations of levees and/or water control structures. Project delivery teams should remain flexible to adapt these design principles on a case-by-case basis as new fishery resource information and project-specific hydraulics data become available.

In general, the ability of estuarine dependent marine fishery organisms to migrate to and from coastal habitats decreases as structural restrictions increase, thereby reducing fishery production. The physical ability (i.e., swimming speed) to navigate through a structure is not the only factor influencing fish passage. Both behavioral and physical responses govern migration and affect passage of fishery organisms through structures. These responses may vary by species and life stage. In addition, most marine fishery species are relatively planktonic in early life stages and are dependent on tidal movement to access coastal marsh nursery areas. For this reason, in general, the greater the flow through a structure into a hydrologically affected wetland area, the greater the marine fishery production functions provided by that area.

Data on marine fishery species migrations in the Gulf of Mexico are too limited to allow the development of definitive design and operational considerations for water control structures that would guarantee the protection of marine fishery production. Anecdotal comparisons can be made with data from water intake and fish passage studies from the west and east coasts. It should not be assumed that structures that have been determined to provide sufficient drainage capacity also optimize or provide adequate fishery passage. More investigation is warranted to refine and adaptively manage water control structure design and operations to minimize adverse impacts to fishery passage. Case specific recommendations for some features under the Mississippi Tributaries, Morganza to the Gulf of Mexico Hurricane Protection Project and LACPR are provided in the appendices. In addition, biological background information is provided in the appendices to assist in preparation of environmental documents required by the National Environmental Policy Act (NEPA).

Summary of guiding principles for designing and operating flood protection water control structures to maintain marine fishery passage:

- Generally, bigger and more numerous openings in hurricane and flood protection levees better maintain estuarine dependent fishery migration. As much opening as practicable, in number, size, and diversity of location should be considered.
- Flood protection water control structures in any watercourse should maintain pre-project cross section in width and depth to the maximum extent practicable, especially structures located in tidal passes.
- Flood protection water control structures should remain completely open except during storm events.
- Any flood protection water control structure sited in canals, bayous, or navigation channels that do not maintain the pre-project cross section should be designed and operated with multiple openings within the structure. This should include openings near both sides of the channel as well as an opening in the center of the channel that extends to the bottom.
- The number and siting of openings in flood protection levees should be optimized to minimize the migratory distance from the opening to enclosed wetland habitats.
- Structures should include shoreline baffles and/or ramps (e.g., rock rubble, articulated concrete mat) that slope up to the structure invert to enhance organism passage. Various ramp designs should be considered.
- To the maximum extent practicable, structures should be designed and/or culverts selected such that average flow velocities during peak flood or ebb tides do not exceed 2.6 feet/second. This may not necessarily be applicable to tidal passes or other similar major exchange points.
- To the maximum extent practicable, culverts (round or box) should be designed, selected, and installed such that the invert elevation is equal to the existing water depth. The size of the culverts should be selected that would maintain sufficient flow to prevent siltation.
- Culverts should be installed in construction access roads unless otherwise recommended by the natural resource agencies. At a minimum, there should be one, 24-inch culvert placed every 500 feet and at natural stream crossings. If the depth of water crossings allow, larger sized culverts should be used. Culvert spacing should be optimized on a case-by-case basis. A culvert may be necessary if the road is less than 500-feet long and an area would hydrologically isolated without that culvert.
- Water control structures should be designed to allow rapid opening in the absence of an offsite power source after a storm passes and water levels return to normal.
- Levee alignments and water control structure alternatives should be selected to avoid the need for fishery organisms to pass through multiple structures (i.e., structures behind structures) to access an area.
- Operational plans should be developed to maximize the cross-sectional area open for as long as possible. Operations to maximize freshwater retention or redirect freshwater

flows could be considered if hydraulic modeling demonstrates that is possible and such actions are recommended by the natural resource agencies.

INTRODUCTION

Various flood protection and environmental water control structures in hurricane protection levees are being designed and considered for inclusion with ongoing local and federal civil works projects within the boundaries of the New Orleans District. Design purposes of the structures vary and may include maintaining safe navigation and optimizing drainage and passage of fishery organisms. For the Morganza to the Gulf of Mexico hurricane protection project, an interagency Habitat Evaluation Team (HET) and NOAA's National Marine Fisheries Service (NMFS) identified economically important fishery species that should be considered when assessing structure impacts on estuarine fisheries migration. Both the federal and state governments manage some of these species. Primary species that could be affected by flood protection structures in Louisiana include brown shrimp, white shrimp, blue crab, red drum, black drum, spotted seatrout, sand seatrout, southern flounder, and gulf menhaden. Some information is included herein on forage species, the production of which is important to maintain as they serve as important links of the aquatic food web for many of the managed fishery species.

The Baton Rouge office of NMFS has developed preliminary design principles for hurricane and flood protection water control structures to reduce impacts to living marine resources, especially related to migrations of estuarine dependent species. The basis for the following recommended guiding principles is briefly discussed where supporting literature is available. Case specific examples for some features under the Mississippi River and Tributaries, Morganza to the Gulf of Mexico hurricane protection project and the Louisiana Coastal Protection and Restoration Project are provided in the appendices. Basic behavior and physiology effects on the passage of fishery organisms are discussed in detail in appendices C and D, to aid federal agencies in environmental evaluations and descriptions under NEPA.

This document has been developed in consideration of input from the interagency HET, university faculty, fish passage staff of various agencies, and cursory literature reviews. These design considerations are intended to address potential impacts to living marine resources pursuant to the Fish and Wildlife Coordination Act and the Magnuson-Stevens Fishery Conservation and Management Act. Impacts to resources managed under other authorities, such as the Endangered Species Act or the Marine Mammal Protection Act, are not addressed in this document.

BEHAVIOR

The physical ability (i.e., swimming speed) to navigate a structure is not the only factor influencing fish passage, especially for small structures. Behavioral responses to stimuli individually or interactively affect passage with physiological constraints or responses. Behavior generally can be categorized as schooling and non-schooling behavior.

SCHOOLING BEHAVIOR

Schooling behavior consists of strategies that provide hydrodynamic efficiency, reduced predation, increased efficiency in finding food, and increased reproductive success. Water control structures for flood protection impact large numbers of fishery organisms due to this group response. This could be because fish exhibit the tendency to approach and orient to other members of the species (i.e., biotaxis). This orientation confers a hydrodynamic advantage that is more efficient than individuals due primarily to vortices setup by lead fish. Schools function as a living organism where the group reacts to stimuli as an individual. It is this group reaction that influences greater affect on passage through water control structures.

NON-SCHOOLING BEHAVIOR

Agonistic, territorial, and hierarchical behaviors are examples of non-schooling behavior exhibited by fish. Agonistic and territorial behaviors are largely unknown for the listed estuarine and marine fishery species of concern and their life stages. Structures that create physically taxing water flow velocities and some low flow areas may encourage these behaviors as fish compete for resting areas similar to competition seen with fish competing for resting areas within shrimp trawls or behind rocks in river riffle/pool habitat. It is possible these behavioral responses overall may not be that influential on fish passage through a structure, but may come more into play during low flow conditions such as lower tides or slack tide. Hierarchical behavior can often be driven by a combination of physiological responses and will be discussed in that section. Overall, investigation on behavioral responses to water control structures is needed to avoid and minimize adversely impacting fishery passage if not optimizing it.

PHYSIOLOGICAL

Fishery species and life stages react differently to a current of water (i.e., rheotaxis). Generally, fish are better able to orient to horizontal versus vertical flow (Meyers et al. 1986).

Locomotion

There are two means for migratory transport of estuarine and marine fish and crustaceans: passive and active transport. Passive transport is drift of organisms carried by the tides and currents. Larval and post-larval fish and crustacean life stages are predominately transported passively by tides and currents. Passive transport via tidal forcing can play a strong role in migration of sub-adult and adult brown shrimp, white shrimp, and blue crabs. Active transport is movement by swimming, which is the primary means of locomotion for sub-adults and adult fish.

SWIMMING SPEED

Refer to guiding principles number 7 for details on swimming speeds relative to impacts on fish passage.

BEHAVIORAL/PHYSIOLOGY INTERACTION

Many fishery organisms exhibit hierarchical behavior. This is a direct response to stimuli, such

as astronomical (e.g., tidal rhythm) or meteorological driven flows. For example, brown shrimp mediate transport by circadian or diel vertical migration. Brown shrimp move down in the water column or cease activity as they become negatively buoyant when low salinity and temperature water develop in estuaries with north winds associated with spring fronts. Brown shrimp activity resumes with their movement up in the water column with increasing water temperature, salinity, and hydrostatic pressure associated with the southerly gulf return following after a cold front (Rogers et al. 1993). Similar selective tidal stream transport was reported by Hartman et al. (1987). Fishery organisms identify tide changes by detecting altered velocity, salinity, temperature, all of which can cue staging for immigration with an incoming tide. Future tidal pass or inlet studies are needed for better information on vertical distribution, depth preferences, and changes in buoyancy or behavior to evaluate active and passive transport of fishery organisms.

GUIDING PRINCIPLES FOR DESIGNING FISHERIES FRIENDLY FLOOD PROTECTION WATER CONTROL STRUCTURES

1. Generally, bigger and more numerous openings in hurricane and flood protection levees better maintain estuarine dependent fishery migration. As much opening as practicable, in number, size, and diversity of location should be considered.

Most of Louisiana's commercial and recreational fishery species must have access to estuarine marshes to successfully complete some part of their life cycle (i.e., they are estuarine-dependent). Estuarine-dependent fishery productivity is a measure of standing crop (the number of fishery organisms present at a point in time) and the turnover rate (the rate at which the population is replaced). All things being equal, fishery production would be lower following levee and water control construction if structures retard turnover rate. This would be the case even while standing crop may appear normal. Restrictions in tidal movement caused by water control structures and levees would result in degraded or substantially changed species composition, which could alter fishery production and/or displace fisheries.

Marine transient species emigrate (i.e., move from coastal marshes towards Gulf waters) towards higher salinity water; therefore, a structure that maintains the greatest degree of opening while allowing the project objectives to be met would be desirable (Rogers et al. 1992).

2. Flood protection water control structures in any watercourse should maintain pre-project cross section in width and depth to the maximum extent practicable, especially structures located in tidal passes.

Water control structures should be designed to have a water flow capacity (and similar dimensions where possible) comparable to the waterway before construction. Restricted water exchange in marshes enclosed by levees and water control structures diminishes recruitment and standing stocks of species that must migrate from coastal spawning sites to marsh nurseries

(Rogers et al. 1994). As the amount of hydrologic control increases, the effect on migration and production of marine transients and residents increases. Greater restriction decreases turn over rate of estuarine-dependent fishery organisms, which decreases their production (Rogers et al. 1992^a). Slotted and fixed crest weirs have been found to delay immigration. As the degree of restriction increased from slotted weirs, to low elevation weir, and to fixed crest weirs, greater impacts to different fisheries species and their emigration were observed.

Design considerations for hurricane and flood protection water control structures should include features to accommodate vertical and horizontal fishery distribution patterns within interior marsh tidal pathways and coastal passes. Fishery organisms exhibit preferences by species, life stage, and in some cases tide cycle, for vertical and horizontal distribution within smaller or interior marsh tidal connections (Table 1). Behavioral and physiological responses, such as diel vertical migration, affect these preferred distribution patterns.

Study of Keith Lake Pass in Texas revealed that all portions of the water column, both vertically and horizontally, are used by fishery organisms (Hartman et al. 1987). Most estuarine-dependent fishery species preferred the bottom or shore zones during flood tides, but were much denser near the shores of the pass, in slower moving water, on ebb tide. This lateral movement on slack to ebb tides appears to be a behavioral action to prevent displacement from the pass during ebb tide to accelerate movement to marsh nursery areas. The study identified the response to light cycles with midday densities greatest at bottom and densities greatest at surface during dawn to dusk. Similar within pass distribution patterns were reported by Sabins and Truesdale at Grand Isle, Louisiana (1974).

Table 1. Table on fishery preference within the water column (Marotz et al. 1990; Herke and Rogers 1985; Hartman et al. 1987; Sabins and Truesdale 1974). ^a denotes juveniles; ^b denotes immigrating; ^c denotes emigrating; ^e denotes ebb tide; ^f denotes flood tide.

Species	Vertical Distribution			Horizontal Distribution
	Surface	Mid-depth	Bottom	Shore/Nearshore
brown shrimp ^b	X	X		X ^e
white shrimp ^b	X	X		
white shrimp ^c		X		X ^e
blue crab	X			X ^e
red drum ^a				X ^e
red drum ^b		X	X	
red drum ^c			X	
bay anchovy	X			
striped mullet	X			
Atlantic croaker ^a	X	X		X ^e
Atlantic croaker		X	X	X ^e
spotted seatrout		X	X	
sand seatrout		X	X	X ^e

gulf menhaden	X	X		
southern flounder				X ^f
black drum				X ^e

3. Flood protection water control structures should remain completely open except during storm events.

Fish passage should be optimized by the duration that structures remain fully open. Rozas and Minello (1999) reported that even when water-control structures were open, the densities of transient species were low inside areas enclosed by levees and water control structures as compared to natural areas.

Fisheries migration that temporarily may be impacted with storm related closures are listed in Table 2. The degree of impact would be influenced by the timing and duration of a structure closure relative to peak migration.

Table 2. Migration of economically important fisheries in Louisiana that temporarily may be impacted with storm related closures.

Species	Migration Period Overlapping with Hurricane Season
brown shrimp	April - mid July
white shrimp	July - November
blue crab	June - September
spotted seatrout	April - October
sand seatrout	April - October
red drum	August - December
black drum	March - July
southern flounder	September - October

4. Any flood protection water control structures sited in canals, bayous, or navigation channels that do not maintain the pre-project cross section should be designed and operated with multiple openings within the structure. This should include openings near both sides of the channel as well as an opening in the center of the channel that extends to the bottom.

Hartman et al. (1987) recommended structures not be constructed in a tidal pass. If a structure was constructed, they recommended the incorporation of several gates at several vertical and horizontal locations, with baffles near shore. Baffles near shore are to direct shore or near shore fish passage on ebb tides through the available structure opening(s) (e.g., gates in wing walls).

Structures should be designed and operated with multiple openings if the pre-project water depth and widths of a channel are not maintained. Multiple openings are necessary to optimize passage of fishery organisms that prefer to migrate along the sides, bottom, and top of channels. For

example, Rogers et al. (1992^a) recommended opening some vertical slots and top, middle, and bottom gates in a structure with multiple slots and gates.

5. The number and siting of openings in flood protection levees should be optimized to minimize the migratory distance from the opening to enclosed wetland habitats.

The location and number of structures likely affects the abundance and distribution of estuarine fishery species within habitats that would be located on the protected side of levees and water control structures. Rogers et al. (1992^c) determined that marine transient species were most numerous nearest the structures, partially due to the proximity of the openings with respect to the area enclosed. Similarly, other studies have shown there is a decrease in fishery species abundance and diversity the greater the distance from the access point (Peterson and Turner 1994). This can become more pronounced if an environmental gradient (e.g., salinity) exists between an access point and the interior habitat located on the protected side of structures (Cashner 1994).

6. Structures should include shoreline baffles and/or ramps (e.g., rock rubble, articulated concrete mat) that slope up to the structure invert to enhance organism passage. Various ramp designs should be considered.

Study of Keith Lake Pass in Texas revealed vertical and horizontal distribution patterns of fishery organisms in the pass (Hartman et al. 1987). Estuarine-dependent fishery organisms preferred the bottom or near shore zones on flood tides. Most organisms appeared near shores of the pass on ebb tide in slower moving water. Baffles near shore are to direct shore or near shore fish passage through the structure.

Many fish migrate along the water bottom. Water control structures with crests or inverts higher than the lower portion of a channel could impede migration through the deep-water portions of channels. Ramps can provide a means to guide organisms over and through structures and increase access of fisheries organisms to enclosed habitat (Lafleur 1994). Various ramp designs need to be investigated.

7. To the maximum extent practicable, structures should be designed and/or culverts selected such that average flow velocities during peak flood or ebb tides do not exceed 2.6 feet/second.

In this preliminary investigation, no studies were located that evaluated the impacts of swimming speeds for the fishery species and life stages of concern in Louisiana. To avoid preventing or reducing ingress or egress of fishery organisms, preliminary guidance on water velocities through structures in Louisiana could be based on anecdotal comparisons with data available on general swimming speeds from studies on the west and east coasts (Tables 3 and 4).

Swimming speeds of estuarine and marine fish and crustaceans is a function of shape, stage of development, length, ambient temperature, light, and duration required for swimming

performance. For most species, absolute speed increases as size increases. Generally, fish swimming speeds range from 2-4 body lengths/second with burst speeds up to 5 body lengths/second (Meyers et al. 1986).

Water intake studies have shown that maintaining water velocities less than 0.5 ft/sec would protect most fish and their life stages from being adversely affected by those flows (USEPA 2004). The species and life stages of fish for that study could not be located at this time and further investigation for Gulf of Mexico species is warranted. They also recommended creating horizontal velocity fields to avoid adverse affects on fish because fish are better able to orient to horizontal versus vertical flow. This could allow selective avoidance of water flows not preferred by fish or minimize disorientation or mortality rates caused by flows.

Eberhardt (personal communication) reported velocities exceeding 0.82 feet/second began to impede fish passage. Fish passage was decreased by 50% for velocities exceeding 2.6 feet/second. Based on evaluation of freshwater species, Gardner (2006) recommends keeping velocities through round culverts less than 1.8 ft/sec during 90% of the fish migration season. To improve fish passage through culverts, installing baffles within culverts should be considered to reduce flow velocity barriers for fish (Pacific Watershed Associates 1994).

Table 3. Water flow velocity thresholds for affecting fish passage or avoiding impingement within flows or on screens.

Source	Water Flow Velocity (ft/sec)	
Alyson Eberhardt, personal communication	0.82	Begin to impede
	2.62	Decreased fish passage by 50%
Gardner 2006	1.8	Critical velocity (freshwater fish)
Meyers et al. 1986	<0.49	To avoid impingement
USEPA 2004	<0.50	Protected 96% of the fish tested from impingement

Table 4. Sustained fish swimming speeds. Adapted from Meyers et al. (1986). Note that no data was located for the fisheries species and life stages for the Gulf of Mexico.

Fish/life stage	Swimming Speeds (ft/sec)
Atlantic herring	0.19 – 0.3
Mullet	4.19
Horse mackerel	4.46
Sole	0.19 - 0.3
most larvae	0.82 – 0.98

Based on these limited data, larval fish could be adversely impacted by water flow rates exceeding 0.82 feet/second. Post-larval and juvenile stages of flounders could be impacted by flow rates around 1.0 ft/sec. Other species or larger life stages likely would not be adversely impacted until flow rates exceed 2.62 feet/second based on inferences from these data. Water flow velocity monitoring in the Terrebonne Basin by the U.S. Fish and Wildlife Service has found maximum flows through existing open channels exceeding 1.0 feet /second and in larger saline marsh channels and passes exceeding 2.0 feet/second.

If the spatial extent of flow velocity fields exceed the distance that can be traveled with sustained or burst swimming speeds of fishery organisms, those flows could prevent or reduce ingress or egress during the time which those flows exist. However, the degree of mortality from not being able to access nursery and foraging habitat is not known. High flow rates may aid passage of larval fish that primarily depend on passive transport for migratory distribution and access to estuarine habitat on the protected side of levees, if the high flows do not induce mortality from injury or fatigue. Water flow could exceed the fish swimming rates for short periods and still provide passage during low flows or during still water.

8. To the maximum extent practicable, culverts (round or box) should be designed, selected, and installed such that the invert elevation is equal to existing water depth. The size of the culverts should be selected that would maintain sufficient flow to prevent siltation.

Design considerations should include installing baffles within culverts to reduce flow velocity barriers (Pacific Watershed Associates 1994). Passage of salmon and herring species has been shown to be impaired by culverts. With baffles or other similar features, still water areas could be created to enhance fish passage.

If water control structures include plunge pools, the invert elevation of the structure could be equal to the depth of the plunge pool if the plunge pool is deeper than the pre-project water depth. This deeper invert would optimize passage of fisheries species, in particular bottom dweller species.

Fish often require visual cues for orientation and exhibit faster swimming speeds at increased light levels. Herring type fish (e.g., gulf menhaden) are particularly sensitive to light levels. However, although herring exhibited a preference for unshaded portions of treatments during both day and night periods, as little as 1.4% of the ambient light was necessary for their passage through a culvert (Mosser and Terra 1999).

9. Culverts should be installed in construction access roads unless otherwise recommended by the resource agencies. At a minimum, there should be one, 24-inch culvert placed every 500 feet and at all water crossings. If the depth of water crossings allow, larger sized culverts should be used. Culvert spacing should be optimized on a case-by-case basis. A culvert may be necessary, even if the road is less than 500 feet long, if an area would be

hydrologically isolated without that culvert.

10. Water control structures should be designed to allow rapid opening in the absence of an offsite power source after storm passage and return of normal water levels.

Regardless of structure size, designs and contingency plans should include means to rapidly open the water control structures when flooding risks subside after a storm. Designs and plans should include infrastructure, equipment, and staff necessary to open the structures even if offsite electricity is not available. Design safeguards should be developed to protect the structures from being damaged rendering them inoperable and locked in a closed configuration after passage of a storm.

11. Levee alignment and water control structure alternatives should be selected to avoid the need for fishery organisms to pass through multiple structures (i.e., structures behind structures) to access an area.

12. Operational plans should be developed to maximize the cross-sectional area open for as long as possible. Operations to maximize freshwater retention or redirect freshwater flows could be considered if hydraulic modeling demonstrates that is possible and such actions are recommended by the natural resource agencies.

LITERATURE CITED

Cashner R.C., F.P. Gelwick, and W.J. Matthews. Spatial and temporal variation in the distribution of the Labranche wetlands area of the Lake Pontchartrain estuary, Louisiana. *Northeast Gulf Science* 13(2):107-120.

Environmental Protection Agency. 2004. 69 FR 68443. National Pollutant Discharge Elimination System – Proposed Regulations to Establish Requirements for Cooling Water Intake Structures at Phase III Facilities; Proposed Rule.

Gardner, A.E. 2006. Fish passage through road culverts. M.S. thesis, North Carolina State University. 103 pp.

Hartman, R.D., C.F. Bryan, and J.W. Korth. 1987. Community structure and dynamics of fishes and crustaceans in a southeast Texas estuary. Submitted to: U.S. Fish and Wildlife Service. Louisiana Cooperative Fish and Wildlife Research Unit, Louisiana State University Agricultural Center. 116 pp.

Lafleur, G.L. 1994. Relative fisheries recruitment past a fixed-crest and ramped weir. M.S. thesis, Louisiana State University. 97 pp.

Marotz, B.L., W.H. Herke, and B.D. Rogers. 1990. Movement of gulf menhaden through three marshland routes in southwestern Louisiana. *North American Journal of Fisheries Management* 10:408-417.

Meyers, E.P., D.E. Hoss, D.S. Peters, W.M. Matsumoto, M.P. Seki, R.N. Uchida, J.D. Ditmars, and R.A. Paddock. 1986. The potential impact of ocean thermal energy conversion (OTEC) on fisheries. NOAA Technical Report NMFS 40.

Mosser, M.L. and M.E. Terra. 1999. Low light as an impediment to river herring. *Journal of Fish Biology* 12:609-614.

Pacific Watershed Associates. 1994. Chapter 10. South Fork Trinity River Basin, Fishery Habitat Improvement Projects. *In* Action Plan for Restoration of the South Fork Trinity River Watershed and Its Fisheries. Prepared for U.S. Bureau of Reclamation and The Trinity River Task Force under contract No. 2-CS-20-01100.

Peterson, G.W. and R.E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh. *Estuaries* 17(18):235-262.

Rogers, B.D. and W.H. Herke. 1985. Estuarine-dependent fish and crustacean movements and weir management. *In* C.F. Bryan, P.J. Zwank, and R.H. Chabreck, editors. Proceedings of the fourth coastal marsh and estuary management symposium. Louisiana Cooperative Fish and Wildlife Research Unit, Louisiana State University Agricultural Center, Baton

Rouge. pp 201- 219.

Rogers, D.R., B.D. Rogers, and W.H. Herke. 1994. Structural marsh management effects on coastal fishes and crustaceans. *Environmental Management* 18(3):351-369.

Rogers, D.R. B.D. Rogers, W.H. Herke. 1992^a. Some potential effects of the Cameron-Creole marsh management plan on fishery organisms. School of Forestry, Wildlife, and Fisheries, Louisiana State University Agricultural Center. 82 pp.

Rogers B.D., W.H. Herke, and E.E. Knudsen. 1992^b. Effects of three different water-control structures on the movements and standing stocks of coastal fishes and macrocrustaceans. *Wetlands* 12(2):106-120.

Rogers, D.R., B.D. Rogers, and W.H. Herke. 1992^c. Effects of a marsh management plan on fishery communities in coastal Louisiana. *Wetlands* 12(1):53-62.

Rogers, B.D., R.F. Shaw, W.H. Herke, and R.H. Blanchet. 1993. Recruitment of postlarval and juvenile brown shrimp (*Penaeus aztecus* Ives) from offshore to estuarine waters of the northwestern Gulf of Mexico. *Estuarine, Coastal and Shelf Science* 36:377-394.

Rozas, L.P. and T.J. Minello. 1999. Effects of structural marsh management on fishery species and other nekton before and during a spring drawdown. *Wetlands Ecology and Management* 7:121-139.

Sabins, D.S. and F.M. Truesdale. 1974. Diel and seasonal occurrence of immature fishes in a Louisiana tidal pass. *Proceedings of the 28th Annual Conference of Southeastern Association of Game and Fish Commissioners* 28:161-171.

APPENDIX B

Reference Websites, Fish Passage Agency Representatives, and University Faculty

Baker, C. and J. Boubee. 2003. Using ramps for fish passage past small barriers. *Water and Atmosphere* 11(2). June.

<http://www.niwascience.co.nz/pubs/wa/11-2/passage>

USACE Portland District, Fish Passage Team

http://www.nwp.usace.army.mil/pm/e/en_fish.asp

USACE, ERDC, Coastal Hydraulics Lab

<http://chl.erdc.usace.army.mil/CHL.aspx?p=s&a=ResearchAreas;22>

USFWS Fish Passage Decision Support System

<http://fpdss.fws.gov/index.jsp>

NC State's Center for Transportation and the Environment website:

<http://www.itre.ncsu.edu/>

[http://itre.ncsu.edu/CTE/gateway/downloads/Culvert%20Impact%20Study\(December2002\).pdf](http://itre.ncsu.edu/CTE/gateway/downloads/Culvert%20Impact%20Study(December2002).pdf)

<http://itre.ncsu.edu/CTE/gateway/downloads/FishPassage.pdf>

FishXing software and learning systems for fish passage through culverts. This software is intended to assist engineers, hydrologists, and fish biologists in the evaluation and design of culverts for fish passage. It is free and available for download.

<http://stream.fs.fed.us/fishxing/>

- Allows for comparison of multiple culverts designs within a single project.
- Calculates hydraulic conditions within circular, box, pipe-arch, open-bottom arch, and embedded culverts.
- Contains default swimming abilities for numerous North American fish species.
- Contains three different options for defining tailwater elevations.
- Calculates water surface profiles through the culvert using gradually varied flow equations, including hydraulic jumps.
- Outputs tables and graphs summarizing the water velocities, water depths, outlet conditions, and lists the limiting fish passage conditions for each culvert.

USFWS Fish Passage National Coordinator

thomas.sinclair@fws.gov

NOAA, NMFS

Eric.Hutchins@noaa.gov

James.G.Turek@noaa.gov

Richard.Wantuck@noaa.gov

Louisiana State University Coastal Fisheries Institute

Jim Cowan; jhcowan@lsu.edu

Bruce Thompson; coetho@lsu.edu

University of Texas Marine Science Institute

Lee Fuiman; lee@utmsi.utexas.edu

APPENDIX C

Agency Comments

RECEIVED

NOV 6 2009

FISH & WLDL SERV
LAFAYETTE, LA

UNITED STATES DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
 NATIONAL MARINE FISHERIES SERVICE
 Southeast Regional Office
 263 13th Avenue, South
 St. Petersburg, Florida 33701

November 6, 2009 F/SER46/RH:jk
 225/389-0508

Mr. James F. Boggs, Supervisor
 Louisiana Field Office
 U.S. Fish and Wildlife Service
 646 Cajundome Blvd., Suite 400
 Lafayette, Louisiana 70506

Dear Mr. Boggs:

NOAA's National Marine Fisheries Service (NMFS) has received the draft Fish and Wildlife Coordination Act Report (Report) on Individual Environmental Report 11, Tier 2 Pontchartrain transmitted for our review by your letter dated October 23, 2009. The Report discusses the U.S. Fish and Wildlife Service's findings and recommendations associated with plans to provide a 100-year level of storm surge protection on the Inner Harbor Navigation Canal (IHNC) in Orleans and St. Bernard Parishes, Louisiana. As described in the Report, the Corps of Engineers proposes to install a flood gate in the IHNC approximately 500 ft south of the Seabrook Bridge. That flood gate would have a sector gate and two vertical lift gates. Those gates would be closed only during storm events to protect populated areas adjacent to the IHNC from hurricane storm surges, and occasional closures to facilitate navigation on the Gulf Intracoastal Waterway or maintenance of the structure.

NMFS has reviewed the Report and finds it to be well written. In addition, we concur with the fish and wildlife conservation measures recommended in the document and have no additional measures to add. As such, we have no recommended revisions to the Report.

We appreciate the opportunity to review and comment on this Report.

Sincerely,

A handwritten signature in black ink, appearing to read "Ruth Hartman" or "Ruth Hartman" with a small "R" and "H" above the main name.

 Miles M. Croom
 Assistant Regional Director
 Habitat Conservation Division

C
 LA DNR, Consistency, Ducote
 F/SER46, Swafford
 Files

THIS PAGE WAS INTENTIONALLY LEFT BLANK

APPENDIX F
PUBLIC MEETING MINUTES

Meeting minutes and presentations can be accessed at:

http://www.nolaenvironmental.gov/projects/usace_levee/IER.aspx?IERID=11

To request hardcopies of public meeting presentations and/or transcripts,
Please contact Patricia Leroux at 504-862-1544.